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Abstract— This paper describes the development of a
Volterra series model for predicting transient soot emissions
from a diesel engine with fuel flow rate and engine speed as
the two inputs to the model. These two signals are usually
available as outputs of the power management controller in
diesel hybrids. Therefore, an accurate offline estimation of the
transient soot emissions using these signals is instrumental
in optimizing the control strategy for both fuel economy
and emissions. In order to develop the model, transient soot
data are first collected by Engine-in-the-loop experiments of
conventional and hybrid vehicles. The data are then used to
construct a third-order multiple-input single-output (MISO)
Volterra series to successfully model this system. Parametric
complexity of the model is reduced using proper orthogonal
decomposition (POD), and the model is validated on various
datasets. It is shown that the prediction accuracy of tran-
sient soot, both qualitatively and quantitatively, significantly
improves over the steady-state maps, while the model still
remains computationally efficient for systems level work.

I. I NTRODUCTION

This paper presents a Volterra series model for the tran-
sient soot emissions produced by a diesel engine, with
fuel flow rate and engine speed as the two inputs to the
model. The model is intended for the purpose of design-
ing powertrain-level supervisory controllers that minimize
transient soot emissions, among other possible objectives.
This can be particularly important in the context of hybrid
diesel propulsion systems. While such systems offer more
flexibility in controlling their engines as compared to the con-
ventional powertrains, optimizing their supervisory control
for fuel economy alone can lead to frequent and sharp load
increases, thereby significantly penalizing soot emissions [1].
Our overarching goal, therefore, is to develop a transient soot
emission model that meets three key criteria. First, it must
accurately capture the impact of powertrain transients on the
resulting transient soot emissions. Second, it must be simple
enough to enable control system design. Third, the model’s
inputs should ideally consist of quantities that are easy to
simulate or control, such as engine speed and fuel flow rate.

Quasi steady state models based on steady-state emission
maps have been used in the literature for control-oriented
modeling but they fail to capture transient soot accurately, es-
pecially the spikes during tip-in operations [2], [3], [4]. More
detailed models exist in the literature that capture transient
soot formation by simulating the combustion events using
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computational fluid dynamics (CFD) [5], phenomenological
methods [6], [7], [2], [8], [9], heuristic macro-parameter
approaches [10] or using black box models such as artificial
neural networks [11]. However, these approaches require
a number of inputs to the model often not available to
the control engineers involved with vehicle-level control
development. Also, simulating combustion can sometimes be
prohibitively slow in the context of system work [6].

In this work we seek to develop a model capable of
predicting instantaneous soot at the exhaust manifold of
a diesel engine, subjected to the transient loads emulating
the operation in a vehicle following the FTP-75 city cycle,
with just two inputs: engine speed(ωe) and fuel flow rate
(ṁ). Both of these signals are usually the outputs of the
powertrain supervisory control, and this model will enable
the control system development for soot reduction without
simulating the combustion dynamics. Although this work
is focused on modeling the diesel engine soot emissions
during the FTP-75 city cycle, the techniques and analysis
presented here can be generalized to other engines with
different inputs and outputs. Experimental data for transient
soot is recorded using Engine-in-the-loop (EIL) experiments
of conventional and hybrid diesel vehicles. The data are
analyzed for statistical and spectral properties and system
identification techniques are then used to fit a model to the
inputs and the soot output. It is shown that a multiple-input
single-output (MISO) Volterra series with low parametric
complexity can furnish good estimates, both qualitatively and
quantitatively. The model is then validated on a number of
different datasets, and a comparison with steady-state models
is presented.

The rest of the paper is organized such that section2
describes the test setup for recording the data and their
analysis is presented in section3. Section4 develops the
Volterra series model used for the identification of transient
soot. Section5 presents the model validation results, and
finally the conclusions are drawn in section6.

II. EXPERIMENTAL METHODOLOGY

The transient soot data are recorded using Engine-in-the-
loop (EIL) testing. The block diagram of the EIL setup used
is shown in Fig. 1. The engine used in this investigation
is a 6.0L V-8 direct-injection diesel engine. Driver, trans-
mission and vehicle models are simulated on the real-time
(RT) platform. These models accurately capture the desired
dynamics while being numerically efficient to run in real-
time [12]. Along with the EIL simulation of the conventional
vehicle, models for three other powertrain configurations are
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Fig. 1. EXPERIMENTAL SETUP FOREIL TESTING

also implemented; virtually downsized engine (scaling down
the torque measurement of the engine to emulate a smaller
engine), parallel electric hybrid [13], and series hydraulic
hybrid [14]. These different configurations subject the engine
to different operating points and transient loads, generating
data that cover a wide range on the engine map. A downsized
engine results in much harsher transients, series hydraulic
hybrid subjects the engine to a lot of steady-state operation,
whereas conventional vehicle and parallel electric vehicles
operate the engine at different transient profiles. Multiple
runs are made for each configuration in order to have separate
datasets for identification and validation.

Due to the forward-looking nature of the vehicle model,
the driver model issues throttle and brake commands to
follow the vehicle velocity on the FTP-75 city cycle. Model
causality is selected such that the torque converter model
commands speed to the engine, as speed is easier to control
than the engine torque. The engine speed is controlled using
a 330kW AC Dynamometer. The measured engine torque
is fed to the torque-converter model to enable closed-loop
drive-cycle simulation. The driver’s throttle command (α)
is communicated to the engine controller, which is then
converted into an equivalent fuel flow rate and commanded
to the engine. Thus during the EIL simulation, the engine
subsystem is controlled by two exogenous inputs,ωe andṁ
(or α).

The transient soot data are recorded using a differential
mobility spectrometer (DMS). This instrument measures the
number of particles and their spectral weighting in the
5nm to 1000nm size range with a time response of200ms
[15]. These aerosol size spectral data are then converted
into particulate mass. Agglomerates formed during diesel
combustion are non-spherical and therefore their mass does
not correlate with the cube of the particle diameter. Similarly,
the constituents of the particles change as the diameter varies
and consequently there is a non-linear relationship between
particle density and diameter. To convert particle spectral
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density to mass, a relationship has been suggested by the
manufacturer [3]. The spectral diameter(Dp) in nanometers
is divided into bins, density of the particles within each bin
is assumed to be constant and then the mass of the particles
in each bin is determined by

Particle Mass= 6.95× 10−3 ·D2.34
p · Number of particles

(1)
After the particle mass is calculated for each bin, the

total mass is found by summing the masses in each bin and
dividing by the number of bins per decade

Total Mass=

∑

Bins

Mass

Bins/Decade
[kg/m3] (2)

This summation is used as an approximation that accounts
for integration over a logarithmic scale. The instantaneous
soot emissions are then obtained by multiplying this mass
per unit volume with the volume flow rate. More details on
the experimental setup and the models used can be found in
[1] and [12].

III. STATISTICAL AND SPECTRAL DATA ANALYSIS

In this section we analyze the recorded data for noise,
coherence and cross-correlations. The input (ṁ & ωe) and
output (Soot) data from EIL testing are sampled at10Hz
for the entire FTP-75 city cycle. This soot data should not
be confused with the cylinder’s cycle-to-cycle soot emission,
which has dynamics of a much faster timescale. The soot data
here is the engine’s soot emission per unit time, as measured
from the exhaust pipe, and has much slower dynamics due to
the presence of the turbocharger and the exhaust manifold,
and hence a sample rate of10Hz suffices. The data obtained
are first analyzed for high-frequency noise. Fig. 2 shows
the average power spectra for the inputs and the output of
a sample dataset. It is observed that each of these signals
primarily consist of low frequency components, and are
devoid of high frequency noise. There is no prefiltering to
prevent aliasing, because at frequencies near the Nyquist
frequency, signals are almost50dB lower than those in the
low frequency range.

Coherence functions can be used to investigate the degree
to which a given output can be linearly predicted from all
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of the system inputs and to determine the frequencies over
which a linear model can accurately characterize the system
dynamics. Quadratic coherence always takes on a value in
the interval[0, 1], with a value close to1 if there is a linear
response between the input and the output, serving as a form
of correlation function in the frequency domain. Regions
of low coherence indicate insufficient input power in that
frequency range, significant system nonlinearities, noise, or
contributions from unmeasured inputs [16]. Partial coherence
provides an estimate of the linear relationship between
one input and one output for multiple-input multiple-output
(MIMO) systems. These estimates are equivalent to ordinary
coherence estimates after the effects of all other inputs have
been removed from both the input and output of interest
[16]. Let the output of our system (Soot) be represented by
Y , and the cross-spectrum between two signalsx andy be
represented byGxy. Then the partial coherence functions for
our system with two inputs and one output are given by

γ2

ṁY ·ωe

(f) =
|GṁY ·ωe

(f)|2

Gṁṁ·ωe
(f) ·GY Y ·ωe

(f)
(3)

γ2

ωeY ·ṁ(f) =
|GωeY ·ṁ(f)|2

Gωeωe·ṁ(f) ·GY Y ·ṁ(f)
(4)

where the residual spectrum,Gxy·z, is defined as

Gxy·z(f) = Gxy(f) ·

[

1−
Gxz(f) ·Gzy(f)

Gzz(f) ·Gxy(f)

]

(5)

These partial coherence functions are plotted in Fig. 3 for
sample signals. Both of these partial coherence plots indicate
strong nonlinear relationships betweenṁ & Soot, andωe &
Soot, for all frequencies. Hence our system warrants the use
of a non-linear model structure for identification.

The correlation between the inputs and the output is ana-
lyzed next. Fig. 4 shows the cross-correlation ofSoot with
ωe, and Fig. 5 shows the same function forSoot andṁ, at
different time lags. Both graphs indicate that the correlations
change for different data-sets (conventional vehicle, down-
sized engine, parallel electric, and series hydraulic) making
them valuable for the validation of the proposed model.
Also, since cross-correlations decrease with time, the system
exhibits fading memory and hence a finite order model can
be used. In terms of time-history, strong correlations are
exhibited only around zero lag. Fig. 6 shows the magnified
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view of the correlation coefficients for a sample dataset. The
peak correlation of the transient soot with the inputs is not
at zero lag but slightly delayed, due to the slower exhaust
manifold dynamics. Also, higher correlations are exhibited
with the time-lag of less than one second, and hence the
inputs in this window will be used for identification.

IV. T RANSIENT SOOT VOLTERRA MODELS

This section presents the development of the proposed
transient soot emission model using the Volterra series. Soot
formation involves complex combustion processes that are
inherently non-linear [2], [17], and hence these emissions
are best modeled using non-linear system identification tech-
niques. The Volterra series is a non-linear functional series
with polynomial basis functions, and can be interpreted as a
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direct generalization of the linear convolution integral [18].
For a single-input (u), single-output(y) (SISO) system, it can
be expressed as

y(t) =

∞
∑

n=1

yn(t) (6)

whereyn(t) is the ‘n th-order output’ of the system

yn(t) =

∫

∞

−∞

· · ·

∫

∞

−∞

hu
n(τ1, τ2, . . . , τn)

n
∏

i=1

u(t− τi)dτi,

n > 0 (7)

wherehu
n(τ1, τ2, . . . , τn) is called the ‘n th-order Kernel’

or ‘n th-order impulse response function’. Ifn = 1, this
reduces to the familiar linear convolution integral.

A discrete-time equivalent of Eqn. 6 can be expressed as

y(k) =

∞
∑

n=1

yn(k) (8)

where

yn(k) =

∞
∑

−∞

· · ·

∞
∑

−∞

hu
n(τ1, τ2, . . . , τn)

n
∏

i=1

u(k − τi),

n > 0, k ∈ Z (9)

Boyd and Chua [19] showed that this discrete time Volterra
series can be approximated to the desired accuracy, if the
non-linear operator is causal, continuous, time-invariant, and
has fading memory, and if the inputs are bounded. This
is the case for a wide-class of non-linear systems, unless
they contain dynamic behaviors such as limit cycles, sub-
harmonics, or chaos [20], [21]. An immediate consequence
is that the higher order terms can be neglected in such a
way that only the firstM Volterra kernels need to be taken
into account, whereM is the order of the resulting model.
Since the desired representation is stable, the elements of
hu
n(τ1, τ2, . . . , τn) with τl > εn(∀l ∈ 1, . . . , n) can be

ignored [22], and Eqn 8 simplifies to

y(k) =

M
∑

n=1

εn
∑

τ1=0

· · ·

εn
∑

τn=0

hu
n(τ1, τ2, . . . , τn)

n
∏

i=1

u(k − τi)

(10)
Once the Volterra series is established, the problem at

hand reduces to finding the Volterra kernels. The main
drawback here is that the kernels are, in principle, non-
parameterized functions whose measurement is possible only
if their individual contributions can be separated from the
total system response [23]. If the elements of all the Volterra
kernels,

H = {h1, h2, . . . , hm} wherem =
(εn +M + 1)!

(εn + 1)!M !
− 1

(11)
are treated as individual parameters to be estimated, and since
the Volterra model is linear in these parameters, classicales-
timation algorithms can be applied. This approach, however,
can make the model over-parameterized. Hence orthonormal
basis functions such as the Laguerre functions [23], [24]

and Kautz functions [22], as well as generalized orthogonal
basis (GOB) functions [25] are often selected to expand the
Volterra kernels, and to reduce the parametric complexity.
However, the use of these basis functions requires some
knowledge of the poles of the system, and implementing
them for higher-order MISO systems is quite exhaustive.
In this work we treat the elements of Volterra kernels as
individual parameters, and reduce the parametric complexity
using proper orthogonal decomposition (POD) [26]. For
the given input trace, the Volterra series input polynomials
n
∏

i=1

u(k − τi) are expanded using orthogonal basis vectors.

Since these orthogonal basis vectors are a linear combination
of the Volterra input polynomial vectors, their coefficients
are also the same linear combination of the elements of the
Volterra series kernels. Based on energy considerations, a
reduced subspace can be constructed for these orthogonal
bases, and the model’s projection onto this reduced subspace
reduces the number of parameters to be estimated. Linear
regression is then used to calculate these coefficients from
the experimental data.

A third-order dual-input, single output (DISO) Volterra-
series was established for the identification of the transient
soot. The order of the model was kept low to avoid fitting
noise, and the time-history of less than one second was used
based on the cross-correlation results presented in Section
3. The two inputs (u1 & u2) were normalized by their
maximum permitted values to get̄u1, ū2 ∈ [0, 1]. As a
result, the higher order terms can be neglected and soot
is approximated as the sum of the first three orders of the
output. The three orders of the output for this DISO system
are calculated as shown in Eqns. 12-14, where the superscript
of the Volterra kernel represents the input associated withthe
kernel.

Assuming the elements of each kernel are individual
parameters, this results in a model with470 parameters.
In order to reduce the number of these parameters, the
Volterra input polynomials in Eqns. 12-14 are arranged in
the columns ofA, with different rows corresponding to the
data at different time samples. The columns ofA are then
mean centered and normalized by the standard deviation to
scale the matrix and obtain̄A. Singular value decomposition
is then performed to obtain the orthogonal matricesU andV ,
and the matrix of singular valuesΣ = diag(σ1, σ2, . . . , σn)
with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, asĀ = UΣV T .

The columns of the matrixV470×470 form an orthogonal
basis of the state space for the traces of Volterra input
polynomials, and the squares of the singular values provide
a measure of how much signal energy is captured by each
of these basis vectors. Let̄H = [h̄1, h̄2, . . . , h̄470] be the
vector of the coefficients of the orthogonal basis vectors,
representing the linear combination of the elements of the
Volterra kernelsH = [h1, h2, . . . , h470]. Then, a reduced
model is derived by considering only the firstr bases of this
subspace, spanned by the firstr columns of matrixV , and
denoted byVr. The new basis vectors are then calculated by



y1(k) = yu1

1
(k) + yu2

1
(k) =

2
∑

n1=1

εn
∑

τ=0

h
un1

1
(τ)ūn1

(k − τ) (12)

y2(k) = yu1u1

2
(k) + yu1u2

2
(k) + yu2u2

2
(k) =

2
∑

n1=1

2
∑

n2=n1

εn
∑

τ1=0

εn
∑

τ2=0

h
un1

un2

2
(τ1, τ2)ūn1

(k − τ1)ūn2
(k − τ2) (13)

y3(k) = yu1u1u1

3
(k) + yu1u1u2

3
(k) + yu1u2u2

3
(k) + yu2u2u2

3
(k)

=

2
∑

n1=1

2
∑

n2=n1

2
∑

n3=n2

εn
∑

τ1=0

εn
∑

τ2=0

εn
∑

τ3=0

h
un1

un2
un3

3
(τ1, τ2, τ3)ūn1

(k − τ1)ūn2
(k − τ2)ūn3

(k − τ3) (14)

projecting the system’s model onto this subspace (Galerkin
projection) as

Φ = AV T
r (15)

It was observed that for all datasets, first25 principal
components captured99.9% of the system’s energy. Hence,
r was chosen as25. Let Y denote the time trace of the
instantaneous soot recorded during experiments,Ȳ the model
estimate, andH̄r = [h̄1, h̄2, . . . , h̄r] the r coefficients of
the reduced model, then̄Y = ΦH̄T

r , and the least-squares
optimal solution for model identification,̂Hr, is calculated
as

Ĥr = argmin
H̄r

‖Y − ΦH̄T
r ‖2 (16)

V. M ODEL VALIDATION RESULTS

This section presents the validation of the model based on
Volterra series, and compares the results with steady-state
maps. Identification of the model was performed on a number
of different datasets, and model validation exercises was
carried out on the others. Model estimates for the validation
datasets were obtained by projecting the Volterra input poly-
nomials of the respective sets ontoVr, and then multiplying
them with the vector of new coefficients (Ĥr) obtained
during identification. It was observed that the identification
done with highly transient datasets (conventional vehicle,
downsized engine, parallel electric hybrid) improved the
prediction accuracy during tip-in operations over steady-state
maps. This is intuitive because when the driver presses the
throttle in a drive-by-wire system, greater volume of fuel is
injected into the cylinder to create more torque but the boost
pressure lags behind due to turbocharger inertia, reducingthe
in-cylinder air-fuel ratios. The controller monitors this, and it
limits the amount of fuel injected, nevertheless instantaneous
excursions of air/fuel ratio and residual exhaust gas are
quite probable. Additionally, the momentum of the incoming
charge and the swirl intensity are reduced. This impedes the
mixture preparation, and increases the heterogeneity of the
mixture resulting in an overshoot in particulate and gaseous
emissions [1], [2]. None of these effects are captured by the
steady-state maps because they are not memory based, and
hence fall short of accurate soot predictions during transients.

The predictions were, however, biased for the steady-state
operation. This disparity can be explained by considering
the physics of soot formation. Particle formation due to
nucleation is predominant at low-load steady-state operations

resulting in smaller spectral diameter of the particles. At
transient loads, accumulation mode also contributes to the
particle formation of bigger diameters [3], [1]. Since this
Volterra series is identified using only FTP-75 data that
contains limited amount of steady-state information, the
predictions were slightly inaccurate. When identificationwas
done using the data-set predominantly containing steady-
state data (series hydraulic hybrid dataset), the bias at steady-
state predictions was eliminated. In this case the accuracy
over transient predictions deteriorated due to the lack of a
sufficiently rich model during identification.

This problem was circumvented using datasets rich in both
transient and steady-state information for identification. For
this purpose, the conventional vehicle dataset was augmented
by that of the series hydraulic hybrid, and coefficients were
obtained that resulted in the least total error for both of these
datasets. Validation was then performed on different datasets,
including electric and hydraulic hybrids with different control
strategies, all producing different time traces of the inputs.
Fig. 7 shows the results for the validation of downsized
engine data-set for part of the FTP-75 city cycle. The model
estimates are compared with experimental data and quasi-
steady state predictions obtained by using steady-state maps
at the same inputs. As seen from the graph, the prediction
accuracy with Volterra series improves substantially overthe
steady-state map during transients, whereas both the models
match the experimental data at quasi steady-state operations.
A more structured approach to model validation can be
adopted by the statistical analysis of the residuals, defined as
R = Y −Ȳ . If the model captures all the dominant dynamics
of the system, the residuals should closely resemble white
noise. Fig. 8 shows the autocorrelation of the residuals for
this dataset. Also plotted is the99% confidence interval
for the autocorrelation of white noise containing an equal
number of samples (13, 601). It can be seen that the residuals
closely resemble white noise. Similar results are obtained
for other validation datasets, and the model is considered
validated.

The improvements in prediction accuracy over steady-state
maps are measured in terms ofL2 error norms over the entire
FTP-75 cycle. Fig. 9 shows the results of improvements for
the different configurations (datasets different from identifi-
cation datasets). It can be seen that the model estimates are
about17%, and 21% more accurate than the quasi steady
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state predictions for conventional vehicle and downsized
engine, respectively. Improvements are much higher for the
hybrids,41% for the parallel electric and27% for the series
hydraulic, as engine tip-in becomes more frequent. Overall,
the models estimate soot both qualitatively and quantitatively
better than steady-state maps, and it does so by just using a
25 parameter third-order model, thus being computationally
efficient and conducive to controls work.

VI. CONCLUSIONS

This work presented the development of black-box tran-
sient soot models using Volterra series with only two in-
puts ωe and ṁ. Experimental data were recorded using
numerous EIL experiments. Based on the data, a third-order
25 parameter discrete-time Volterra series was developed,
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and validated. It was shown that the model estimated the
transient soot significantly better than the steady-state maps,
both qualitatively and quantitatively, while still remaining
computationally efficient. Development of this model, thus
provides a valuable tool required for the offline powertrain
control system development of conventional and diesel hy-
brid vehicles.
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