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Abstract—The added load that a PHEV (Plug-in Hybrid Electric 
Vehicle) fleet imposes on the existing electrical grid is of great 
concern to the electric utility industry. In this paper, analysis was 
done for a PHEV fleet which consists of 6 PHEVs that were 
instrumented using data loggers for a period of approximately 
one year. Systematic analysis using a clustering approach was 
carried out for the real world velocity profiles. A driving pattern 
recognition algorithm was developed based on the clustering of 
the results and Markov-chain model was used for the stochastic 
velocity generation for different driving patterns. The work of 
this paper is a part of a larger project in which a mass simulation 
of a neighborhood of PHEVs will be conducted based on 
statistical representations of key factors such as vehicle usage 
patterns, vehicle characteristics, and market penetration of 
PHEVs.  
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I. INTRODUCTION 
This paper is based on the work of a plug-in hybrid electric 

vehicles (PHEV) fleet study. The project is part of a broader 
research program underway at The Ohio State University’s 
Center for Automotive Research called SMART@CAR. The 
main goals of this project are to create and maintain a database 
containing all charging and duty cycle data collected from a 
growing PHEV fleet. The detailed information about the 
database can be found in [1]. The database of PHEV data for 
use by the consortium members and university researchers has 
been developed to provide insights on PHEV usage patterns, 
impacts on vehicle performance and to the electrical grid. 

The objective of this research is first to analyze the usage 
patterns of a PHEV fleet based on collected real driving data. 
The next phase is to build a PHEV energy analysis model 
which can make use of the usage patterns of the PHEV 
customers and vehicle characteristics to estimate the energy 
consumption of the PHEV fleet. The final goal is to study the 
impact of PHEVs on the electric grid on a neighborhood scale 
through large scale simulation of vehicles. The schematic 
diagram of the energy analysis model is shown in Fig.1. 

With stochastic inputs like vehicle weight, generated 
velocities, initial SOC, etc., the approach is designed to 
estimate the energy consumption and fuel economy results of 
individual vehicles as well as the overall fleet. The model also 
includes driving pattern recognition (DPR) to identify different 
types of driving cycles and estimate performance.  

Driving patterns have great impact on fuel economy of 
vehicle or power split control strategies of PHEVs. Various 
research works have suggested that road type and traffic 
condition, trend and style, and vehicle operation modes have 

various degrees of impacts on vehicle fuel consumptions [2-7]. 
Some researchers in intelligent vehicle power control have 
begun to explore the ways to incorporate the knowledge about 
online driving pattern into control strategies [8-14].  

 

Figure 1. Monte Carlo Simulation of PHEV Energy Analysis 

In [6], a detailed description about the driving pattern 
factors was discussed and their influence on fuel use and 
exhaust emission were analyzed. The paper aimed to find 
independent measures to describe the dimensions of urban 
driving patterns and to investigate which properties have main 
effect on emissions and fuel-use. 62 driving pattern parameters 
were calculated for each of 19230 driving patterns collected in 
real traffic. By using factorial analysis, the initial 62 parameters 
were reduced to 16 independent driving pattern factors. 

In [8], Jeon et al. selected 6 RDPs (Representative Driving 
Pattern), including urban, suburban and expressway. On each 
RDP, optimized parameters for control are found by off-board 
calculation. For real-time control, driving pattern recognition is 
conducted by using Artificial Neural Network (ANN). Once 
the current driving pattern is distinguished, optimized 
parameters for the selected RDP are used in the real time sub-
optimization. In [9], Lin et al. used similar method as that in 
[8]. Instead of using ANN, a simple rule-based control strategy 
is used to recognize the RDP. In [10], Jeon et al. first generated 
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5 RDP by rules; then a rule-based control algorithm is extracted 
from the result of DP on each generated RDP; at last, a multi-
mode driving control was realized by switching the control 
parameters in each RDP. In [11], Bo et al. proposed a method 
that uses statistical pattern recognition and results in a very 
simple algorithm that is easily implemented in real time. In 
[12-13], the author proposed an intelligent energy management 
agent (IEMA) for parallel hybrid vehicles. They used only 40 
of the 62 parameters as in [8] and then added seven new 
parameters for the driving pattern recognition. In [14], the 
author incorporated the driving information into the vehicle 
power management. An intelligent system has to be developed 
to predict the current traffic conditions. Neural learning for 
predicting the driving environment, such as road type and 
traffic congestion, was developed. In this paper, the approach 
described in [11] will be used for the driving pattern study and 
recognition.  

For prediction of the driving patterns, some work was based 
on external systems like traffic information system [15]. 
Modeling approaches were also used for the driving cycle 
generations in those papers. However, the complicated 
modeling approach gave much difficulty in calibration and real 
time implementation. In [16], statistical analysis and clustering 
approach were used for driving cycles. It divided the driving 
cycles into segments called kinematic sequences. Clustering 
approach was used to separate those kinematic sequences into 
groups based on statistical information. It also proposed an 
approach to generate the driving cycle by choosing the 
kinematic sequences from the existing database randomly 
following distributions. For long and regular driving cycles like 
in that paper, the approach may be effective and appropriate. 
However, to generate short and more precise driving cycles, the 
approach is not adequate. Markov chain models are an effective 
way to generate a representative driving pattern in a statistical 
way.   

The diagram in Fig. 1 represents the overall objective of 
this research, while this paper is focused on the statistical 
analysis of the real world driving data and the stochastic 
velocity generation model based on Markov train model. In 
section II, fleet data of PHEVs will be introduced and some 
initial comparisons will be discussed. Statistical analysis of real 
velocity profiles will be studied in section III. In section IV, a 
Markov chain model-based velocity generation approach will 
be discussed following by some simulation results in section V. 
Finally a conclusion will be made in section VI. 

II. FLEET DATA COLLECTION AND INITIAL COMPARISONS 

A. Fleet Data Collection 
In this paper, 6 PHEVs’ real word data were collected from 

a growing database. This data base currently contains more 
than 50,000 miles of vehicle data. From the available datasets, 
the important variables for charging and driving are selected 
respectively. Real-world data of the selected variables for 6 
PHEVs are compared and analyzed to gain insight of the 
charging and driving patterns of various customers and PHEV 
models.  Figure 2, shows some distributions of several 
variables based on the real driving data; the distributions of 
those variables show the usage patterns of the PHEVs. The 

obtained statistic results will also be used for the stochastic 
input model development, such as the driving distance, initial 
SOC distribution, etc.  
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Figure 2. Data Analysis of 6 PHEVs (a) 

B. Initial Comparison of Fleet Data 
To see the similarities and differences of these 6 PHEVs, 

the mean, variance, skewness of the variables chosen for the 
study were collected and compared. In Fig.3, the mean of some 
key variables are compared. The data sets indicate the 
similarities in some of the driving and charging patterns in 
some PHEVs while also show difference in some PHEVs. 

The cumulative grid access time of the 6 PHEVs are 
compared in Fig.4. Five of them have very similar trend, while 
the 6th one is quite different. The normalized figure is obtained 
by dividing the each data set by the summation of that data set. 
The figures show the charging pattern of the 6 PHEVs. 
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Figure 3. Mean Comparison of Some Data 
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Figure 4. Normalized Cumulative Grid Access Time of 6 PHEVs 

C. Charging Frequency Comparison 
We define the ratio of charging activity as: Number of 

charging sessions/Number of driving sessions. This value will 
show the charging frequency of the PHEV. For the 6 PHEVs, 
the values of this ratio are 1:3.5, 1:2.06, 1:2.2, 1:8.16, 1:2.69, 
1:4.67 respectively. The results show that PHEV No.4 and 
No.6 are less frequently charged compared to other PHEVs on 
a per trip basis. 

III. STATISTICAL ANALYSIS OF REAL VELOCITY PROFILES 
In this section, the driving data from a single vehicle from 

May 2009 to Apr 2010 is analyzed. For this vehicle, there are 
673 driving sessions during this period. Here, a driving session 
is defined as the duration from key on to key off in driving. So 
after deleting sessions with length less than 250 s and sessions 
with very short distance, there are 530 sessions left. The 
velocity profiles of these 530 driving sessions were used for the 
statistical analysis as described in this section. 

A. Statistical Metrics 
In [17], 21 statistical metrics are used to represent the 

characteristic of a driving cycle. The same approach was also 
used in [11]. However, some statistical metrics are not 
necessarily needed in the classification of driving cycles, such 
as the “Duration”, “Distance” and “Number of Stops per Unit 
Distance”. Thus, the remaining 18 statistical metrics were used 
in [11] which were also used in this paper as listed in Table 1. 

TABLE 1. STATISTICAL METRIC OF DRIVING CYCLES 

Statistical Metric 
V_ms_mean Mean Velocity 
V_run_ms_mean Mean Run Velocity 
V_peak_ms Peak Velocity 
a_peak Peak Acceleration 
d_peak Peak Deceleration 
a_mean Mean Acceleration 
d_mean Mean Deceleration 
a_RMS Root-Mean-Square of Acceleration 

PKE Positive Acceleration Kinetic 
Energy per Unit Distance (PKE) 

per_dec_t Percent of Time Decelerating 

per_aec_t Percent of Time Accelerating 
per_cruise_t Percent of Time Cruising 
per_idle_t Percent of Time Idling 
per_acc_dist Percent of Distance Accelerating 
per_dec _dist Percent of Distance Decelerating 
Per_cruise_dist Percent of Distance Cruising 
V_std Standard Deviation of Velocity 
a_std Standard Deviation of Acceleration 

B. Principal Component Analysis 
From the statistical metrics, 18 metrics form a state vector, 

which indicates the characteristics of a certain driving cycle. 
However, some metrics may be strongly related, for example 
the “Percent of Distance Accelerating” and “Percent of Time 
Accelerating”. Such repetition increases the complexity of 
calculation. The idea of principal component analysis is used to 
reduce the size of state vector. 

First, all 18 metrics among all the collected driving cycles 
are standardized, as shown in Fig.5. Sometimes it makes sense 
to compute principal components for raw data. However this is 
only appropriate when all the variables are in the same units. 
Standardizing the data is often preferable when the variables 
are in different units. In this case, data are standardized by 
dividing each component of the vector by its corresponding 
standard deviation among all the driving cycles. 

Then the standardized cycle state vector can be used in 
principal component analysis. In Fig.6, the curve of the 
accumulated variance shows that the first 5 principal 
components determined from the PCA represent more than 
90% of the variance of the original cycle state vector variables. 
Thus, the 1 by 18 cycle vector can be converted into a 1 by 5 
vector, for the purpose of data reduction. Equation (1) shows 
how original Driving Cycle Statistical Metrics Vector 
(DCSMV) is converted into a reduced size vector. 

518,4181,51, ××× ×= PCAorgPCA CoefDCSMVDCSMV              (1) 
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Figure 5. Boxplot of the 18 Standardized Statistical Variables of  

All Driving Sessions  



C. Clustering 
A clustering approach is then used to group the velocity 

profiles into classes. Through a trial and error approach, a two 
group clustering is found to be better than 3 or more by looking 
at the silhouette plots of the trials. The silhouette values of each 
component in each class are shown in Fig.7. The silhouette plot 
displays a measure of how close each point in one cluster is to 
points in the neighboring clusters. This measure ranges from 
+1, indicating points that are very distant from neighboring 
clusters, through 0, indicating points that are not distinctly in 
one cluster or another, to -1, indicating points that are probably 
assigned to the wrong cluster [18]. The average velocity and 
average absolute value of acceleration for each session are 
collected for  both clusters, and relation between this value and 
driving time are compared in Fig.8.  

The differences between the clusters in Fig.8 indicate the 
effectiveness of the clustering. In the clustering results, cluster 
1 has typically urban driving. In cluster 2, it includes all the 
typical highway driving, but it also contains some urban 
driving sessions which may have close distance to typical 
highway driving in statistical sense.  
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Figure 6. Principal Component Analysis of All Driving Sessions 
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Figure 7. Clustering Results of All Driving Sessions 
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Figure 8. Comparison of Average Velocity and Average Acceleration 

 of  the Two Clusters  

The resulting statistical data from this step will be used for 
the later driving pattern recognition and the grouped velocity 
profiles will be used for the stochastic velocity generation 
using Markov-chain model. 

IV. MARKOV CHAIN MODEL BASED VELOCITY 
GENERATION 

In [19-20], stochastic DP was used for the power 
management of conventional HEV and PHEV. A stationary 
Markov chain was used to generate the power demand from the 
driver. Here, we will use the same approach to generate a 
velocity profiles instead of the power demand. The Markov 
model is described in (2), which shows that the next state of the 
system is just dependent on the state of current step.  

   { } ( )jifP ,iX(t)j1)t(Xrob ===+                            (2) 
For our case, the state vector in the Markov chain is defined 

as )a,V(X kkk =  where a is acceleration and V is velocity, and 
the probability distribution for a combination of a and V at the 
next step is given by the transition probabilities. 

  1k,k1111 p),a,aA( +++++ === kkkkkk vvVP                (3) 
To obtain the transition probability model for the Markov 

chain, several steps needs to be done: 1) Collect the drive cycle 
data, V; 2) Obtain the acceleration data a; 3) Using nearest-
neighbor quantization, the sequence of observations (v, a) was 
mapped into a sequence of quantized states ( iv , ja ). 

For each acceleration state, the transition probabilities for 
velocity are determined from the real world velocity data by 
counting the occurrence of each transition and visiting times 
of the state. In (4), jim ,  is the number of occurrences of the 

transition from iv to jv for a certain acceleration rate, and 
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, jii mm  is the total number of times that iv  has occurred 

at the acceleration rate.  
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V. RESULTS OF STOCHASTIC VELOCITY GENERATION 
So far, almost one year driving data of a PHEV has been 

considered for this study. These 530 cycles are clustered into 
two groups using K-means clustering approach. Cluster 1 and 
cluster 2 are quite typical sessions of highway and urban, and 
the Markov chain model was developed for these two driving 
patterns. This clustering procedure is necessary as the statistical 
behavior of vehicles during highway driving and urban driving 
have been found to be distinctly different. By separating them, 
it is possible to generate driving cycles which more faithfully 
represent these two different types of driving. 

Based on the observation of the real world velocity data 
sets, the velocity and acceleration ranges of urban real velocity 
data are 0 - 124 km/h, -7 - 5.3 m/s2, while for highway cycles 
they are 0 - 138 km/h, -6 - 5 m/s2.  For numerical calculation, 
velocity and acceleration data are mapped into a quantized set; 
the resolution of quantization of velocity is chosen as 1 km/h. 
For acceleration data, the histograms show that the density for 
absolute values less than 2 is much higher than the density out 
of this range. Based on the histogram of acceleration for urban 
driving and highway driving case, the resolution of 
quantization of acceleration within [-2, 2] m/s2 is chosen as 0.1 
m/s2, while out of this range the resolution is chosen as 0.5 
m/s2. The probability transition matrix for ak=0, and urban 
driving pattern case is shown in Fig.9. The transition matrix 
shows that the velocity states have higher correlation to the 
states close to them.  

 
 Figure 9. Probability Transition Matrix for a=0 of Urban Case 

A case of generated velocity for urban driving is shown in 
Fig.10; to determine how similar these velocities are to real 
data, the phase plot of the generated cycle is compared to a 
typical urban cycle selected from the database (Fig.11). Results 

show that the generated velocity generally has very similar 
phase to the selected urban cycle.  
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 Figure 10. A Generated Velocity Profile for Urban Driving 
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 Figure 11. Phase Plot Comparison of Generated Cycle to A Real Urban Cycle 
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Figure 12.  A Generated Velocity Profile for Highway Driving 
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Figure 13. Phase Plot Comparison of Generated Cycle to A Real  

Highway Cycle 

Similarly, a case of generated velocity for urban driving is 
shown in Fig.12, and the corresponding comparison of phase 
plot to a selected typical highway cycle is shown in Fig.13. The 
obtained results show that the generated velocity generally also 
has very similar phase to the selected highway cycle.  

In the future, the developed velocity generation model will 
be integrated in to the mass simulation model with other 
stochastic input models. 

VI. CONCLUSIONS 
In this paper, some general and basic analysis was done for 

a PHEV fleet consisting of 6 PHEVs. Systematic analysis using 
clustering approach was carried for the real world velocity 
profiles. Velocity profiles were grouped into classes. Driving 
pattern recognition has been developed based on the clustering 
results, and Markov-chain model was used for the stochastic 
velocity generation for different driving pattern. One year’s 
real velocity profiles were collected and grouped into 2 classes 
based on the clustering approach. The stochastic velocity 
generation model can generate velocity profiles which 
represent the specific driving pattern well based on the 
comparison of the phase plot to the typical real driving cycles.  

The work of this paper is a part of a mass simulation PHEV 
energy analysis model with uncertain inputs of vehicle 
characteristics, initial conditions and usage patterns. The PHEV 
energy analysis model will be developed to predict energy 
consumption in a statistic way and further be used for the 
PHEV-Grid analysis and smart charging study in the future 
work.  
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