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Abstract—In this paper a new concept for the layout of hybrid-
electric-powertrains is developed that includes optimization of
the component-sizes as well as control strategies. In contrast
to most existing publications, the approach explicitly consid-
ers the conflicting goals of low fuel consumption and high
vehicle longitudinal dynamics and the trade-off is quantified.
Two multiobjective optimization subproblems are solved for one
example with a parallelized genetic algorithm (NSGA-II) using
the Condor software framework. The analysis of the solutions
(Pareto front) shows that combinations exist which improve the
fuel consumption with only a slight deterioration of the dynamic
performance. So the designers are supported in their decision for
a configuration which is attractive for the customers.

Index Terms—simulation, optimization, multi-objective, fuel
consumption, dynamics, energy management, hybrid electric
vehicle (HEV), component sizing, hybridization, control strategy,
genetic algorithm, dymola, modelica

I. INTRODUCTION

Due to the rising demand of resources worldwide, a chang-

ing political environment and social trends, new requirements

on the technical development of vehicles arise. Alternative

propulsion systems like hybrid vehicles provide more degrees

of freedom for the delivery of power, resulting in a fuel-saving

potential for example. However, the design of such systems

becomes more complicated because of the interaction of the

components and the high number of parameters. Therefore,

engineers need suitable tools for evaluating drive concepts and

control strategies in an early stage of development. Computer

based modeling, simulation and optimization is the most

appropriate way for dealing with the numerous possibilities.

The following paper describes an optimization concept for

the layout of a parallel hybrid electric powertrain that concerns

mainly component sizing but also the control strategy. Many

previous studies deal with the dimensioning of the drive train

components in such vehicles. Most of them concentrate on the

objective of minimizing fuel consumption and use constraints

for guaranteeing a certain dynamic performance of the vehicle.

This is done by putting restrictions on the design variables,

e.g. by keeping the power-to-weight ratio [1] or the total

vehicle power [2] constant. Or limits on objective values

like the passing times 0-60 mph, 40-60 mph, 0-85 mph, etc.

are used that are similar to the criteria formulated by the

Partnership for a New Generation of Vehicles (PNGV) [3], [4],

[7]. In [5] and [6] either fuel consumption or the 0-60 mph

time is optimized. The method described in this paper aims

on finding the trade-off relationship between the conflicting

goals of low fuel consumption and high dynamic performance.

This allows the designers to choose from many alternative

solutions. Therefore, in contrast to the previous mentioned

works, a multi-criterion optimization is done by using a genetic

algorithm (GA). This type of algorithm is also used in [8] and

[9] but with different objectives like emissions or electrical

energy consumption as additional criteria. A further difference

of the proposed approach is the use of an object oriented feed-

forward dynamic model, built-up in Dymola/Modelica. The

advantage is that all energy flows inside of the vehicle can be

quantified and fuel consumption as well as acceleration times

can be calculated accurately. However, the optimization has

to deal with the higher computational effort compared to the

models used in [1]-[6] and [8] so that distributed computing is

applied here. Further, because of the curse of dimensionality,

the optimization problem is splitted in two subproblems: The

optimization of the control strategy and the optimization of

the component sizes of the drive train.

This paper is a result from the cooperation of the Technische

Universität München and the BMW Group in the scope of the

virtual enterprise CAR@TUM (Munich Center of Automotive

Research).

II. MODELING

The model used in the work for this paper is a total vehicle

simulation in Dymola/Modelica. The tool was chosen because

its ability of handling every relevant energy type and flow
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eliminates the need for the use of several different tools. The

language Modelica supports object-oriented programming and

allows the usage of common model libraries with uniform

interfaces to permit element exchangeability. All this leads to

high flexibility.

The model consists of submodels for the driver, drive train

(engine, transmission and wheels), electrical system, coolant

system, exhaust system as well as the air conditioning and

heating system. The models exchange their physical values

through connectors and communicate via a signal bus system.

For example, all relevant heat flows between the subsystems

can be considered as well as the cabin heating performance and

the temperature depending behaviour of components like the

gearbox, the rear-axle transmission or the catalytic converter

[10]. The drive train topology considered in this paper is a

parallel hybrid electric vehicle (PHEV). The modeled refer-

ence vehicle is an upper class car with an 180 kW spark

ignition engine. The electrical machine is mounted on the

crankshaft through a clutch and is connected by an 8-gear

automatic transmission with torque converter to the final drive

and the wheel model. This contains wheel-slip calculations

and includes an anti wheel-slip device for getting realistic

results. The electrical motor model is scalable by changing

the nominal torque and is described in [11]. So the power of

the motor can be varied during the optimization. The electrical

storage consists of Li-Ion batteries and is also connected to

the coolant system.

A. Control Strategy

Besides the hardware components, building the hybrid drive

train, the control strategy (CS) plays an important role in the

whole system and influences the overall fuel consumption in a

driving cycle. In the case of a PHEV the following modes are

available and implemented in the model: Conventional driving

by the combustion engine, electrical driving using only the

electrical components, conventional driving while recharging

the energy store, conventional driving with torque assist by

the electrical machine and regenerative braking.

In the presented work a rule-based strategy was applied,

that decides which mode is activated dependent on the torque

request by the driver, the speed of the crankshaft and the

actual state of charge (SOC). The basis of the strategy are

considerations on the efficiency of the internal combustion

engine (ICE) and the electric machine (EM) like shown in

[12]. A characteristic of the CS is that no efficiency tables of

the components have to be used. This leads to a generalized

structure that ensures an operation which is independant of

the hybridization factor [11]. However, it contains parameters

that were introduced as decision variables for the optimization

process and allow the adaption of the strategy to a specific type

of engine for example. For a better understanding, the CS and

their variables are described more detailed in Section III.

III. OPTIMIZATION

In the following subsections the optimization problem is

formulated and it is explained, how it is divided into two

subproblems in this paper. Afterwards, the used algorithms

are described.

A. Problem Description

When designing a hybrid drive train, the aim is finding the

optimal combination of components and the optimal control

strategy for these. Only with a suitable control strategy, fuel-

saving potentials can be exhausted. Therefore, the control strat-

egy has to be adapted to the drivetrain when a configuration

is evaluated.

In the succession of this paper, decision variables of the

hardware, which are considered, are the hybridization factor

HF , defined as

HF =
PEM

PEM + PICE

, (1)

the final drive ratio and the battery size, where PEM is the

power of the electric machine and PICE the power of the

internal combustion engine. The HF affects the fuel consump-

tion [1]-[3] but it also influences the dynamic performance

[3] because of the changing weight of the vehicle and the

additional torque, the EM can provide. The determination of

the last mentioned trade-off is the central point of this work.

Further goals like costs or emissions are imaginable.

For finding trade-offs between the goals, the problem is

fomulated as a vectorial optimization. In this case, two or more

criteria are compared vectorial. The solution of such a problem

is a set of solutions called non-dominated solutions or Pareto

optimal set [13]. That means that no feasible solution exists

which would decrease a criterion without increasing at least

one other criterion. The analysis of the Pareto Front in the

objective space lets the designer choose a single solution from

all best compromise solutions.

In combination with the decision variables of the control

strategy described in the next subsection, the whole problem

is visualized in Fig. 1, with the decision variables (left) and

the criteria (right). The integration of the electric energy

consumption is essential if the CS is not charge sustaining

for the different drivetrain hardware.

Because of the high computational effort of the existing

detailed car model with about 15 min per simulation run, solv-

ing the combined problem is very time-consuming. Therefore,

the number of objectives should be limited to 2 in this paper

and a stepwise approach is favored. Despite the application of

distributed computing, this was necessary because the number

of simulation runs needed by the GA for finding a good

representation of the Pareto Front rises exponentially with the

number of objectives.

The results of this paper (see Section IV) allow the sequen-

tial solution in two steps: First, the parameters of the control

strategy are optimized with the criteria fuel consumption and

electric energy consumption for different HF . The results

of these optimizations are a set of CS-parameters that are

suitable for different HF and equivalence factors that allow

the conversion of electric energy in an equivalent of fuel. So

all following optimizations can be performed with a combined



Fig. 1. Simultaneous optimization of the control strategy and the component
sizes of the drivetrain

Fig. 2. Stepwise optimization: Step1: Control strategy, Step2: Component
sizes

measure for the fuel efficiency (Fig. 2) and one criterion is

saved. With the generalized CS it would not be possible to

get results with neutral SOC after a driving cycle for different

hybridization factors.

1) Control Strategy: The control strategy (CS) of a hybrid

vehicle decides on the interaction of the drive train compo-

nents. Therefore, the CS and the HF affect each other and the

fuel economy. In the implemented strategy, electrical driving

is chosen whenever possible, that means depending on the

required power and the available SOC. Furthermore, the ICE

is switched off when it is not required. When the ICE is

switched on, the CS decides, if a load-point shift is usefull

or not and determines the amount of the (negative) torque, the

electric machine (EM) applies to the crankshaft for charging

the batteries.

According to [12], a load-point shift is only useful for

points with small loads. Therefore, switching points can be

characterized by the proportion of the engine torque needed

for propulsion TICE and the engine speed nICE . As a result,

a state-of-charge-based characteristic curve of decision can be

used that is explained in [11]. The CS had been manually

tuned for good fuel economy for one combination of drive

train components. This manual tuning does not guarantee best

parametrization of the strategy. Therefore it is desirable that

besides component sizing also the control strategy can be

optimized. For that, three decision variables were added to

the strategy of [11] for allowing a tuning of the CS by the

optimization procecss. So, the decision for recharge is:

CS.b
TICE

nICE

< −0.5 tanh(CS.a(SOC ∗ 4 − 2) + 0.5) (2)

TABLE I
OPTIMIZATION PROBLEM OF THE CONTROL STRATEGY

Variables Criteria

Mea- Decision Power Transition Fuel SOC
ning Recharge Recharge Recharge Cons. End

Symbol CS.b CS.k CS.a fc −SOCend

TABLE II
OPTIMIZATION PROBLEM OF THE COMPONENT SIZING

Variables Criteria

Mea- Hybr. Number Ratio Fuel Time
ning Factor Batteries FD Cons. 0-150 km/h

Symbol HF nbat ifd fc tacc

CS.a changes the SOC-dependent adjustion of the curve for

prohibiting a depletion or an overload of the batteries and so

the SOC stays between defined limits SOClow and SOChigh.

CS.b influences the basic gradient of the curve so that the CS

can be adapted to the efficiency of the components. The third

variable CS.k determines the setpoint for the motor torque

used for recharging by the EM TEM,set by a percentage of the

maximal possible torque TICE,max and the torque required for

propulsion Tprop:

TEM,set = max[(−TEM,max, Tprop−CS.k∗TICE,max)] (3)

When measuring the fuel economy of an HEV, the deviation

of the SOC at the end of a drive cycle SOCend and the

SOC at the start SOCstart has to be taken into account,

as it represents an electrical energy use or gain. Here, it is

influenced by all three variables. The following investigations

and all optimizations were carried out with the european

Motor Vehicle Emissions Group (MVEG) drive cycle and

with SOCstart = 80%. As objectives, the fuel consumption

fc in the MVEG cycle was minimized and SOCend as a

measure for electric energy consumption was maximized for

getting best efficiency. Because the algorithm minimizes all

criteria, formally −SOCend was used. Table I summarizes

the optimization problem of the Control Strategy.

2) Component Sizing: For the optimization, measures of

the criteria have to be defined. For determination of the fuel

consumption fc, again the MVEG cycle was simulated.

Measuring dynamic performance is imaginable in different

ways. Because of the high computational effort of a single

simulation run, a simple measure, namely the acceleration time

0-150 km/h using full trottle and the maximal electric torque

assist tacc was chosen as single performance criterion.

The decision variables of the optimization problem were

the HF (1) of the drive train, the number of batterie cells

nbat and the final drive ratio ifd. The HF was varied by

changing PEM using the scalable motor model. In contrast to

[3], the total power of the system is not kept constant, because

the engine is not scaled here. Table II shows the formulated

problem of the component sizing.



B. Algorithm

Solving a multiobjective optimization problem corresponds

to searching for the Pareto optimal set. Multiobjective Genetic

Algorithms (MOGA) are suitable for such problems because

they work with a set of solutions, called individuals of a

generation. The result of one optimization run is an approxi-

mation of the Pareto front [13]. In this approach, the criteria

are not aggregated to a weighted sum and the real trade-

off can be found. Another strength of GAs ist that they can

cope with discontinuities of the objective functions and are

global optimizers. That means the danger of getting stuck in

local minima is lower than with techniques that work with

gradients. So they are well suited for problems with unknown

relationship between the decision variables and the objective

function values, also called optimization with “black box”-

functions.

So the widespread nondominated sorting Genetic Algorithm

II (NSGA-II) was chosen in this paper. Its working principle is

not explained here, it can be found in [14]. When optimizing

with “black box”-functions, one simulation run has to be

executed for each evaluation of an objective function vector.

So for getting a viable approximation of the Pareto front, a

high number of simulations per generation as well as multiple

generations have to be calculated. Using the Dymola model,

one single simulation run takes 15-20 min on a state of

the art desktop PC, which doesn’t allow a solution of the

problem in an acceptable time. Fortunately GAs are well

suited for distributed computing, because each fitness function

evaluation of the individuals of a generation can be performed

simultaneously. In [16] this approach is called ”master-slave”-

model. The result is exactly the same as that with a single

processor, but the computational time is lower.Thus the code

of the original algorithm was changed so that the simulations

of one generation are performed in parallel. For distributing

each simulation of a generation on one processor, the Condor

software framework was used [17]. Condor is developed at

the University of Wisconsin since the mid 1980s and is suited

most for enclosed computer networks without firewalls. It also

combines well with the Dymola simulation environment as

Dymola compiles the simulation into a standalone running

executable so that Dymola itself does not have to be installed

on the single nodes of the grid. In average, 30 computers of an

university computer pool were available. As condor was not

designed to have the submit node (here the GA) to sit outside a

firewall as in this case, a MATLAB Application Programming

Interface (API) was implemented allowing the GA to access

the grid via SSH. The process and the communication of the

software packages is visualized in Fig. 3.

IV. OPTIMIZATION RESULTS

According to the problem description in Section III, at first

an optimization of the control strategy was carried out. The

gained parameter values were then used during the optimiza-

tion of the component sizes.

Fig. 3. Cooperation of the software in the optimization process
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Fig. 4. Results of the optimization with three different hybridization factors
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A. Optimization of the Control Strategy

Fig. 4 shows the result of the optimizations of the CS

for three different hybridization factors HFlow, HFmid and

HFhigh. Also the regression lines for each HF are shown. It

can be seen that the relationship between the fuel consumption

and SOCend can be approximated by linear functions. This

coincides with results shown by [15] but the straight line is

determined in a different process as in the cited paper. Also

in [9] a linear behaviour can be observed. It can be explained

with averaging effects of the load points in the MVEG cycle.

So the slopes of these functions can be used for the

calculation of equivalence factors for converting changes of the

state of charge ∆SOC = SOCstart − SOCend in equivalent

fuel consumptions. These deviations represent an electric

energy consumption and have to be taken into account when

judging the efficiency of the system. They will occur when

the HF is varied and the control strategy is not adapted to

the combination of drive train components. The results also

reflect the known effect that the fuel consumption decreases

until a certain hybridization factor and then increases for high

hybridizations [1],[11].

B. Optimization of the Component Sizing

For the following optimization of the component sizes, the

variables which lead to no SOC deviation (SOCend = 80%)

for the mid hybridization were selected. The limits of the

decision variable space are listed in Table III.



Fig. 5 shows the first front after 20 generations with 70

indiviuals. The results are normalized with the results of the

non-hybrid car. Fig. 6 - Fig. 8 depict the correspondent projec-

tions of the variable space. In the front of the best individuals

there exist areas, where a better fuel consumption can be

achieved with a relative low deterioration of the acceleration

time. The selected solution marked with a triangle represents

a good compromise of fuel consumption and performance

and has an HF of 0.28. Lower consumptions would have to

be paid with a relative bigger increase of the acceleration

time. One example of a bad trade-off (marked with a square)

with an hybridization of 0.26 shows an decrease of fuel

consumption of only 0.2% but an increase of tacc of 3.1%.

The configuration with the lowest fuel consumption is part of

the solution of the optimization process. It can be found on the

left end on the front in Fig. 5 and is marked with a star. Its HF

is 0.21. Compared to the selected solution, its consumption is

improved by 3.4% and the acceleration worsened by 9.8%.

In all combinations, the suitable final drive ratio is between

3 and 3.5 (Fig. 7, Fig. 8) and the influence of this variable

on the two goals is rather low. Additionaly, the examination

of the variable space shows that the number of battery lies

allways near the defined lower limit of 90 cells of 45 Ah at

3.6 V in this example (Fig. 6). This limit was chosen here,

for guaranteeing a minimum all electric range (AER) and this

battery pack is big enough for the hybrid functions in the

MVEG cycle. This is documented in the simulation results in

Fig. 9 which show the vehicle speed, the SOC, the normalized

fuel consumption and the electric torque in the MVEG cycle

for the compromise solution. It has to be noted that the fuel

consumption is the value without correction with the ∆SOC.

In this case, it is SOCend = 78.8%. The nominal torque of

the EM is not used often for propulsion but especially in the

recuperation phase at the end of the cycle. PEM of course

influences the acceleration time (Fig. 10). Compared to the

conventional car, the HEV has clear advantages over 45 km/h,

at lower speeds wheel-slip effects dominate.

First optimizations with different limits for the electric

storage size or with different storage technology have shown

that the process determines reasonable combinations of hy-

bridizations and storage sizes for both the best consumption

and the compromise solutions. The results of these are not

shown here.

V. CONCLUSIONS AND FUTURE WORKS

The results show that the multicriterion optimization of the

component sizes concerning fuel consumption and dynamic

TABLE III
LIMITS OF THE DECISION VARIABLE SPACE

Variable Range Selected Solution Best Cons.

Hybridization Factor 0.14 - 0.34 0.28 0.21

Number Batterie Cells 90 - 120 91 90

Final Drive Ratio 3.0 - 4.5 3.3 3.3

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
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Fig. 5. Objective space after optimization of the component sizes, normalized
on the conventional car
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Fig. 6. Projection of the variable space: Hybridization Factor vs. number of
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ratio
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Fig. 10. Comparison of the simulated acceleration of the selected compromise
solution and the non hybrid car

perfomance is a meaningfull addition to other optimizations

during the layout of parallel hybrid drive trains. The general-

ized CS makes the different drive-train hardware comparable.

However, it does not claim to find the global minimum of

fuel consumption for the single solutions which can only be

determined separately for every combination with a priori

knowledge of the driven cycle. Additionally, for practical

implementations, more values like exhaust temperatures have

to be taken into account.

The resulting set of compromise solutions, gives the design-

ers important hints for choosing suitable combinations of drive

train components for further investigations. The presented

example shows that starting from a certain hybridization with

lowest possible fuel consumption, increasing PEM brings

better dynamic performance with only sligthly increasing con-

sumption. With even higher hybridizations, the improvements

of the performance are getting lower but the fuel consumption

grows faster. Variation of the final drive ratio has a lower

impact, only the fastest solutions show the biggest ratios but

are combined with the worst consumptions.

In future works, hybrid vehicles with smaller combustion

engines will be considered as well as different drive-train

topologies and energy storages. Additionally, the engine power

will also be scaled, so that the effect of down-sizing concepts

can be evaluated.
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