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Abstract— In this paper an approach for the real time optimal 
control of vehicles with more than one source for providing 
traction power (e.g. HEVs) is presented. After a short 
classification of existing approaches and their respective 
characteristics the new modular concept as a combination of two 
algorithms is introduced. For the basic online management an 
equivalent consumption minimization strategy (ECMS) is 
implemented. The adaption towards changing driving conditions 
is realized by an independent calculation and adjustment of the 
main decision criterion of the ECMS towards the predicted 
operational profile using a calculation time optimized dynamic 
programming approach.  
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I.  INTRODUCTION 
The complexity of hybrid power trains demands 

supervisory controllers which are able to profitably use the new 
degree of freedom compared to conventional cars like the 
flexible distribution of the traction power to the prime mover. 
Besides fulfilling the drivers request the most common control 
objective is to achieve minimum fuel consumption and low 
emissions. These main targets are superposed by additional 
requirements like high driving performance and safe operation. 
To justify the additional technical effort of HEVs it is essential 
to tap the full fuel reduction potential given by the hardware in 
all driving conditions through an optimal control. 

II. EXISTING APPROACHES 
At present there are three main classes of competing 

approaches for the supervisory control of hybrid electric 
vehicles (HEVs) which can be classified by the three main 
properties optimality, the use of prediction data and the kind of 
achieving the control objective as shown in fig. 1. The majority 
of already implemented control strategies belong to the class of 
heuristic rule based controllers. This approach has a 
manageable complexity and needs only low computational 
resources but it also has a limited adaptivity and achieves 
suboptimal results due to the indirect optimization via changing 
the rules of the controller e.g. by varying thresholds. From the 
aspect of optimality model based predictive control using 
dynamic programming (DP) techniques is the most favorable 

class of algorithms obtaining the global solution under direct 
use of prediction data. It represents the best possible solution of 
the control problem with respect to the used discretization of 
time, state space and inputs. The biggest disadvantage is the 
high computational effort which is opposed to a real time 
implementation for the online control of a vehicle.  

Figure 1.  Classification of control approaches, global evaluation of 
optimality assuming a priori known driving cycles  

A compromise between the two mentioned control approaches 
are the equivalence based control algorithms, which aim for a 
direct local optimal solution of the problem using an equivalent 
between the available energy paths to evaluate which 
combination of the traction sources is most appropriate for the 
current power demand. The use of prediction data is not 
essential but for reaching a balanced state of charge of the 
energy storage system, a high adaptivity and global optimality 
the equivalence factor has to be chosen carefully under 
consideration of past and future driving conditions. This results 
in the need for a possibility to transform a predicted velocity 
and elevation profile into an appropriate value pattern for the 
equivalence factor. 
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III. EQUIVALENCE BASED CONTROL AS A COMBINED 
APPROACH 

The combination of a real time capable equivalent based 
strategy for the online control of the vehicle with a model 
based predictive optimal control using dynamic programming 
for the calculation of the equivalence factor appears to be a 
suitable approach resolving the conflict between global 
optimality, robustness and real time capability.  
 

A. Equivalent consumption minimization strategy (ECMS) 
Instead of solving the whole control problem globally 

ECMS finds the local optimal solution for the power 
proportion of electrical and internal combustion engine at each 
time step under consideration of an energetic equivalence 
factor λ . This value is needed to evaluate the power of the 
combustion engine PIC and the electric machine PEM in one 
combined equivalent power PEq through projecting them to an 
equivalent chemical energy flow of the tank as 

 
penEMEMEMICICICEq PnMPnMPP +⋅+= ),(),( λ . (1) 

An increasing equivalence factor λ makes electrical energy 
more expensive and intensifies the use of the combustion 
engine and effects the recharge of the electric energy storage. 
In contrast a decreasing equivalence factor λ leads to a 
preference of the electric motor to fulfill the traction demand of 
the driver. 

To prevent low driving comfort caused by frequently changing 
the power train states like gear shifting, high gradients of 
torque or engine speed, engine shut down and restart an 
additional penalizing cost term Ppen is added for the evaluation 
of the optimal operation points in (1). Hence short-lasting and 
low differences in the cost function will not effect the systems 
control process. 
The penalty power Ppen is assessed dynamically, depending on 
the duration since the previous state change. The integral 
penalty for each shift is adjusted by estimating the equivalent 
energetic losses: 

 ∫ =− lossshiftpen EttP )( . (2) 

To achieve the global optimal solution for the control 
trajectory and to sustain the battery charge using ECMS the 
equivalence factor λ needs to be adapted over time. The easiest 
way is to implement lookup tables where precalculated values 
for λ are stored depending on different input values like current 
battery charge, average power flow and others. The ECMS 
then passes into a heuristic strategy. Another approach is to use 
a controller (PI) which changes λ aiming for a given target 
battery charge. A remarkable algorithm of adapting λ is known 
as A-ECMS [1], where past and predicted wheel power 
demands of the vehicle are used to evaluate the drive train 
efficiencies and to estimate the optimal charge sustaining value 
of λ. 

The disadvantage of these adaption methods is their 
immanent suboptimality compared to the global optimal 
solution even for accurate prediction data. Therefore in the next 
section an algorithm determining the global optimal solution is 
presented. In section III.C this real time incapable algorithm 
will be used to asynchronously calculate the optimal λ  for the 
ECMS real time controller. 

 

B. Predictive dynamic programming 
Model based predictive dynamic programming is a 

convenient way to calculate the global optimal control 
trajectories for a priori known driving cycles or predicted 
velocity and elevation profiles for a requested battery charge at 
the end of the cycle (integral constraint) [3], [4], [5]. 

In a first phase (Initialization) the required torque and the 
resulting rotational speed of the wheels are calculated. These 
values are used to deduce the required speed and torque at the 
transmission input for all possible gears. The torque is then 
split to the machines in a discrete grid and the resulting input 
power ratings of ICE and EM are calculated.  

Figure 2.  Original progam flow chart of the backward recursion process of 
DP consisting of the three main loops over time (index k), gear (index g) and 

battery charge (index q) 

In the second phase (Backward Recursion) these time 
discrete values are used to build a global cost-to-go-matrix 
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 as shown in fig 2. For the given discrete charge Q(qk) 
of the battery the open circuit voltage U0 is defined before 
calculating the accordant current I, the change of battery state 
of charge ∆Q and the required fuel energy ∆EFuel. For all 
possible subsequent charge Q(qk+1) and gear points g(jk+1) the 
resulting fuel energy has to be calculated by interpolating 
∆EFuel(∆Q) for the discrete points of Q(qk+1)-Q(qk). 

Before the optimal cost value is assigned Bellman’s 
recursive equation 
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has to be evaluated considering all possible paths from the 
current to the next time step as shown in fig. 3. 

Figure 3.  Graphical representation of solving equation (4) through backward 
recursion 

In the last phase (Forward Calculation) the optimal gear 
and charge path from the starting point is reconstructed using 
the saved indices in matrix ),,( qjkP

r
 of the best successive 

point. The operating points of the engines are recalculated 
based on these paths. 

The tree main program loops of the backward recursion 
including two sub-loops for possible succeeding points cause 
large calculation effort. Even for an implementation under non 
real time conditions a significant speed-up is necessary 
especially for fine discretization of high capacity energy 
storages and long prediction horizons. Therefore an 
optimization of the algorithm under using the specific 
properties of the considered problem including the following 
improvements is implemented: 

• Variable time discretization depending on predicted 
change of velocity and acceleration and resulting 
wheel power 

• Dynamic calculation of the limits of the state of charge 
depending on predicted power demand at wheels to 
reduce the state space 

• Use of nearly charge independent behavior of open 
circuit voltage of the considered LiFePO4 batteries for 
order reduction of the optimization problem  

• Pre-calculation of optimal gear  

• Vectorization and parallelization of the algorithm for 
increased performance on modern multi-core  
processors [6]. 

The biggest improvements are achieved through the order 
reduction of the control space and the precalculation of the 
optimal gear for every change of charge and its corresponding 
power split. The input torque and speed of the gearbox depend 
for a given required wheel torque on the transmission ratio in 
the available gears. For each gear the resulting change of 
charge and fuel energy can be calculated depending on the 
discretized power ratio between EM and ICE. The optimal gear 
can be found by evaluating fuel cunsumption for each power 
split and its corresponding change of charge as shown in fig. 4. 

Figure 4.  Interpolating the fuel energy for discrete changes of charge and 
precalculation of the change of charge depended optimal gear 

The number of required calls of the target function in the 
backward recursion could be reduced from  

 ( )2
qgtcall NNNN ⋅⋅=  (4) 

from the conventional implementation to only 

 
Qqtcall NNNN Δ⋅⋅= . (5) 

The increased effort in the initialization phase caused by the 
precalculation of the optimal gears has only small influence on 
the calculation speed. 

Under consideration of all improvements the overall 
calculation time is speeded up from several hours [1], [7] to 
seconds up to a few minutes (grid depending) for an example 
calculation of the whole NEDC on an Intel Pentium Q6600. 
The maximum relative charge error caused by neglecting the 
charge dependency of the battery open circuit voltage was 
calculated by the total differential method to be lower than 2%.  
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With the achieved computing speed improvement the DP is 
appropriate to meet the basic requirements like accuracy and 
limited update time as an adaption mechanism for the 
equivalence factor for the real car implementation as shown in 
the next section. 

C. Implementation of the DP adapted ECMS (DP-ECMS) 
To calculate the optimal time and charge depending values of 
the ECMS equivalence factor the cost-to-go matrix ),,( qjkJ

r
 

of DP is derived locally with respect to the changing battery 
charge as follows 
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Figure 5.  Asynchronouse operation of DP and ECMS 

DP and ECMS work asynchronously as shown in fig. 5 
coupled by a data buffer since the time for the evaluation of 
the DP depends on the length of the prediction horizon and the 
used discretization and is therefore non deterministic.  

Figure 6.  Equivalent cost matrix over time and battery charge with curves of 
constant λ, representing correspoding optimal charge trajectories 

An update of the equivalence factor matrix is performed as 
soon as changed input values are available from the prediction 
data source for the DP algorithm. Through the use of the cost-
to-go matrix λ(Q,t) (fig. 6) as a kind of adaptive look up table 
for the optimal, time and charge dependent equivalence factor 
a feedback is introduced.  Possible drifts of the state of charge 
caused by model deviations and unconsidered disturbances are 
compensated through changes of λ. The resulting control 
scheme is shown in fig. 7. 

Figure 7.  Control scheme of the combination of dynamic programing 
(evaluation of prediction data) and ECMS realtime controller 

 

IV. SIMULATION MODEL 
For the verification of the predictive supervisory controller 

the customized Modelica library “eVehicleLib” [8] including a 
dynamic car model of the PHEV and its energetic subsystems 
is used. This plant model differs from the quasi static model 
implemented in the DP and ECMS controller through detailed 
modeling of synchronization processes of the clutch and the 
gearbox, the response times and maximum torque gradients. 
The acausal modeling approach for the plant allows the direct 
use of the systems differential equations without considering 
the direction of solving the system. Additionally the use of 
physical interfaces allows building models whose structure is 
very close to their real counterparts. The consequent use of 
model classes and inheritance enables an easy exchange, 
adaption and extension of parts and subsystems of the model 
[9]. A validated model of a conventional powered vehicle 
(Audi A2) is taken as a basis for the HEV model.  

In contrast to the plant model the ECMS controller is 
implemented in Matlab Simulink, where the predictive 
dynamic programming is imported from Matlab m-code using 
a s-function. The communication between the Modelica 
simulation environment Dymola and the controller model is 
realized utilizing the special Dymola Simulink interface block. 
The results of different performed simulations are shown in the 
next chapter. 



V. RESULTS 
To evaluate the potential of the developed approach it was 

benchmarked towards existing control algorithms as shown in 
the next subchapters.  

A. Evaluation of  optimality  of DP-ECMS 
Though DP calculates the global optimal control 

trajectories for a priori known velocity and altitude profiles 
these results are used as a theoretical benchmark for evaluating 
the optimality of the DP-ECMS. Therefore the whole driving 
profile was used for prediction and the resulting control 
trajectories were applied to the dynamic car model.  

Figure 8.  Comparison of system control and system response for ideal 
prediction using DP-ECMS and DP (excerpt of the NEDC) 

Fig. 8 shows an example section of the system response to 
both strategies for the NEDC. The engine torques and the 
chosen gears show the same tendentious behavior though they 
are not identical for both approaches because the integrated 
cost terms of the ECMS penalize changes of gear and torque 
gradients. On the one hand DP-ECMS yields much less 
changes of gear achieving a higher driving comfort. On the 
other hand the restricted use of the degrees of freedom lead to a 
significant negative deviation in battery charge compared to the 
global optimal charge trajectory of DP which is almost 
completely compensated at the end of the cycle. For 
determining the fuel consumption the charge deviation is taken 
into account by assuming the combustion engine to drive the 
electric machine as a generator at the global optimal operation 
point. The resulting energy effort using DP-ECMS exceeds the 
calculated optimum only by 0.2% in this case. 

Tab. 1 shows the numerical results for the charge deviation, 
the fuel consumption and number of changes of gear for NEDC 
and FTP 72 for different control approaches. Besides DP 
different methods of adapting λ for charge sustaining ECMS 
are compared. The simplest approach is to iteratively optimize 
the constant equivalence factor [10]. The difficulty results from 
the discontinuous behavior of the charge difference over the 
cycle caused by the integrated penalizing costs. Changing the 
static value of λ from 2.6782 to 2.6783 in FTP 72 causes the 
charge deviation to switch from -168 As to +150 As. Hence it 
is impossible to find a charge neutral solution for constant λ in 
this example. The iterative solution to find the optimal value 
for λ is only applicable for offline solutions. 

TABLE I.  COMPARISON OF FUEL CONSUMPTION, CHARGE  DEVIATION 
AND NUMBER OF CHANGES OF GEAR FOR DIFFERENT CONTROL APPROACHES 

Results for FTP 72 and NEDC 

Fuel consumption  
Control approaches Charge 

deviation 
ΔQ  [As] 

original 
V/s 

[l/100km] 

correcteda

V/s 
[l/100km] 

Change
of gear

NG 

293 1.932 1.932 284
Offline DP (Reference) 

451 2.301 2.301 114

-241 2.116 2.173 161
Offline optimized λ=const. 

-11 2.324 2.327 49

-80 2.189 2.208 172Optimized PI-charge control 
on average QBatt 936 2.655 2.655 43

-135 2.128 2.160 143Optimized PI-
charge control on 
DP-QBatt 
trajectory -243 2.323 2.386 55

-57 2.180 2.194 168
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Control using 
matrix  λ(QBatt,t) -210 2.252 2.306 50

a. The corrected fuel consumption is calculated assuming only a compensation of negative charge 
deviations in motor-generator-mode, positive deviations stay uncorrected 

 

Dynamic adaption of λ overcomes this disadvantage. The 
simplest approach is the non predictive PI-control on an 
average state of charge set point. A good control performance 
close to the optimum could be achieved for use cases with an 
equally distributed power demand like in the FTP 72 cycle. 
The high recuperative braking potential at the end of the NEDC 
shows the disadvantage of the non predictive charge control 
leading to a significant positive charge deviation. The 
predictive PI-control uses the optimal charge trajectory 
calculated by DP as a time variant set point. The results are 
comparable to the DP-ECMS using the equivalence factor 
matrix. 

B. Evaluation of the robustness  of DP-ECMS 
Robustness includes both criteria stability and adaptability. 

The cybernetic stability of the DP-ECMS is guarantied by the 
fundamental characteristic of the equivalence factor matrix to 
be monotonically decreased at increasing battery charge. 
Negative deviations from the optimal SOC trajectory therefore 
lead to an increasing λ encouraging the use of the generative 
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operation modes leading to increasing battery charge and vice 
versa. In the extreme case of violating the charge limits the 
extreme values of λ will be applied ensuring an immediate 
charging or discharging.  

Figure 9.  Comparison of system response for different (1s, 100s, no update) 
update times of DP to the changed prediction and driven velocity profile 

The ambition of DP-ECMS to adapt to changing driving 
situations was tested by leaving the originally predicted 
velocity profile of the FTP 72 at t=625s and following the 
NEDC. This is comparable to a driver leaving the originally 
planned route to aim for a new destination. Fig. 9 shows the 
results of the calculated value patterns for λ, battery charge and 
fuel consumption for an adaption of the λ matrix through DP 
after one and after 100 seconds after the route change 
compared to the results with no recalculation. It is obvious that 
an advantageous control trajectory leading to an almost 
balanced battery charge is only achievable in the case of 
recalculating the equivalence factor. Worthwhile the update 
interval of λ seems to be of low influence on the results. 

C. Real time capability  of DP-ECMS 
Through the asynchronous operation of DP and ECMS the 

update time of the predictive calculation is only restricted by 
the appearance of changes in the predicted track profile. The 
ratio of predicted time to calculation time was 20 for an 
exemplary calculation of the NEDC. So the updated λ matrix 
would be available after 60 s in worst case (15000 charge grid 
points, 1000 time grid points). Basing on the results of the 
previous chapter this delay appears to be acceptable. 

The ECMS core algorithm itself is deterministic and 
therefore has a definite calculation time. The calculation effort 
is depending on the used discretization of the control variables. 
The real time implementation with a cycle time of 10 ms was 
realized on the PC.  

VI. CONCLUSION AND OUTLOOK 
An approach for the online control of a parallel HEV was 

introduced combining global optimality from predictive DP 
and real-time capability of ECMS. Simulation results show the 
applicability of the developed approach meeting the 
requirements for optimality, real time capability and 
robustness. The presented results for the parallel hybrid were 
obtained assuming an ideal prediction over the full range with 
full prediction accuracy and probability.  

To estimate a more realistic potential of DP-ECMS real 
prediction sources like map based approaches, track 
recognition, traffic information and car surrounding 
information sensor systems with their individual prediction 
properties will be integrated. The most promising approaches 
will be implemented in a research vehicle for real world 
testing. 

To prevent the battery from extensive cycling additional 
penalty functions will be added to the basic evaluation of the 
ECMS depending on the loss of capacity through the energy 
throughput. 

The controller and system model will be extended to serial 
an combined drive train architectures like plugin hybrids 
(PHEV) and range extended battery electric vehicles REBEV, 
offering the possibility to switch the control objective between 
cost-efficient (fuel prices vs. electricity prices), fuel-efficient 
and CO2-efficient control (under consideration of emissions of 
electric power generation at the power plant). 
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