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Abstract—Many theoretical control strategies have been 
proposed for hybrid electric vehicles (HEVs) during the past 
decade. Some of these theoretical control strategies are not 
suitable for real-time applications mainly because of their 
sensitivity to vehicle parameter variations and different driving 
habits of the drivers. The computation times of such algorithms 
are also long because of their high accuracy demand. In this 
paper, the equivalent consumption minimization strategy 
(ECMS) is used and a faster solution algorithm is proposed to 
decrease the computation time while keeping the same 
accuracy. In addition, a neural adaptive network is proposed to 
decrease the sensitivity of the algorithm to drive cycle 
variations with drive cycle recognition.  

 

I. INTRODUCTION 

 Hybrid electric vehicles’ (HEV) popularity is increasing 
since their first launch into the market. Each year 
manufactures announce new versions or improvements for 
their HEV brands. In the past decade, with the improvement 
of hybrid technology, many researchers have been focused 
on control strategies [1], but only few of the proposed 
strategies are implementable. An implementable control 
strategy should be stable (should sustain system variables 
within desirable bounds) and should perform its task (low 
fuel consumption, low emissions, high performance, etc.) 
properly within a given period of time, under all 
circumstances.  

Most of the rule-based algorithms match with these 
requirements and, for that reason, they are preferred by the 
automotive companies. Despite this operating advantage, 
these algorithms are not best solutions for the given task. On 
the other hand, the operating performance of the model based 
control strategies like equivalent consumption minimization 
strategy (ECMS) are better than the rule based controllers 
since model based algorithms are optimized according to the 
model of the propulsion system components and also 
according to the drive cycle. However, they are sensitive to 
the parameter variations in vehicle as well as driver’s 
behavior [2]. Reducing their sensitivity by adaptation 
algorithms will make them more reliable for real time 
applications [3]. Another problem is that their computing 
time is long. Using other solution methods can speed up the 
progress to make the algorithm more implementable.  

In this paper, the main task is to propose a modified model 
based controller to make it more applicable while sustaining 
its operating performance by reducing the sensitivity and 
computation time. The ECMS methodology has been chosen. 
A neural adaptive network for drive cycle recognition and 
new improved steepest decent method is introduced for 
speed increase in computations.   

II. POST PARALLEL HYBRID POWERTRAIN MODEL  

In our study, we consider a typical large sport utility 
vehicle (SUV). The electric drive system is connected in 
parallel to the powertrain after the transmission through a 
torque coupler. The vehicle houses 6.5 L Diesel engine (120 
kW) with a four speed gearbox, electric propulsion system 
(100kW continuous, 150kW peak), and 316.8V 37.5Ah 
battery pack. This is the configuration of a full hybrid 
vehicle.  A representative model for this post-transmission 
parallel topology is given in Fig. 1 [4]. In this figure, purple 
color shows the speed, red color shows the power, green 
color presents the characteristic conversation equations 
(efficiency, fuel consumptions, and battery voltage) for each 
component of the powertrain.  

 
Figure 1.   Post-transmission parallel hybrid powertrain topology.  

The powertrain can be divided into three main sections 
according to their dependency on control value. These 
sections are the common path, the fuel path, and the electric 
path.  

A. Common Path 
The common path is the part of the powertrain from the 

torque coupler to the wheels. This part transfers the total 
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torque from engine and electrical motor to the wheels in 
order to propel the vehicle. Assuming that wheel speed and 
wheel mechanical power, which are functions of vehicle 
physical parameters and drive cycle, are known, the 
following equations can be derived for the final drive shaft. 
In these equations, Tfd [Nm] is the final drive torque, Twheel is 
the wheel torque, rfd denotes final drive gear ratio, ωfd [rad/s] 
stand for final drive rotational speed, ωwheel is the wheel 
rotational speed, Pfd is the final derive mechanical power, 
and Pwheel [W] is the wheel mechanical power.  
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The electrical path and fuel path share the torque with the 
coupler with a ratio “u” which is called power split ratio. 
This is the control variable of the system. If the power split 
value is zero, vehicle operates like a conventional vehicle 
and, if the power split value is one, vehicle operates as an all 
electric vehicle. Selecting correct power split value between 
zero and one is the key point in propulsion control. This 
value can also be negative in which engine produces more 
torque than demand to charge the batteries.  

B. Fuel Path 
The fuel path is consists of the engine and transmission. 

The equations for engine mechanical power Pen, speed ωen, 
and torque Ten are given below. The shifting strategy is 
chosen the same way as the conventional one. The rg is the 
gear ratio of the transmission for the given shift number. If 
the losses on transmission are neglected, following equations 
can be achieved.  
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Engine fuel consumption can be described as a function of 
the engine rotational speed and engine mechanical power. 
This function is one of the characteristic maps of the engine. 
The consumed fuel power can be calculated by multiplying 
the mass fuel rate with lower heating value of diesel (Hl). 
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C. Electric Path 
The electrical path consists of the electrical machine, 

power electronic driver, and battery pack. The electrical 
machine shaft is directly coupled to the torque coupler whose 
turns ratio is one. Subsequently, the speed of the electric 
motor is the same as the final drive shaft rotational speed and 
torque directly is applied to the final drive shaft. The post-

transmission topology lets the electric motor operate 
independently from gear shifting and gives flexibility in 
control to operate the machine in more efficient areas. The 
following equations describe electrical machine speed ωem, 
torque Tem and power Pem. 
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The battery power Pb demand can be calculated by dividing 
the mechanical power of the electric machine with the 
efficiency of the machine, which is a function of the engine 
speed and mechanical power. This efficiency map ηem 
includes the losses in machine (electrical and mechanical 
losses) as well as the power electronic driver.  
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The electrical power Pe from the battery storage can be 
calculated by using the efficiency map ηb of the battery (11).  
This map defines the losses on the series charging or 
discharging resistance depending on the battery current 
direction.  
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Efficiency of the battery depends on both battery power and 
state-of-charge (SOC) q.  The SOC is a function of 
cumulative battery current Ib during any time period. At any 
given time, the battery current can be calculated similar to 
equation (13). Voc is the open circuit voltage of the battery, 
which is a function of the SOC. The state-of-charge variation 
can be computed from this current value through equation 
(14). Q0 is the nominal capacity of the battery pack [Ah].  
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III. EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY 

(ECMS)  

The main concept in hybrid electric vehicle control is to 
end the drive cycle with zero electrical energy usage. Ideally, 
this means the final SOC value is the same as the initial SOC 
value for a drive cycle (charge sustaining). In reality, 
because of unknown driving behaviors, the final SOC can 
differ from the initial one. This difference reflects the 
additional or less electrical energy usage from the battery 
pack. The equivalent consumption minimization strategy is 
an optimization method based on minimizing the fuel as well 
as the electrical usage while meeting the demand. A 



weighting coefficient makes consumed fuel power and 
electrical power comparable to each other. If the weighting 
function is chosen properly, the final state-of-charge and 
initial state-of-charge will be the same (charge sustaining) at 
the end of drive cycle [5].  

A. Cost Function 
The main focus of this control strategy is the fuel 

consumption of engine and equivalent fuel consumption of 
battery electrical energy. The following cost function Jf 
defines such an approach. In this equation, ζ (.) is a function 
which converts the battery electrical energy into fuel energy 
equivalent. 
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The main task is to calculate proper control values, which 
will minimize this cost function for each time instance. This 
optimization problem can be solved by using Pontryagin’s 
Minimum Principle [6]. Without considering the final state 
SOC, a sub optimal Hamiltonian function can be defined as 
in equation (16). In this equation, s is the equivalent 
coefficient, which depends on the drive cycle. This 
coefficient can be calculated by using dependency curve for 
a given drive cycle. This curve can be generated by 
simulating the model with constant control values, measuring 
the fuel, battery energy usage and doing the same job for 
different control values within admissible boundaries (Fig. 
2). In Fig. 2, points show each simulation result and lines are 
fitted lines through these points. Slope of these two lines 
gives the s values for charging and discharging situations.  
Table I shows the equivalent coefficients for UDDS drive 
cycle. 
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The power split value (u) is found by minimizing equation 
(16).  
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Figure 2.  Dependency curve for UDDS drive cycle.  

 

TABLE I  
EQUIVALENT COEFFICIENT FOR UDDS AND HWFET DRIVE 

CYCLES 

Drive Cycle umax umin sdis schg 

UDDS 1.0 -0.2 6.018 3.369 

B. Penalty Function 
While solving an optimization problem, the boundary 

constraints should also be taken into consideration.  
Computing separately will be hard and may cause problems. 
Penalty functions are used to implement the constraints into 
the cost function to be minimized to consider only one 
function for optimization [7]. This function adds additional 
positive values to the original cost function when any 
constraint is violated. The constraints for a hybrid vehicle are 
given below (17). 
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The penalty function defined for this study is given in 
equation (18). In this equation, ulim is the u value in which 
one of the constraints is violated. ulim is reset when the 
violation is ended. This is an exponential function that 
increases depending on how much the boundaries are 
violated. The K value is chosen depending on the average 
value of the original cost function and desired slope of the 
penalty function.  
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The original Hamiltonian function is extended according to 
equation (19).   

IV. FAST SOLUTION ALGORITHM  

The Hamiltonian function to be minimized has nonlinear 
and complex structure because of the efficiency maps of the 
engine, battery, and electric machine. Although the function 
is convex for most of the driving points, the traditional 
derivative minimization algorithms are insufficient to solve 
this optimal problem.  

 Brute force technique is one of the fundamental ways to 
solve this problem. It basically tries all possible values of the 
control variable and calculates the cost function for each of 
them. Then, it selects the optimum control value which gives 
the minimum cost. The accuracy of this method depends on 
the number of chosen control values within a give boundary. 
As the number of tries increases, the accuracy is improved; 
however, the computing load for the processer increases as 
well. This load increase slows down the control algorithm. A 
fast but accurate solution is required for proper result.  

One of the fast optimization methods is the steepest 
decent algorithm which is suitable for convex function 
minimization. This algorithm uses the first derivative of the 



function to be optimized as the slope of the iteration. As the 
iteration closes to the minimum point (optimum point), the 
slope approaches to zero and finalizes the progress in finite 
time. This iterative method is given in (20). In this equation, 
the subscripts represent the iteration index. The f(.) is the 
function to be minimized and u is the argument of this 
function. α is the coefficient to regulate the speed and 
stability of the algorithm. Higher values increase the speed 
but may threat the stability.  
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If it is not possible to obtain the first derivative of the 
function, virtual first derivative can be formed as in equation 
(21). 
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In [8], a faster algorithm by using recurrent neural network 
has been proposed. This new algorithm is similar to the 
steepest decent algorithm except the definition of derivative. 
This method defines a new function sig(.) as in (23) and 
replaces it with the derivative (22). 
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This algorithm has two tunable parameters (α and v), which 
give flexibility to increase the convergence speed while 
sustaining the stability. Fig. 3 compares the solution speeds 
of both algorithms. In this figure, the optimization process 
for 585th second of the UDDS drive cycle is given (blue 
line); part (a) and part (c) show the optimization done with 
steepest decent algorithm, while part (b) and part (d) show 
the optimization done with recurrent neural network 
approach. To compare fairly, the initial values are chosen the 
same. The initial value for (a) and (b) is -1 and the initial 
value for (c) and (d) is 1. Each red dot represents the 
iteration step. From this figure, it can be observed that, 
independent from the initial value, number of iterations for 
recurrent neural network based algorithm is lower, which 
makes this algorithm faster compared with the steepest 
decent algorithm. In this study, recurrent network based 
algorithm is used for optimization.  

V. ADAPTATION WITH NEURAL NETWORK 

The second important task is to choose correct equivalent 
coefficient for the Hamiltonian function. As maintained, 
each drive cycle has a unique pair of equivalent coefficients 
(for charging and discharging modes). For that reason, the 
control algorithm should be adaptable to changes in driving 
condition and recognize the drive cycle. Neural networks are 
one of the methodologies used for pattern recognition with 
excellent mapping capability. It has been proved that any 
nonlinear lookup table can be fitted inside a proper network.  
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Figure 3.  Comparison of speed of minimization algorithms.  

 

 

Figure 4.  Neural network for drive cycle recognation.  



 

Figure 5.  Simulation results for both dynamic programming and EMCS.  

TABLE II  
FUEL CONSUMPTION FOR DIFFERENT CONTROL METHODS 

Control Method Fuel Consumption (mpg) Final SOC 

Conventional 11.40 mpg ---- 

Dynamic 
Programming 

14.41 mpg %60 

ECMS 14.42 mpg %58 

 

A recurrent neural network has been proposed as the 
drive cycle recognizer and equivalent coefficient tuner [9]. 
This network tracks the last 200s computed speed data 
(average, maximum, minimum speed, and acceleration) 
which are the characteristic values for a drive cycle. This 
network is shown in Fig. 4. In this figure, circles represent 
the transfer function for each neuron and lines between 
these circles represent weighting between the layers. 
Network has 6 input neurons in input layer, 10 neurons 
with sigmoid function in hidden layer, and one neural 
output layer. The output value codes the type of the drive 

cycle. According to this code, proper values are selected to 
tune the algorithm. Fig. 6 shows the operation of the 
network. The network is tested with a combined HWFET 
and UDDS drive cycle. It can be seen from the figure that, 
when the cycle is UDDS, the network gives zero and, for 
HWFET, it gives one at the output.  

VI. SIMULATION RESULTS  

The model has been simulated with both dynamic 
programming (DP) and ECMS with the proposed solution 
method [10]. The dynamic programming considers all 
possible scenarios to drive the vehicle for a given drive 
cycle and selects the best scenario with lowest cost. This 
means the solution by DP is always the most optimum 
solution. Unfortunately, the DP is not implementable, but 
it is usually used to compare with the other control 
strategies. The simulation results for DP and EMCS are 
given in Fig. 5. In this figure, engine and electric drive 
operating points are shown over the efficiency maps of 
them. Cold colors show lower efficient and hot colors 
show high efficient operating areas. Similarity of the 



figures proves that ECMS algorithm has been solved 
properly. Furthermore, the results given in Table II show 
how much the sup-optimal solution is close to the optimal 
solution.  

 

Figure 6.  Network output for UDDS and HWFET drive cycle.  

VII. CONCLUSION 

One of the important concerns in designing control 
strategies for hybrid electric vehicles is their 
implementation in real applications. The controllers with 
better performance are usually very sensitive to vehicle 
parameters and conditions. Therefore, the accuracy of the 
calculated value for power split is important. More 
accurate algorithms mean slower computing times, which 
are not suitable for real-time applications. In this study, a 
fast and accurate solution method has been proposed and 
implemented to ECMS, which is one of the model based 
controllers. The simulation results for dynamic 
programming, which shows the optimum solution, and 
ECMS are compared. The similarity shows the solution 
algorithm is performing properly. Furthermore, a neural 
adaptive network is proposed to tune the equivalent 
coefficient. This network basically recognizes the drive 
cycle and chooses proper values for ECMS.  
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