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Abstract—Load point shifting of the internal combustion
engine in hybrid electric vehicles is used to control the state
of charge of the high voltage battery. The control strategy
has a significant impact on the achievable fuel savings. This
paper presents a method, which controls load point shifting for
all useable operating points of the power train by balancing
cost and benefit considerations, i. e. current power expenditure
versus potential future savings. The control method proposed
encompasses offline as well as online optimization. Furthermore,
industrial requirements such as processor calculation cycles and
reduced tuning complexity are considered.

Index Terms—Hybrid electric vehicles, control strategy, fuel
efficiency, state of charge, energy storage.

I. INTRODUCTION

Over the last couple of years numerous research has ad-
dressed the energy savings capacity of hybrid electric vehicles.
Today, car industry faces the challenge to turn these hypothe-
ses into practice. Central to achieving the required energy
savings is the operating strategy of the hybrid power train [1],
[2]. A thorough approach will have to incorporate a multitude
of other vehicle design criteria, e. g. acoustics, processor
capability, etc. [3]. State of charge (SOC) control of the high
voltage battery significantly influences fuel consumption [4].
Two main routes of research for optimal control strategies have
been discussed in the literature: These are heuristic methods
and online optimization [3]-[5].

[6], for example, discusses heuristic methods such
as Willans-curves and analytic evaluations. Frequently, a
fixed mapping between the SOC level and the battery
charge/discharge power is employed [7]. These control strate-
gies have been integrated control based [8] or as fuzzy logic
[9].

An online optimization technique is proposed in [10] using
cost and weighting functions to determine an optimal control
strategy based on real-time vehicle parameters.

The authors of this paper believe that the independent
use of online and offline optimizations does not sufficiently
explore available information. Offline optimization requires
upfront knowledge of the customers driving cycles. Hence,
it is difficult to consider the present vehicle’s state of opera-
tion for optimization. Online optimization, however, requires
computational effort and often implies a significant number
of tuning parameters [3], [11]. A further critique of current
techniques is that they base their decision of fuel efficient

load point shifting on the current operating point of the vehicle,
rather than evaluating the different operating points for energy
generation and use.

The content of this paper is organized as follows: Section
II presents the objective of this paper. Section III describes
the new concept. In section IV the proposed control strategy
is explained. It contains the definition and evaluation of the
cost and benefit of load point shifting (LPS), the developed
SOC control strategy and a description of how the approach
provides fuel optimal SOC control. Section V presents the
implemented optimization method, the offline algorithm to
integrate each component´s efficiency, and the software ar-
chitecture.

II. OBJECTIVE

This paper presents a method to control the SOC in a
fuel-optimal manner by shifting the load point of the internal
combustion engine (ICE) in a full-hybrid vehicle. The objec-
tive is to include all relevant components (i. e. ICE, electric
machine, etc.) as well as all operating points of a parallel
hybrid power train. An integral idea of the proposed method
is to evaluate not only the efficiency of energy generation
in a given operation point, but also the future benefit of the
energy conversion, e. g. of electric driving. Furthermore, the
control strategy should facilitate also inputs from the operating
strategy based on e. g. maneuver detection or prediction [12]
and integrate these fuel-efficient. The control strategy should
be amalgamated in the software architecture to facilitate real
time processing and a flexible design process. In addition to
the decision when to perform a load point shift, the method
has also to determine the optimal magnitude of the load point
shift. The approach uses both offline and online optimization
in order to achieve optimal savings by generating electrical
energy (cost) at a current point in time and its usage in the
future (benefit).

III. CONCEPT

In the presented approach, the LPS of the ICE is used to
control the SOC. The power delivered to or dissipated by the
battery in form of the electric motor power PEM, el is the output
variable. The SOC control strategy should set the optimal
PEM, el which minimizes fuel consumption in each operating
point. PEM, el = 0 denotes an inefficient operating point.
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Fig. 1. Concept of SOC control: Different strategies apply for the indicated
SOC ranges.

A demanded PEM, el solely determined on maximum ef-
ficiency may not be realized at every SOC level, i.e. at
minimal and maximal SOC, due to battery protection. Thus,
the control also has to ensure the availability and repeatability
of the hybrid functionality in all operating conditions. Near the
onset of SOC saturation the load point of the ICE has to be
reduced to prevent reaching the maximum SOC and therefore
to allow for energy recuperation (e. g. for down hill runs).
The availability of electric driving is guaranteed by charging
the battery before it is depleted (minimal allowed SOC). The
described SOC ranges, and the range for which fuel efficient
control is active are shown in Fig. 1.

IV. APPROACH

For the implementation of the presented concept a new
control approach is developed, which evaluates the cost and
the future benefit of a load point shift. This section defines
cost and benefit and explains how these variables can be used
to control the SOC. Finally the method is explained, which
allows fuel efficient SOC control.

A. Cost and benefit

Integral to the proposed method is the specific fuel change
of LPS modeled by

bLPS =
ṁLPS − ṁbas

Pbat
(1)

where ṁLPS is the fuel flow during LPS, ṁbas the fuel flow
without LPS and Pbat the battery power.

The cost C(k) is defined as the fuel mass in grams, which
is necessary to generate one kWh of electric (battery) energy
by a load point increase (LPI):

CLPI(k) =
∣∣∣∣ṁLPI(k)− ṁbas(k)

Pbat(k)

∣∣∣∣ (2)

Note that k denotes the discrete time constant of the electric
control unit (ECU).

The benefit B(k) describes how much grams of fuel can be
saved by applying one kWh of battery energy for a reduction
of the load point (LPR) or for electric driving (ED):

BLPR(k) =
∣∣∣∣ṁLPR(k)− ṁbas(k)

Pbat(k)

∣∣∣∣ (3)

BED(k) =
∣∣∣∣ṁbas(k)
Pbat(k)

∣∣∣∣ (4)

The introduction of a cost and benefit analysis allows a time
decoupled view of energy generation by LPI and energy use
by LPR or electric driving. Thus, it can be taken into account
that the operating strategy generally assigns different operating
points for energy generation and use. For instance, LPI may
be performed at a vehicle speed at which electric driving is
infeasible or prohibited by the operating strategy. Therefore, a
direct comparison of LPI and electric driving at such operating
points is not meaningful because the generated energy can only
be used in a later operating point.

B. SOC control

The current SOC or an identified situation (maneuver de-
tection) defines the maximal allowed cost Cmax(k) of LPI as
well as the minimal required benefit Bmin(k) of LPR:

CLPI(k) ≤ Cmax(k) (5)

BLPR(k) ≥ Bmin(k) (6)

Following the constraints described in section III, the SOC
ranges as well as Cmax(k) and Bmin(k) are defined according
to the following conditions (cp. Fig. 2):
• SOC < SOCmin: Ensure maximum charging. Prohibit

discharging.
• SOCopt, min < SOC < SOCopt, max: Fuel efficient SOC

control.
• SOC > SOCmax: Prohibit charging. Ensure maximum

discharging.
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Fig. 2. Maximum cost for load point increase: Charging is only permitted
if the cost is below the trajectory.



The maneuver detection calculates for each identified sit-
uation a minimum or maximum SOC. Therefore the SOC
set points (i. e. SOCmin, SOCopt, min, SOCopt, max, SOCmax) are
varied in the trajectory (see Fig. 2). Consider for example
an upcoming declining slop: In order to profit from ”cheap”
energy recuperation a margin to the right of SOCmax has to be
vacated to absorb any energy generated during the down hill
drive. Additionally it is also possible to reduce the minimal
benefit for LPR for discharging up to the target SOC.

C. Fuel optimization

To execute LPS fuel optimally in a driving cycle, the average
cost has to be as low as possible and the average benefit as
high as possible. Therefore, the control calculates online the
average cost of LPI CLPI(k) relating to the generated battery
power:

CLPI(k) =

∣∣∣∣∣∣∣∣∣
k∑

i=1

(ṁLPI(i)− ṁbas(i))

k∑
i=1

Pbat(i)

∣∣∣∣∣∣∣∣∣ (7)

Similarly, the average benefit BLPI(k) relating to the used
battery power is calculated for LPR and electric driving (ED):

BLPI(k) =



∣∣∣∣∣∣
k∑

i=1
(ṁLPR(i)−ṁbas(i))

k∑
i=1

Pbat(i)

∣∣∣∣∣∣ , for LPR,∣∣∣∣∣∣
k∑

i=1
ṁbas(i)

k∑
i=1

Pbat(i)

∣∣∣∣∣∣ , for ED.

(8)

If SOCopt, min < SOC < SOCopt, max (the range considered
for fuel optimal SOC control) the following conditions apply
for LPS:
• LPI is executed with the maximal possible power, whose

cost is lower than or equal to the current average cost:

Cmax(k) = CLPI(k)⇒ CLPI(k) ≤ CLPI(k) (9)

• LPR is executed with the maximal possible power, whose
benefit is higher than or equal to the current average
benefit of LPI:

Bmin(k) = BLPI(k)⇒ BLPR(k) ≥ BLPI(k) (10)

To minimize fuel consumption, the cost of generating en-
ergy should be at least equal or smaller to the benefit of using
this energy. The control of LPS is extended as follows:
• LPI is only executed, if the cost is lower than the average

benefit:

CLPI(k) ≤ Cmax(k) ∧ CLPI(k) ≤ BLPI(k) (11)

• LPR is only executed, if the benefit is higher than the
average cost:

BLPR(k) ≥ Bmin(k) ∧ BLPR(k) ≥ CLPI(k) (12)

V. OPTIMIZATION METHOD

This section describes the method to implement the pre-
sented approach.

A. Objective

The objective of the optimization is to consider all operating
points of all for LPS relevant components to minimize fuel
consumption. First a reference point in the power train is
defined, which determines the operating point of the involved
components. In the case of SOC control, the gearbox input
is appropriate, because the torque transmitted by the gearbox
must be kept constant. Consequently, the operating point in the
optimization is defined by the gearbox input torque MGI(k)
and gearbox input rotational speed nGI(k). PEM, el(k) can be
used as actuating variable and the reference variables are cost
and benefit.

B. Offline algorithm

An algorithm is developed, which determines offline the
optimal power PEM, el, taking into account the components
efficiencies (e. g. ICE, electric motor, battery, etc.) as well
as defined cost and benefit (see conditions (5) and (6)). The
calculation is carried out iteratively on all operating points
(MGI and nGI), all SOC levels, predefined maximal costs Cmax,
minimal benefits Bmin and all permitted PEM, el. The algorithm
returns LPI maps, which define PEM, el as a function of MGI,
nGI and Cmax:

PEM, LPI, opt = f(MGI, nGI, Cmax) (13)

Since the cost of PEM, LPI, opt may be lower than Cmax,
additional maps are needed, which define the related actual
cost CLPI, opt:

CLPI, opt = f(MGI, nGI, Cmax) (14)

Similarly, for LPR the following maps are computed:

PEM, LPR, opt = f(MGI, nGI, Bmin) (15)

BLPR, opt = f(MGI, nGI, Bmin) (16)

A sensitivity analysis shows that the dependency of SOC to
battery efficiency has an insignificant impact on the calculation
of PEM, LPI, opt, CLPI, opt, PEM, LPR, opt and BLPR, opt. Thus, the
SOC is set to a constant level in equations (13) - (16) to
minimize complexity for online use in a vehicle environment
(cp. section II).

Each iteration takes into account the torque and power
limits for the components, the relative efficiency of the electric
motor, the fuel flow of the ICE, the battery´s charge and
discharge efficiency and the maximally allowed power for
LPS. Furthermore, it is possible to consider acoustic limits
in the offline calculation.
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Fig. 3. Functional architecture for LPI: Offline generated data are used in
an online control, which outputs the electric machine power.

C. Software architecture

The software architecture is based on data generated offline
as well as a function which is evaluated online. Fig. 3 shows
the architecture exemplary for LPI.

The algorithm presented in the previous section computes
maps for the demand of PEM, LPI, opt(k) as well as the corre-
sponding cost CLPI, opt(k) to generate this power. The maps
are grouped in F 1 of the online calculation (see Fig. 3).
They consider the current operating point and the maximally
permitted cost Cmax, which is determined in F 2.

F 2 calculates the average cost for LPI CLPI(k) on the basis
of the vehicular operating parameters – e. g. torque, speed,
the battery´s charge and discharge power (7). Additionally,
the function calculates the average benefit BLPI(k) of electric
driving and LPR (8).

The average values are only used as maximal charge cost
Cmax(k) while SOCopt, min(k) ≤ SOC(k) ≤ SOCopt, max(k) (9).
Outside this SOC range, Cmax(k) is cross-faded to values,
which provide or prohibit charging in all operating points
(see Fig. 2). Furthermore, the SOC requested for a predicted
situation can be incorporated in this function, which may vary
also the calculated SOC-thresholds.

The decision to charge the battery based on the cost and
benefit is determined in F 3. It is checked whether the current
cost C(k) is lower than the average benefit BLPI(k) (11). If
the condition is met, charging is permitted and PEM, el(k) is
returned.

VI. SIMULATION RESULTS

To validate the control strategy a simulation model in Mat-
lab/Simulink is developed. The model considers the efficiency
of the main components in the parallel hybrid power train, i.
e. ICE, electric machine, energy storage, power electronics
and automatic transmission. It is used to analyze both the
functional capability and the achievable fuel savings.
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Fig. 4. Reference control strategy: Simulation results for the first half of
FTP-75 show high charging cost
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Fig. 5. Optimized control strategy: Simulation results for the first half of
FTP-75 show low charging cost



The model is capable to simulate standardized driving
cycles, e. g. FTP-75 or the New European Driving Cycle
(NEDC).

Fig. 4 and Fig. 5 show the simulation results of the first half
of the FTP-75. The optimized control of load point shifting
(see Fig. 5) is compared with a reference control strategy,
which controls a target SOC range (see Fig. 4).

Diagram one displays the vehicle speed. The second dia-
gram shows the electric machine power of load point shifts.
In the third diagram the corresponding cost is illustrated.
The forth diagram shows the SOC. To analyze the fuel
consumption, the SOC at the beginning of the driving cycle
has to be equal to the SOC at the end of the driving cycle.

The simulation results demonstrate the advantages of the
presented control method. The evaluation of the cost and the
future benefit of a load point shift enables the calculation of
a fuel optimal charging and discharging power. Thereby the
present vehicle’s state of operation is considered. All over the
driving cycle, the cost of the charging power is lower than
the charging cost of the reference control strategy. Especially
avoiding very low charging powers significantly reduces the
cost. Furthermore in comparison with the conventional control
of a target SOC range, the consideration of the benefit of load
point reductions eliminates inefficient discharging powers.
Thus, there is less charging power required in the driving
cycle.

The optimized control strategy reaches an overall fuel
reduction of 2% in the FTP-75.

VII. CONCLUSION

This paper presents a novel approach to control load point
shifting in hybrid electric vehicles. Central to this method
is to consider the cost incurred by a load point increase
to the benefit gained by spending it at a later stage for
load point decrease or electric driving. The proposed strategy
employs offline as well as real time calculations, merges well
into existing software architecture and takes into account all
operating points of the hybrid vehicle components. Also, the
approach incorporates, that energy generation and use may be
distributed amongst different operating points by the operating
strategy.

Simulations of driving cycles prove the functional capability
of the control method. In the FTP-75 a fuel reduction of 2%
is obtained.
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