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Abstract- Power electronics converters can generate a high level 
of harmonic perturbations on on-board electrical systems 
(planes, ships, road vehicles…). For the optimal sizing of these 
systems, harmonics must be known to select the best components 
(generator, filter…) that will limit their effects. In the paper, an 
analytical frequency domain modeling is proposed to accurately 
compute the harmonics generated the static converters. Because 
no numerical simulation is used, the presented approach is fast, 
accurate and applicable for optimal sizing or sensibility analysis. 
It is also valid for every kind of static converters. It is illustrated 
by its application to the sizing of an AC/DC power converter 
used for connecting electrical generators to DC on-board 
networks. 

 
I. INTRODUCTION 

Three-phase diode bridge rectifiers are often used in on-
board systems (planes, ships, road vehicles…). Unfortunately, 
those converters also generate unwanted perturbations, 
especially electromagnetic perturbations in both common and 
differential conduction modes. Then, the design objectives of 
on-board systems shall include efficiency, mass or cost 
criteria but also shall take into account EMC (Electro 
Magnetic Compatibility) standards (for example [1]). 

Numerical time simulation combined with FFT analysis 
can be used to calculate harmonics generated by power 
electronics converters [2]. This approach can be simply 
applied for modeling purposes and many algorithms have 
been developed to improve the quality of the results and to 
speed up the convergence [3],[4]. However, optimal design 
requires the use of optimization techniques and consequently 
numerous evaluations. If the evaluation consists in a FFT 
analysis following a time simulation then the optimal design 
may become very time consuming. In addition to that, if the 
system parameters change during the optimization, it might 
be difficult to manage correctly both the time simulation (e.g. 
the natural commutation times) and the parameters of the FFT 
algorithm (e.g. the window size). This generally gives wrong 
results. Thus a combined approach of time simulation and 
FFT is not suitable for the optimal design model of on-board 
electrical systems including numerous power electronics 
converters. Analytical modeling is preferred. 

Several analytical harmonic modelings exist in the 
literature [5]-[8]. However, they often present some very 
restricting assumptions such as: 

- resistive voltage drops are neglected at the input of the 
power converter [5],[6], 

- only the modeling of controlled converters can be 
carried out [7],  

- the modeling uses difficult-to-apply mathematical 
transformations [8].  

Theses limitations have motivated the authors of the paper 
to develop a new approach which would be usable for every 
kind of static converter, especially the uncontrolled diode 
bridges which are very difficult to model because of the 
difficulty to know the switching times. This approach is fast, 
accurate, suitable for optimal design and easy to use. 
Basically, it is made of three steps: 

- describing the converter by time-differential equations, 
- calculating the switching times, 
- computing the harmonics from the time-differential 

equations, the state variable values at the commutation times 
and the switching times. 

The model will be used for the optimal design of an 
AC/DC converter used for the DC generation in transport 
vehicles [9]. The generation system is made of a three-phase 
synchronous generator connected to the primary energy 
sources (amplitude Em, frequency fr = wr/(2.π)), a rectifier 
and a capacitor Cf on the DC link (Fig.1). The objective is to 
minimize the global mass of the power channel while 
fulfilling the DC output and the AC input harmonic 
standards. 

In the next section, the modeling method is detailed step by 
step. The results given by the model are analyzed in section 
III. 
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Fig.1. Structure of the studied power channel 
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II. MODELING METHOD 

The following assumptions are made: 
- the static converters operate in periodic steady state,  
- the switches are ideal (at on state they are represented 

by a simple short-circuit and at off state by an open circuit), 
and their commutations are instantaneous, 

- the passive components are linear. 
It should be noted that the proposed approach is adapted to 

converters using uncontrolled or controlled commutation 
devices. 

The approach is made of three steps: 
- writing of the time-differential equations describing 

the operation of the power converter (II.A), 
- computation of the switching times by the solving of a 

set of non-linear equations (II.B), 
- Fourier-Transform of the time-differential equations 

(II.C). 

A. Describing the converter by time-differential equations 
According to the general laws ruling electrical circuits, the 

time-differential equations describing the converter can be 
expressed by:  
 )().()().()( tUtBtXtAtX +=  (1)
 )().()().()( tUtDtXtCtY +=  (2) 

(Elements description of these equations is presented in the 
table I.) 

A power converter operates periodically with a period T. 
Thus: 

  A(t)=A(t+T); B(t)=B(t+T); 
  C(t)=C(t+T) and D(t) =D(t+T) 
  X(t)=X(t+T) and Y(t+T)= Y(t); 
Over an operating period, the converter topology changes 

because of the commutations. On the other hand, it is 
assumed that the passive component values are constant. 
Thus, the matrixes A, B, C, D depend only on the topology 
but are constant for a given topology. For these reasons, the 
time-differential equations of each configuration k can be 
written as: 
 )(.)(.)( tUBtXAtX kkkk +=  (3) 
 )(.)(.)( tUDtXCtY kkkk +=  (4) 

where k=1..Nsw,  
with Nsw: total number of configurations encountered 

during the converter operating over a period. 
During configuration k, the time t runs as: tk-1<t<tk.  
Over a period, the time-differential equations are given by 

the time-addition of each phase: 

 ∑=
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−
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TABLE I 
ELEMENTS OF THE TIME-DIFFERENTIAL EQUATIONS 

Nom Description Dimension 
X Time-differential vector n x 1 
Y Output vector  p x 1 
U Input vector m x 1 
A State-space matrix n x n 
B Input matrix n x m 
C Output Matrix n x n 
D Coupling Matrix p x n 
t Time 1 

 

tNswt1 tk tNsw-1

A1, B1, C1, D1
Ak, Bk, Ck, Dk

time
Configuration #1 Configuration #Nsw

T

Configuration #k
t0 tk-1

ANsw, BNsw,CNsw, DNsw

Δtk=tk-tk-1

 
Fig.2. Representation of the converter configurations over an operating period 

B. Calculating the switching times 

1. Solution of the time differential equations 
For configuration #k, the solution of equations (3) and (4) 

is given by [10], [11]: 
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  (8) 

It should be noted that it is not necessary to calculate 
expression (8). Indeed, the components Yk are given by a 
matrix combination of the time-differential vectors Xk 
(k=1..Nsw). Thus, only expression (7) has to be solved. For 
that purpose, the time intervals [tk,tk+1] and the initial values 
Xk(tk-1) have to be pre-determined. 

2. Determination of the time intervals and the initial values 
The time-differential vectors are time-continuous. So, it is 

possible to write (see Fig. 2): 
 )()( 111 −−− = kkkk tXtX   (9) 

As a consequence, the number of unknown variables to 
compute the time-differential vector is equal to (Nsw + 1 + 
n): 

- Nsw+1 is the number of switching times (t0,t1,..,TNsw) 
- n is the dimension of the time-differential vector X. 

The (Nsw + 1 + n) equations required to compute the 
unknown variables constitute a set of implicit equations 
which will have to be solved. 

To write this equation system, the assumption of steady-
state operation is first considered. It can be translated into an 
equality between the values of the time-differential vector at 
the beginning and the end of the operating period: 
 )()( 01 NswNsw tXtX =  (10) 
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tConfiguration #1
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X2(t1)=X1(t1)
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Switching at tNsw

Switching at tk+1

Switching at tk

Switching at t1

Configuration #Nsw

 
Fig.3: State-space representation over an operating period 

tk

Configk

tConfigk+1

tk+ε

i
Commutation_criterion = i(tk) = 0

ik(t) ik+1(t) i(t)

ik+1(t)ik(t)

-ik(tk+ε)>0 and close to 0

 
Fig. 4. Commutation criterion for the turning off of a diode 

(i (t) is ik(t) if t < tk  and ik+1(t) if t>tk) 
This relation gives n equations because of the dimension of 

vector X. 
Another relation to be respected concerns the definition of 

the operating period. It is given by: 
 TttNsw =− 0  (11) 

And, besides, at every configuration change kt , a set of 
equations has to be respected. It concerns the currents and 
voltages of all the switches which are commuting [12]. Fig.4 
shows the example of the turning off of a diode at kt . At this 
time, a switching criterion has to be respected. It says that the 
current is equal to zero at kt  and negative (but very closed to 
zero) just after kt  i.e. kt +ε where ε is less than some percents 
of the smallest configuration duration. 

The switching criterion constitute an other set of Nsw 
implicit equations: gk(tk)=0  (k=1..Nsw)  (12) 

Finally, the complete system of implicit equations required 
to compute the time-differential vector is given by: 
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where the unknown variables are )(,..,,, 0110 tXttt Nsw  
This set of equations is solved using dedicated methods for 
non-linear systems such as Newton-Raphson [13]. 

C. Computing the harmonics from the time-differential equations 
and the duration of each phase 

For every configuration #k (k=1..Nsw), the time-differential vector 
Xk(t) and the beginning times tk-1 are known from equations (7) and 

(13). The output harmonics can then be easily calculated using the 
Fourier series. The authors propose an other approach based on the 
Fourier Transform. 

Equations (5) and (6) give: 
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Thus, the Fourier Transform of Y is given by:  
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For power electronics converters, the vector U(t) is often 
made of voltage or current sources which are constant or 
sinusoidally time-varying; for example: U(t)=Vdc or 
U(t)=V0.sin(2.π.f.t)). 

Thus, the term given by: [ ]∑
=

−
Nsw

k
kkk fttwindtUTFD

1
1 )(),().(.  

can be symbolically calculated by using the Fourier 
Transform definition. Hence, only the symbolical 
computation of [ ] )(),().( 1 fttwindtXTF kkk −  is not straight-
forward. 

Equation (3) gives the time derivation of the time-
differential vector over [ kk tt ,1− ]: 
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The Fourier Transform of the left side of (16) is given by 
using the Fourier Transform expression: 

[ ] )(),().( 1 fttwindtXTF kkk −
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Equations (16) and (17) finally give: 
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Let define [ ] )(),().()( 1 fttwindtXTFfTF kkkk −=  
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 (with nd=Dim( kMF )=Dim( kA )) 
Equation (18) becomes: 
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If matrix )( kk AMF − is invertible, the value of )( fTFk is 
given by: 
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The Fourier Transform of Y can then be calculated and 
the amplitude of the nth harmonic is defined by: 

- n=0, 0 . ( )(0)S fr TF Y=   (21) 

- n>0, 2. . ( )( . )nS fr TF Y n fr=   (22) 
  with fr=1/T 

As a conclusion, the whole approach described in sections 
A, B and C) does not need any numerical simulation and is 
easily applicable for the modelling of any kind of power 
converters operating in steady-state. 

III. APPLICATION TO AN AC/DC POWER CONVERTER 

To illustrate the proposed method, the harmonic study of a 
diode rectifier is presented and the results obtained by the 
approach of section II are compared with numerical 
simulation performed by Saber. The studied case is shown in 
Fig. 1. The load is represented by current il.  
A. Modeling 

1. Operating phases 
The converter operating is defined by twelve 

configurations as seen in table II. These configurations 
succeed over a period T =2π/wr. 

 
TABLE II 

SYSTEM OPERATION OVER A PERIOD 
Conf.  Diode 

1 
Diode 

2 
Diode 

3 
Diode 

4 
Diode 

5 
Diode 

6 
1 ON OFF OFF OFF OFF ON 
2 ON OFF OFF OFF ON ON 
3 ON OFF OFF OFF ON OFF 
4 ON OFF ON OFF ON OFF 
5 OFF OFF ON OFF ON OFF 
6 OFF OFF ON ON ON OFF 
7 OFF OFF ON ON OFF OFF 
8 OFF ON ON ON OFF OFF 
9 OFF ON OFF ON OFF OFF 
10 OFF ON OFF ON OFF ON 
11 OFF ON OFF OFF OFF ON 
12 ON ON OFF OFF OFF ON 
 

 
Configuration # 1 Configuration # 2 

Vdc

Ia

Ls rs

Va(t)

Cf Load

il

Ls rs

Vc(t)

Ia=-Ic

Vdc

Ia

Ls rs

Va(t)

Cf

il

Ls rs

Vb(t)

Ls

Vc(t)

Load

rs

Ib

Ic

 
Fig.5. System Operation for configurations #1 and #2 

There are two operating types: normal conduction (two 
diodes operate), commutation (three diodes operate, with 
anode overlap). Only configurations #1 and #2 will be 
detailed below. Indeed, the other configurations can be 
written similarly. Only a cyclic permutation of indexes has to 
be performed. 

Configurations #1 and #2 correspond to the topologies of 
the converter shown in Fig.5. 

2. Time-differential equations 
The time-differential vector is made of the input current 

Ia(t) and the DC output voltage Vdc(t). The time-differential 
equations are: 

- Over the time interval [t0,t1]: 
.

.
1 1

1 .
1

1

/ 1/ (2. ) 1/ (2. )
. .

1/ 0 1/
Ia Iars Ls Ls Ls Va Vc

X
VdcCf Cf IlVdc

⎛ ⎞ − − −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟= = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

  (23) 

- Over the time interval [t1,t2]: 
.

.
2 2

2 .
2

2

/ 2 / (3. ) 1/
. .

1/ 0 1/
Ia Iars Ls Ls Ls Va

X
VdcCf Cf IlVdc

⎛ ⎞ − − ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟= = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

     (24) 

Similar expressions can be obtained for time intervals 
[t2,t3] … [t11,t12]. 

3. Solving the time-differential equations in the time domain 
a. Expression of the time-differential vectors 

Equations (23) and (24) are symbolically solved by using 
Maple. The resulting expressions of Ia1, Vdc1 are not given in 
this because of the lack of space on the page. Ia1 and Vdc1 
depend on the system parameters (i.e.: rs, Ls and Cf) and the 
initial values Ia1(t0), Vdc1(t0). Similar expressions of Ia and 
Vdc can be obtained for time intervals [t1,t2]… [t11,t12]. 

The required information to compute these expressions 
are summarized in table III. 

b. Determination of the switching times and the 
initial values 

The time-differential vector is continuous. So, by 
considering that: 

Ia2(t1)= Ia1(t1) … Iak+1(tk)= Iak(tk) … Ia12(t11)= Ia11(t11) 
Vdc2(t1)=Vdc1(t1) … Vdck+1(tk)=Vdck(tk) … dc12(t11)=Vdc11(t11) 

the time-differential vector is only a function of Ia1(t0), 
Vdc1(t0) and t0, t1, …t12. Finally, there are only 15 unknown 
variables. The 15 corresponding equations required to 
compute their values are now listed. 

The periodicity of the operating mode of the diode 
rectifier is defined by equations (25), (26) and (27): 

 t12-t0=T (25) 
 Ia12(t12)=Ia1(t0) (26) 
 Ia12(t12)=Ia1(t0) (27) 
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TABLE III 
REQUIRED INFORMATION FOR THE COMPUTATION OF EACH CONFIGURATION 

Time 
Interval 

[t0,t1] [t1,t2] … [t11,t12] 

X Ia1, Vdc1 Ia2, Vdc2 … Ia12, Vdc12 
Beginning 

time 
t0 t1 … t12 

Initial value Ia1(t0) 
Vdc1(t0) 

Ia2(t1) 
Vdc2(t1) 

… 
… 

Ia12(t11) 
Vdc12(t11) 

 
Switching conditions can also be expressed. 
At the end of the time interval [t0,t1], the voltage across 

the terminals of diode D6 has to be equal to zero (tends to 
become positive): 
 1

1 1 1 1 1
( )6 ( ) ( ) . ( ) . ( ) ( ) 0dia tVD t Vdc t rs ia t Ls va t vb t

dt
= − − − + − =  (28) 

From equations (23) and (28), it is possible to write the 
first switching condition: 

1
1

( ) 3 2. .sin( . ) 0
2 2 3

Vdc t Em wr t π
+ + =  (29) 

At the end of the time interval [t1,t2], the current through 
diode D6 has to be equal to zero (it tends to become 
negative):  

 2 2 2 26 ( ) ( ) 0iD t Ic t= =   (30) 
Current Ic2(t2) is calculated from the following equations: 
 0)(.)(.))()(( 2

2 =−−−
dt

tdItLstItrstVctVb   (31) 

with 
2 2 2It Ib Ic= −  and 

2 2 2Ia Ib Ic= + . 
thus:  
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1
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2 1

2 2
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2 2 2 2
2 2

2 2 2
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3 3
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3 3

2 2sin( . ) sin( . )
3 3

.
.

. co

rs t t
Ls

rs t t
Ls

Ic t e

t trs
wr wrEmIt t e

rs Ls wr t twr Ls
wr wr

Rs wr t wr t
Em

rs Ls wr
Ls wr

π π

π π

π π

− −

− −

−

⎡ ⎤⎡ ⎤+ − − −⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥= −
⎢ ⎥+ ⎡ ⎤+ − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤+ − − −⎢ ⎥⎣ ⎦+
+ 2 2s( . ) cos( . )

3 3
wr t wr tπ π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤+ − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ (32) 

And: 
))()((5.0)( 222 tIttIatIc −⋅=  (33) 

It gives the second switching condition. The ten other 
conditions for configurations 3 to 12 can be obtained in the 
same way. 

Finally, the implicit equations system to be solved is 
constituted by equations (25), (26), (27), and the 12 equations 
of the switching conditions for the 12 configurations.   

4. Calculating the harmonics from the  time differential  equations 
and the duration of each phase 

The aim is to calculate the harmonics of the input current 
Ia and the voltage Vdc across the DC bus. 

Over an operating period, the time and frequency 
expressions of the input current are given by: 

 
12

1
1

( ) . ( , )k k k
k

Ia t Ia wind t t−
=

= ∑  (34) 

[ ] [ ]
12

1
1

( ) ( ) ( ) . ( , ) ( )k k k
k

Ia f TF Ia t f TF Ia wind t t f−
=

= =∑  (35) 

Then, using the Fourier Transform of a windowed function 
given by (20), it is possible to know all the expressions of  

[ ]1. ( , ) ( )k k kTF Ia wind t t f−
 (k=1..12). 

The amplitude of the nth harmonic of the input current is 
finally obtained by: 

 n=0, 
0 . (0)Ia fr Ia=         (36) 

 n>0, .2. ( . )n r rIa f Ia n f=          (37)                   

The harmonics of Vdc are determined by the same 
approach. 
B. Application 

As the model does not require any numerical simulation, it 
can be easily implemented in any computation software such 
as CADES [14], Matlab, or Mathcad, for optimization 
purpose. For our example, CADES is chosen because it offers 
a powerful panel of tools for optimal design of electrical 
systems. The value of the system parameters are: 

  Em=162 V 
  wr=2.π.400 rad/s 
  rs= 0.0136 Ω 
  Ls=30 μH 
  Cf=500 μF 
The load feeding by the DC generation system is 

represented by a constant DC current and two alternative 
currents at high frequency. Both of them are supposed to 
represent the harmonic content generated by the load in 
addition to its DC component (see Fig.6 below). 

1. Accuracy of the modeling results 
Fig.7 and Fig.8 show a comparison between the results 

obtained by the proposed approach and a Saber-based FFT 
analysis. These figures illustrate the accuracy of the proposed 
approach. Indeed, the maximal value of the relative error is 
equal to 0.68% for the input current harmonics and 0.74% for 
the DC voltage harmonics. This error is defined by:  

 
Nhiiiii hahshah ..0)max(/ =−=ε  

with hai: ith harmonic given by the analytical model; 
        hsi: ith harmonic given by the FFT analysis  
        Nh: number of calculated harmonics 

2. Advantage for optimal sizing 
Besides accuracy, the proposed approach requires only 

0.019s to compute the harmonics whereas a Saber-based 
analysis requires 0.226s (on a PC Intel Core™ 2 Duo-3 GHz-
3.25 GB Ram). This factor 12 constitutes a great advantage of 
the proposed method over the simulation to perform 
optimization as it reduces greatly the CPU time. 

IDCI1I2

IDC = 100A

I1 = 20.sin(2.π.2000.t)

I2 = 20.sin(2.π.4000.t)

 
Fig.6: Model of the load connected to the DC bus 
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Fig.  7.  Harmonic content of the input current Ia 

 
Fig. 8: Harmonic content of the DC output voltage Vdc 

Moreover, the analytical expressions given by our model 
can be easily used to compute symbolically and accurately 
the sensitivity of the harmonics to the model parameters (rs, 
Ls, etc.) [14]. This is a great help for the optimal design 
because it enables the use of gradient-based optimization 
algorithm which are proved to be efficient and fast. Note that 
CADES allows to create automatically the calculation code of 
the gradients of any symbolic model. 

3. Optimal design results 
The model is used to size a real on-board generating unit as 

shown in Fig.1. The objectives are to reduce the weight of the 
unit. The design parameters are the generator and rectifier 
geometries and the capacitor value. The system must respect 
energy requirement (power delivery, limited current in the 
conductors…), mechanic and thermal constraints. In addition, 
the harmonic content of the DC voltage is limited by a 
standard (form 0 Hz to 15 MHz). Finally, there are 17 design 
parameters (8 continuous, 9 discrete) and 18 constraints 
(except the harmonics). 

In this application, the gradient-based algorithms cannot be 
used because of discrete of design parameters. Thus, an 
evolutionary algorithm [15] is used to perform the 
optimization. At first, the optimization enables to decrease the 
total mass of the unit by around 20%. Moreover, the CPU 
time required to perform the optimization is of course 
reduced of a factor 12 if our model is used for the evaluations 
instead of the Saber simulation. It means that only two hours 
are required instead of one computation day! There is no 
doubt about the interest of our modeling approach for 
designers of industrial on-board electrical systems. 

IV. CONCLUSIONS  

In the paper, the authors have proposed a method to build 
analytical models of static converters in the frequency 
domain. The approach consists in using time differential 
equations formalism combined with Fourier Transform. The 
method has been applied to model and design an AC/DC 
generating unit which is encountered in many on-board 
systems such as vehicles or aircrafts. 

The results prove the feasibility, accuracy and usability 
of the method. In addition to that, it has been implemented in 

a software framework which makes the work of design 
engineers faster and easier. 

Last but not least, the method presented in this article can 
be used for any kind of power electronics converters, 
operating in continuous mode or not. This should open 
interesting ways for analyzing and designing modern 
electrical systems embedded in future transport vehicles. 
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