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Abstract—Interior permanent magnet-synchronous machines
(IPMSM) feature many favourable properties for e-mobility
application as high power density and good efficiency. However,
they require careful modelling because of strong anisotropies of
the rotor, as they are also known from salient-pole synchronous
machines. These anisotropies are often accounted for by different
values for the d-axis and q-axis inductances in a rotor-flux-
oriented coordinate system. With regard to asynchonous machine
control, stator-flux-oriented control could provide improved dy-
namic behaviour – especially in the field-weakening range. The
representation of fault conditions inside the machine, leading
to asymmetrical machine parameters, suggests a phase-wise
description instead of the usual two-axis (d-q or space-vector)
analysis.

This paper presents a machine model which provides a basis
for stator-flux-oriented control and for the simulation of fault
conditions inside the machine. This is reached by a phase-wise
representation based on the known approach using rotor-flux-
oriented d-axis and q-axis inductances. A physical interpretation
for self and mutual inductances is given. A single-phase winding
interruption fault is simulated to outline the capability of the
chosen approach.

I. INTRODUCTION

Modelling of salient-pole synchronous machines and

permanent-magnet synchronous machines (PMSM) – usually

with interior magnets (IPMSM) – with anisotropic charac-

teristics is usually based on a rotor-flux-oriented coordinate

system employing different values for the d-axis and q-axis

inductances Ld and Lq . Such a model can only represent

symmetrical machines. In case of faults inside the machine, for

example a single-phase winding interruption or partial short,

asymmetries result. Accordingly the relevant machine para-

meters become asymmetrical and can no longer be represented

by the Ld-Lq two-axis model. In such a case a phase-wise

model is necessary. For isotropic induction machines such a

phase-wise representation is described in [1], [2]. This model

allows to simulate any unsymmetrical fault condition inside

isotropical induction machines if the influence of the fault

condition on the machine parameters is known.

To include the influence of anisotropies the method has to

be extended. For this purpose, the typical rotor-flux oriented

Ld-Lq model of anisotropy is transformed into the stator-

fixed reference frame. Subsequently, an inverse space-vector

transformation is performed, leading to the desired model. The

resulting differential equations meet the requirements stated

above – simulation studies for synchronous machines with

anisotropies under asymetrical faults inside the machine can

be performed.

Please note that the same methodology applies for IPMSM

and salient-pole synchronous machines – in the first case,

mainly Ld < Lq applies, in the second case Ld > Lq . In

the following salient-pole machines are used as representation

of both types of machine without causing any restrictions.

Simulation results are given, e.g. for a single-phase

machine-winding interruption fault, to demonstrate the capa-

bility of the introduced model. The simulator is employed

completely implemented in C code and optimized for power-

electronic systems [3]–[5].

II. FLUX-LINKAGE EQUATIONS OF A SYNCHRONOUS

MACHINE WITHOUT DAMPER WINDING

The flux linkage in the synchronous machines can be

expressed in rotor-flux oriented (d-q) space-vector form. The

d-axis is defined by the rotor structure (cp. Fig. 1) [6]:

Ψd = Ldid +Ψrotor = (Lhd + Lσ) id +Ψrotor (1)

Ψq = Lqiq = (Lhq + Lσ) iq (2)

In the case of salient-pole machines, Ψrotor will be expressed

by LE · iE , where LE and iE are the exciter inductance and

the exciter current of rotor. In the case of PMSM, Ψrotor is

the remanence flux of the permanent magnet. In the following,

only the salient-pole machines will be used as represntation.

On the other hand the phase quantities of the flux linkages

can be represented by:

Ψa = Laaia + Labib + Lacic +Ψa,rotor (3)

Ψb = Lbaia + Lbbib + Lbcic +Ψb,rotor (4)

Ψc = Lcaia + Lcbib + Lccic +Ψc,rotor (5)

where Ψi,rotor (i = a, b, c) describe the reactions between the
windings of stator and rotor, the maximal value ofΨi,rotor will

be achieved, when the i- and d-axis have the same direction
[7]. Lij is the mutual inductance (for i 6= j) or the self
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inductance (for i = j), which describe the winding-winding-

reactions (cp. Fig. 2, 3).

A direct identification of all parameters with their depen-

dencies on Ld and Lq is rather complicated. This problem can

be simplified considerably and solved easily by reversing the

process. The starting point is the Ld-Lq model. A transforma-

tion of the model into phase quantities applying an inverse

space-vector transformation follows. Finally, a comparison

of coefficients is carried out. Subsequently, the respective

inductivities can be determined as functions of Ld, Lq and

rotor position angle χ.

Fig. 1. Synchronous salient-pole machine without damper winding -
equivalent windings and their position

III. COORDINATE TRANSFORMATION

The transformation is carried out in two steps. At first, the

d- and q- components of the currents, id and iq in (1) and (2)
are replaced by the phase quantities ia, ib and ic:

id = iα cosχ+ iβ sinχ (6)

iq = iβ cosχ− iα sinχ (7)

iα =
2

3
ia −

1

3
ib −

1

3
ic (8)

iβ =
1√
3
ib −

1√
3
ic (9)

The current components id and iq are calculated as follows:

id =
1

3

{

(2ia − ib − ic) cosχ+
√
3 (ib − ic) sinχ

}

(10)

iq =
1

3

{√
3 (ib − ic) cosχ+ (−2ia + ib + ic) sinχ

}

(11)

The equations above are inserted into equations 1 und 2.

Subsequently, the d, q-components of flux are converted into

phase quantities:

Ψα = Ψd cosχ−Ψq sinχ (12)

Ψβ = Ψd sinχ+Ψq cosχ (13)

Ψa = Ψα (14)

Ψb = −Ψα

2
+

√
3

2
Ψβ (15)

Ψc = −Ψα

2
−

√
3

2
Ψβ (16)

With the computations above, the phase quantities of the fluxes
Ψa,b,c result in

Ψa =
2

3

(
Lhd cos

2 χ+ Lhq sin
2 χ

)
ia

+
1

3

(√
3(Lhd − Lhq) sinχ cosχ− Lhd cos

2 χ− Lhq sin
2 χ

)
ib

+
1

3

(√
3(Lhq − Lhd) sinχ cosχ− Lhd cos

2 χ− Lhq sin
2 χ

)
ic

+Ψrotor cosχ+ Lσa (2ia/3− ib/3− ic/3)
︸ ︷︷ ︸

Lσaia

(17)

Ψb =
1

3

(√
3 sinχ cosχ(Lhd − Lhq)− Lhd cos

2 χ− Lhq sin
2 χ

)
ia

+
1

6

(
2(Lhd + Lhq)− (Lhd − Lhq)

(√
3 sin 2χ+ cos 2χ

))
ib

+
1

6
(2(Lhd − Lhq) cos 2χ− Lhd − Lhq)ic

+Ψrotor cos(χ− 120◦) + Lσb (−ia/3 + 2ib/3− ic/3)
︸ ︷︷ ︸

Lσbib

(18)

Ψc =
1

3

(√
3(Lhq − Lhd) sinχ cosχ− Lhd cos

2 χ− Lhq sin
2 χ

)
ia

+
1

6
(2(Lhd − Lhq) cos 2χ− Lhd − Lhq)ib

+
1

6

(
(Lhd − Lhq)

(√
3 sin 2χ− cos 2χ

)
+ 2(Lhd + Lhq)

)
ic

+Ψrotor cos(χ− 240◦) + Lσc (−ia/3− ib/3 + 2ic/3)
︸ ︷︷ ︸

Lσcic

(19)

All inductivities can be determined by comparing the equa-
tions (3), (4) and (5) with the equations (17), (18) und (19).

Laa =
2

3

(
Lhd cos

2 χ+ Lhq sin
2 χ

)
+ Lσa

Lbb =
1

6

(
2(Lhd + Lhq)− (Lhd − Lhq)

(√
3 sin 2χ+ cos 2χ

))
+ Lσb

Lcc =
1

6

(
(Lhd − Lhq)

(√
3 sin 2χ− cos 2χ

)
+ 2(Lhd + Lhq)

)
+ Lσc

Lab =
1

3

(√
3(Lhd − Lhq) sinχ cosχ− Lhd cos

2 χ− Lhq sin
2 χ

)

Lac =
1

3

(√
3(Lhq − Lhd) sinχ cosχ− Lhd cos

2 χ− Lhq sin
2 χ

)

Lbc =
1

6
(2(Lhd − Lhq) cos 2χ− Lhd − Lhq)

Lab = Lba

Lac = Lca

Lbc = Lcb (20)

Please note that the position-dependent three self inductances

and the three mutual inductances have portions oscillating with

2χ and phase-shifted by 120◦ (see Fig. 2 bottom).



It can be mathematically shown that all the self-inductances
are given by the following term:

Laa =
1

3
[(Lhd + Lhq) + (Lhd − Lhq) cos 2χ] + Lσa

Lbb =
1

3
[(Lhd + Lhq) + (Lhd − Lhq) cos (2χ+ 120◦)] + Lσb

Lcc =
1

3
[(Lhd + Lhq) + (Lhd − Lhq) cos (2χ+ 240◦)] + Lσc

(21)

The same applies to the mutual inductances and the mag-

netic flux components of the rotor:

Lbc =
1

3

[

− (Lhd + Lhq)

2
+ (Lhd − Lhq) cos (2χ)

]

Lab =
1

3

[

− (Lhd + Lhq)

2
+ (Lhd − Lhq) cos (2χ− 120◦)

]

Lac =
1

3

[

− (Lhd + Lhq)

2
+ (Lhd − Lhq) cos (2χ− 240◦)

]

Ψa,rotor = Ψrotor cos (χ− 0◦)

Ψb,rotor = Ψrotor cos (χ− 120◦)

Ψc,rotor = Ψrotor cos (χ− 240◦) (22)

IV. THE PHYSICAL INTERPRETATION OF THE

INDUCTANCES AND THE RELATED ANGLE DEPENDENCY χ

For deriving the voltage equations for all phases, the

physical meaning of selfinductance and mutualinductance in

context of anisotropies is analysed. The equations (21) und

(22) represent the influence of the air-gap distance varying

with angle χ.

The inductivities of the self and the mutual inductances

change with twice the frequency of the mechanical rotation

of the rotor times the number of pole pairs. This can be

explained by a closer look at geometrical issues. For reduction

of complexity, the number of pole pairs is assumed to be one.

Because of identical geometry, the same air-gap distance

is found for χ = 0 ◦ and χ = 180 ◦. At χ = 0 ◦ the

selfinductance Laa is maximal because the air gap underneath

the winding a is minimal (see Fig. 2 top left). For the mutual

inductance Lbc, the airgap between windings b and c is as

large as possible. In consequence, the mutual inductance Lbc

is minimal.

If the rotor is rotated by 90 ◦, the situation reverses: The air

gap underneath winding a is as large as possible. Therefore,

Laa has minimal value. The air gap between windings b und c,
however, is as small as possible. Consequently, the inductivity

of the mutual inductance is maximal (see Fig. 2 top right).

V. FAULT SIMULATION USING VOLTAGE EQUATIONS FOR A

THREE-PHASE SALIENT-POLE SYNCHRONOUS MACHINE

Using the basic differential equation describing an induc-

tance, the voltage equations for the three stator windings can

be given. For this, the equations (21) and (22) are inserted into

equations (3) to (5).

ua = raia +
d (Laaia)

dt
+

d (Labib)

dt
+

d (Lacic)

dt
+

d (Ψa,rotor)

dt

ub = rbib +
d (Lbaia)

dt
+

d (Lbbib)

dt
+

d (Lbcic)

dt
+

d (Ψb,rotor)

dt

uc = rcic +
d (Lcaia)

dt
+

d (Lcbib)

dt
+

d (Lccic)

dt
+

d (Ψc,rotor)

dt
(23)

According to the equations, an equivalent electric circuit can

be deduced (cp. Fig. 3). The reference of the three stator

voltages ua, ub and uc is u0. The stator-winding resistances

and the leakage-inductances do not depend on the rotor positon

χ. The equations (23) can be used to simulate different

operation points, both in normal operation and in failure

operation – for example: in case of sudden interruption of

a single phase winding. As stated before, the simulation of

such a fault condition is impossible with the normal Ld–Lq

model.

In the following, the deduced model of a converter-fed

salient-pole SM (with Ld > Lq) is applied under different

conditions, in order to outline the capability. In all scenarios,

the SM is operated with fixed synchronous speed due to

the fact that the electrical behaviour shall be assessed. The

machine parameters, which was used in the simulator, is shown

in the Table I.

TABLE I
PARAMETERS OF THE SIMULATION

Ld 0.03H

Lq 0.02H

Ψrotor = LE · iE 0.6Vs

Lσa,b,c initial 0.001H

Lσa by construction fault 0.002H

ra,b,c initial 0.062Ω

ra by interruption 10 kΩ

DC-link voltage 700V

switching frequency of the three-phase inverter 1250Hz

There were three scenarios simulated. In scenario 1 (see Fig.

4) the SM is in normal operation. All three stator currents

are symmetrical due to the symmetrically chosen machine

parameters.

In the scenario 2 (see Fig. 5) the phase a is assumed

to be interrupted at instant t = 4 s, when the resistance of

stator winding ra is set to 10 kΩ (cp. Fig. 4), modelling an

interruption of the winding. The current ia quickly decreases

to zero. The other two phase currents are not shifted by 120 ◦

any longer, following immediately from Kirchhoff’s Current

Law ib = −ic). After the interruption of phase a the amplitude
of the phase b and c decrease to

√
3/2.

In the scenario 3 (see Fig. 6) phase a is assumed to have

big leakage inductance related to e.g. a construction fault; it is

set to two times the leakage inductances of the other phases.

Due to this fault the phase-current ia is smaller compared to

the other phase currents.



Fig. 2. Variation of the self inductance and the mutual inductance with the rotor angle χ
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Fig. 3. The equivalent electric circuit of a salient-pole synchronous machine

VI. CONCLUSION

This paper presents a stator-oriented phase-wise model of

a synchronous machines. The synchronous machine may be

anisotropic and asymmetric. Anisotropies usually result from

salient-pole or interior permanent-magnet characterics, asym-

metries from fault conditions inside the machine. The model

allows the simulation of unsymmetrical fault inside the ma-

chine, e.g. single phase-winding interruptions, for anisotropic

machines.

The differential equations and their parameters are derived

for the stator-oriented reference frame. The basis are the

commonly known d-axis and q-axis inductances Ld and Lq ,

defined in a rotor-flux-oriented coordinate system. A physical

interpretation of the variation of self and mutual inductances

with the position angle of the rotor is given.

The capability of the approach to represent asymmetrical

machine-side faults for anisotropic machines is illustrated

by simulation results of different scenarios. The reaction of

control schemes to such faults can be analysed. The model

described is intended to enable the development of advanced

stator-flux oriented control schemes, being robust to asymmet-

rical faults.
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Fig. 4. Stator currents of salient-pole SM in normal operation point, red: isa, blue: isb, green: isc.

Fig. 5. Stator currents of salient-pole SM, interruption of winding at t = 4 s ra = 10 kΩ, red: isa, blue: isb, green: isc.

Fig. 6. Construction fault in phase a of salient-pole SM, red: isa, blue: isb, green: isc.




