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Abstract— This paper describes the development of a computational fluid dynamics (CFD) [5], phenomenological
Volterra series model for predicting transient soot emissions methods [6], [7], [2], [8], [9], heuristic macro-parameter
from a diesel engine with fuel flow rate and engine speed as 5,505ches [10] or using black box models such as artificial

the two inputs to the model. These two signals are usually neural networks [11]. However. these approaches require
available as outputs of the power management controller in u s [11]. Wever, S PP S requi

diesel hybrids. Therefore, an accurate offline estimation of the @ humber of inputs to the model often not available to
transient soot emissions using these signals is instrumental the control engineers involved with vehicle-level control
in optimizing the control strategy for both fuel economy development. Also, simulating combustion can sometimes be
and emissions. In order to dev_elop_ the model, tran_S|ent soot prohibitively slow in the context of system work [6].
data are first collected by Engine-in-the-loop experiments of In thi K Kk to d | del bl f
conventional and hybrid vehicles. The data are then used to n. _'S Wor we seek o develop a mode Capa. € o
construct a third-order multiple-input single-output (MISO) predicting instantaneous soot at the exhaust manifold of
Volterra series to successfully model this system. Parametric a diesel engine, subjected to the transient loads emulating
complexity of the model is reduced using proper orthogonal the operation in a vehicle following the FT#-city cycle,
decomposmo_n (POD), and the mode_l is validated on various with just two inputs: engine speed,) and fuel flow rate
datasets. It is shown that the prediction accuracy of tran- ) Both of th . | v th touts of th
sient soot, both qualitatively and quantitatively, significantly (). O_ 0 esg signals are usua y e ou pg S of the
improves over the steady-state maps, while the model still POwertrain supervisory control, and this model will enable
remains computationally efficient for systems level work. the control system development for soot reduction without
| INTRODUCTION ;lmulatlng the combqstlon dyn_am|cs. A!though this _wc_)rk
) ) is focused on modeling the diesel engine soot emissions
This paper presents a Volterra series model for the tra'a‘uring the FTP?5 city cycle, the techniques and analysis

sient soot emissions produced by a diesel engine, Willesented here can be generalized to other engines with
fuel flow rate and engine speed as the two inputs to thgfferent inputs and outputs. Experimental data for transient
model. The model is intended for the purpose of designsyot is recorded using Engine-in-the-loop (EIL) experiments
ing powertrain-level supervisory controllers that minimizéyf conventional and hybrid diesel vehicles. The data are
transient soot emissions, among other possible objectivegayzed for statistical and spectral properties and system
This can be particularly important in the context of hybridgentification techniques are then used to fit a model to the
diesel propulsion systems. While such systems offer mofgyts and the soot output. It is shown that a multiple-input
erX|l_)|I|ty|n controlhlngthe|r.er)g.|nes as_compargd to the congjngle-output (MISO) Volterra series with low parametric
ventional powertrains, optimizing their supervisory controkomplexity can furnish good estimates, both qualitatively and
for fuel economy alone can lead to frequent and sharp log,antitatively. The model is then validated on a number of
increases, thereby significantly penalizing soot emissions [Yitferent datasets, and a comparison with steady-state models
Our overarching goal, therefore, is to develop a transient Sofétpresented.

emission model that meets three key criteria. First, it must The rest of the paper is organized such that secgion
accurately capture the impact of powertrain transients on th.scribes the test setup for recording the data and their
resulting transient soot emissions. Second, it must be Simp&ﬁalysis is presented in sectiGa Section4 develops the
enough to enable control system design. Third, the modekgjterra series model used for the identification of transient

inputs should ideally consist of quantities that are easy igyot. Sections presents the model validation results, and
simulate or control, such as engine speed and fuel flow raig, 1y the conclusions are drawn in sectién

Quasi steady state models based on steady-state emission
maps have been used in the literature for control-oriented Il. EXPERIMENTAL METHODOLOGY
modeling but they fail to capture transient soot accurately, €s- The transient soot data are recorded using Engine-in-the-
pecially the spikes during tip-in operations [2], [3], [4]. More|oq, (EIL) testing. The block diagram of the EIL setup used
detailed models exist in the literature that capture transiefd shown in Fig. 1. The engine used in this investigation
soot formation by simulating the combustion events using 5 g.oL V-8 direct-injection diesel engine. Driver, trans-
Address all correspondence to Hosam Fathy (hfathy@umich.edu). ~ Mission and vehicle models are simulated on the real-time
Rahul Ahlawat is a PhD candidate at the University of Michigan, Ann(RT) platform. These models accurately capture the desired
grbpr- Dr. starr]n *é- Fathy, PVO? lﬁorf;ﬂ S. l':igpi,,and,PFOfUJ_effer '—-?ynamics while being numerically efficient to run in real-
tein are with the Department of Mechanical Engineering, Lniversity o ime [12]. Along with the EIL simulation of the conventional
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Center, Mt. Vernon, WA. vehicle, models for three other powertrain configurations are

978-1-4244-8218-4/10/$26.00 ©2010 IEEE



Power Specta of the Signals (Welch Estimate)
100 T T T T T

Differential — oot
Drive Cycle Mobility - 50\\%.. ]
Spectrometer F g
Vdesired 'y E 0 o
! Soot g \\\W
RT-Platform a, £ m
Driver, Transmission & Vehicle Models/ ] & _100,mew‘%”“MM"‘“'”’“’""“"“‘\"“»«ﬂ*‘»vwwmsw»-w‘.,‘,,‘_w__m,m
(LG
A j j j j j j
Diesel Engin 2} % o0s 1 15 2Frequ§r,‘5éy(HZ)3 35 4 45 5
(We)setpt (Te)'rneasured (Hardware & Controller
Fig. 2. SAMPLE SIGNAL SPECTRA
Y We
Dynamometef_ >
D T, density to mass, a relationship has been suggested by the

manufacturer [3]. The spectral diametdp,) in nanometers
is divided into bins, density of the particles within each bi

Fig. 1. EXPERIMENTAL SETUP FOREIL TESTING is assumed to be constant and then the mass of the particles
in each bin is determined by

also implemented; virtually downsized engine (scaling dow Particle Mass= 6.95 x 1072 - D2-** . Number of particles

the torque measurement of the engine to emulate a smaller (1)
engine), parallel electric hybrid [13], and series hydi@ul After the particle mass is calculated for each bin, the
hybrid [14]. These different configurations subject theieag total mass is found by summing the masses in each bin and
to different operating points and transient loads, geimegat dividing by the number of bins per decade

data that cover a wide range on the engine map. A downsized

engine results in much harsher transients, series hydrauli Z Mass
hybrid subjects the engine_to a lot of steady—state_ ope‘rﬁ_ltio Total Mass= % kg /m3] (2)
whereas conventional vehicle and parallel electric vesicl sibeca

operate the engine at different transient profiles. Mudtipl This summation is used as an approximation that accounts
runs are made for each configuration in order to have separdt integration over a logarithmic scale. The instantarseou
datasets for identification and validation. soot emissions are then obtained by multiplying this mass
Due to the forward-looking nature of the vehicle modelper unit volume with the volume flow rate. More details on
the driver model issues throttle and brake commands tbe experimental setup and the models used can be found in
follow the vehicle velocity on the FTR5 city cycle. Model [1] and [12].
causality is selected such that the torque converter model
commands speed to the engine, as speed is easier to controll!l- STATISTICAL AND SPECTRAL DATA ANALYSIS
than the engine torque. The engine speed is controlled usingln this section we analyze the recorded data for noise,
a 330kw AC Dynamometer. The measured engine torqueoherence and cross-correlations. The input& w.) and
is fed to the torque-converter model to enable closed-loaputput (Soot) data from EIL testing are sampled &bHz
drive-cycle simulation. The driver’s throttle command) ( for the entire FTPF5 city cycle. This soot data should not
is communicated to the engine controller, which is theibe confused with the cylinder’s cycle-to-cycle soot enoigsi
converted into an equivalent fuel flow rate and commandaahich has dynamics of a much faster timescale. The soot data
to the engine. Thus during the EIL simulation, the enginéere is the engine’s soot emission per unit time, as measured
subsystem is controlled by two exogenous inputsands  from the exhaust pipe, and has much slower dynamics due to
(or «). the presence of the turbocharger and the exhaust manifold,
The transient soot data are recorded using a differentiahd hence a sample rate lifHz suffices. The data obtained
mobility spectrometer (DMS). This instrument measures thare first analyzed for high-frequency noise. Fig. 2 shows
number of particles and their spectral weighting in théhe average power spectra for the inputs and the output of
5nm to 1000nm size range with a time response 20f0ms a sample dataset. It is observed that each of these signals
[15]. These aerosol size spectral data are then convertedmarily consist of low frequency components, and are
into particulate mass. Agglomerates formed during dieselevoid of high frequency noise. There is no prefiltering to
combustion are non-spherical and therefore their mass dga®vent aliasing, because at frequencies near the Nyquist
not correlate with the cube of the particle diameter. Siryija frequency, signals are almos9dB lower than those in the
the constituents of the particles change as the diametiesvarlow frequency range.
and consequently there is a non-linear relationship betwee Coherence functions can be used to investigate the degree
particle density and diameter. To convert particle spéctréo which a given output can be linearly predicted from all
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dynamics. Quadratic coherence always takes on a value
the interval[0, 1], with a value close td if there is a linear
response between the input and the output, serving as a fo
of correlation function in the frequency domain. Region:
of low coherence indicate insufficient input power in tha
frequency range, significant system nonlinearities, nase
contributions from unmeasured inputs [16]. Partial coheee s
provides an estimate of the linear relationship betwee.. Time lag(s)
one input and one output for multiple-input multiple-outpu
(MIMO) systems. These estimates are equivalent to ordinary
coherence estimates after the effects of all other inpute ha

been removed from both the input and output of interesfie,y of the correlation coefficients for a sample datasee Th
[16]. Let the output of our systenbbot) be represented by oay correlation of the transient soot with the inputs is not

Y, and the cross-spectrum between two signatndy be  5¢ ;616 |ag but slightly delayed, due to the slower exhaust
represented by, Then the partial coherence functions fory, o ifo1d dynamics. Also, higher correlations are exhibite

our system with two inputs and one output are given by b the time-lag of less than one second, and hence the

Fig. 5. OROSSCORRELATION BETWEENr AND Soot

9 |Gy w. (f)]? inputs in this window will be used for identification.
’”’”i‘g (f)P‘”e IV. TRANSIENT SOOT VOLTERRA MODELS
weY -m
Yoy an(f) = G D) Cry (D) 4 This section presents the development of the proposed

. . , transient soot emission model using the Volterra seriest So
where the residual spectiur@y,.,, is defined as formation involves complex combustion processes that are
Gova(f) = G 1 G (f) - Goy(f) 5 inherently non-linear [2], [17], and hence these emissions

w2 (f) = Gay(f) - G..(f) - Guy(f) ) are best modeled using non-linear system identificatiom-tec

These partial coherence functions are plotted in Fig. 3 fgpdues- The \_/olterrg Seres 1s a non-linear fgncUonaIesen
sample signals. Both of these partial coherence plots atelic with polynomial basis functions, and can be interpreted as a
strong nonlinear relationships between& Soot, andw, &

Soot, for all frequencies. Hence our system warrants the us Cross-Correlation of the Inputs with Soot for Conventional Vehicle
of a non-linear model structure for identification.

The correlation between the inputs and the output is an
lyzed next. Fig. 4 shows the cross-correlationSabt with
we, and Fig. 5 shows the same function f®sot andr, at
different time lags. Both graphs indicate that the corretet
change for different data-sets (conventional vehicle, ow
sized engine, parallel electric, and series hydraulic) ingak
them valuable for the validation of the proposed mode
Also, since cross-correlations decrease with time, thesys
exhibits fading memory and hence a finite order model ca
be used. In terms of time-history, strong correlations are
exhibited only around zero lag. Fig. 6 shows the magnified Fig. 6. TIME-LAG FORPEAK CROSSCORRELATIONS
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direct generalization of the linear convolution integré8]. and Kautz functions [22], as well as generalized orthogonal
For a single-input«), single-outputf) (SISO) system, it can basis (GOB) functions [25] are often selected to expand the

be expressed as \olterra kernels, and to reduce the parametric complexity.
= However, the use of these basis functions requires some

y(t) = Zy”(t) 6) knowledge of the poles of the system, and implementing

n=t them for higher-order MISO systems is quite exhaustive.

wherey,(t) is the ‘nth-order output’ of the system In this work we treat the elements of Volterra kernels as

individual parameters, and reduce the parametric contglexi

oo e8] n
Yn (1) :/ / hZ(Tl,7-27...,T7L)Hu(,f_7-i)d7-i7 using proper orthogonal decomposition (POD) [26]. For
—0 —o0 =1 the given input trace, the \olterra series input polynomial

n>0 (7) Hu(k — 7;) are expanded using orthogonal basis vectors.

wherehl(r,1o,...,7,) is called the fnth-order Kernel’
or ‘nth-order impulse response function’. #f = 1, this
reduces to the familiar linear convolution integral.

A discrete-time equivalent of Eqn. 6 can be expressed

zS_ir11ce these orthogonal basis vectors are a linear combinati

of the Volterra input polynomial vectors, their coefficient

are also the same linear combination of the elements of the

Wlterra series kernels. Based on energy considerations, a
> reduced subspace can be constructed for these orthogonal

y(k) = Z yn(k) (8)  bases, and the model's projection onto this reduced subspac

n=1 reduces the number of parameters to be estimated. Linear

where regression is then used to calculate these coefficients from

n the experimental data.

yn(k) = > hi(r, 7)) [Julk =7, A third-order dual-input, single output (DISO) \olterra-
T T i=1 series was established for the identification of the transie
n>0,ke€Z (9) soot. The order of the model was kept low to avoid fitting

Boyd and Chua [19] showed that this discrete time Volterrao'se’ and the time-history of less than one second was used
series can be approximated to the desired accuracy, if t gsed on tht_a cross-correlation results pregented in ﬁgctlo
non-linear operator is causal, continuous, time-invariand . The two |npl_,|ts b & up) were nf)rmahzed by their
has fading memory, and if the inputs are bounded. Thi@ximum permitted values to gety,u; € [0,1]. As a

is the case for a wide-class of non-linear systems, unlekgSult, the higher order terms can be neglected and soot
they contain dynamic behaviors such as limit cycles, sutS @PProximated as the sum of the first three orders of the

harmonics, or chaos [20], [21]. An immediate consequen(%’tpl"t' The three orders_ of the output for this DISO systen_1
is that the higher order terms can be neglected in such@€ calculated as shown in Eqns. 12-14, where the supdrscrip

way that only the first\/ Volterra kernels need to be takenOf the Volterra kernel represents the input associated tivigh

into account, where/ is the order of the resulting model. KemMel-
Since the desired representation is stable, the elements ofAssuming the elements of each kernel are individual
he(T1,72,...,7Tn) With 7, > &,(Vl € 1,...,n) can be parameters, this results in a model witfi0 parameters.
ignored [22], and Eqgn 8 simplifies to In order to reduce the number of these parameters, the
M e, . " \olterra input polynomials in Egns. 12-14 are arranged in
_ . u o the columns ofA, with different rows corresponding to the
v =2 2 e 2 Mmoo [ Julk =) data at different time samples. The columnsfare then
(10) mean centered and normalized by the standard deviation to
Once the \olterra series is established, the problem acale the matrix and obtaiA. Singular value decomposition
hand reduces to finding the \olterra kernels. The maiis then performed to obtain the orthogonal matriceandV,
drawback here is that the kernels are, in principle, norand the matrix of singular values = diag(o1, 02, ..., 0n)
parameterized functions whose measurement is possibfe omlith o > 02 > ... >0, >0, asA = UXV7T.
if their individual contributions can be separated from the The columns of the matri¥a7ox470 form an orthogonal
total system response [23]. If the elements of all the Vidter pasis of the state space for the traces of \olterra input
kernels, polynomials, and the squares of the singular values provide
(En+ M +1)! a measure of how much signal energy is captured by each
m - of these basis vectors. L&l = [hy, ho, ..., ha7o] be the
(11) vector of the coefficients of the orthogonal basis vectors,
are treated as individual parameters to be estimated, ace si representing the linear combination of the elements of the
the Volterra model is linear in these parameters, classisal \olterra kernelsH = [hq, ho, ..., ha7o]. Then, a reduced
timation algorithms can be applied. This approach, howevanodel is derived by considering only the firsbases of this
can make the model over-parameterized. Hence orthonornsalbspace, spanned by the firstolumns of matrix/, and
basis functions such as the Laguerre functions [23], [24]Jenoted byV,.. The new basis vectors are then calculated by

n=171=0 Tn=0 =1

H = {hy,ha,..., hy} Wherem =



2 En

yik) =yt (k) + i (k) = D Y hy" (1), (k= 7) (12)
ni=17=0
2 2 En En
ya(k) = y5 (k) +y5 2 (k) +y52 2 (k) = D D> Y > by (71, 7)), (k= 1)U, (k—T2)  (13)
ni=1n2=n1 711=07172=0
oK) = B () g (R) 0 (R) + 0 (k)
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2 2 2
=3 S ST ST ST S Rt (g, ), ( — T )y (R — 7o)l (R — 73) (14)

11=1n2=n1 nz=ns 71=072=0 73=0

<

projecting the system’s model onto this subspace (Galerkiesulting in smaller spectral diameter of the particles. At
projection) as transient loads, accumulation mode also contributes to the

o =AVT (15) particle formation of bigger diameters [3], [1]. Since this
\olterra series is identified using only FT®B- data that
contains limited amount of steady-state information, the
predictions were slightly inaccurate. When identificatiess
done using the data-set predominantly containing steady-
state data (series hydraulic hybrid dataset), the biagatigt
state predictions was eliminated. In this case the accuracy
over transient predictions deteriorated due to the lack of a
sufficiently rich model during identification.

It was observed that for all datasets, fiest principal
components capture®).9% of the system’s energy. Hence,
r was chosen af5. Let Y denote the time trace of the
instantaneous soot recorded during experiméntie model
estimate, andd,, = [hy, ha, ..., h,] the r coefficients of
the reduced model, thel = ®H7T, and the least-squares
optimal solution for model identificationt/,., is calculated
as

H, = argmin ||Y — ®H" ||, (16) This problem was circumvented using datasets rich in both
H, transient and steady-state information for identificatieor
V. MODEL VALIDATION RESULTS this purpose, the conventional vehicle dataset was augent

This section presents the validation of the model based &Y that of the series hydraulic hybrid, and coefficients were
\olterra series, and compares the results with steadgz-sté’(btai”ed that resulted in the least total error for both ebth
maps. Identification of the model was performed on a numb&@tasets. Validation was then performed on different @#sas
of different datasets, and model validation exercises wadacluding electric and hydraulic hybrids with differentaeol
carried out on the others. Model estimates for the validatioStrategies, all producing different time traces of the tspu

datasets were obtained by projecting the Volterra inpug-pol Flg._ 7 shows the results for the v;_alidation of downsized
nomials of the respective sets oritp, and then multiplying ©€ngine data-set for part of the FTB-city cycle. The model

them with the vector of new coeﬁicients’fl() obtained estimates are compared With experimgntal data and quasi-
during identification. It was observed that the identificati St€@dy state predictions obtained by using steady-staps ma

done with highly transient datasets (conventional vehicl@t the same inputs. As seen from the graph, the prediction
downsized engine, parallel electric hybrid) improved th&ccuracy with Volterra_ series improves substantially dfier
prediction accuracy during tip-in operations over steatie steady-state map during transients, whereas both the model

maps. This is intuitive because when the driver presses teatch the experimental data at quasi steady-state opesatio
throttle in a drive-by-wire system, greater volume of fugl j A more structured approach to model validation can be
injected into the cylinder to create more torque but the boo@doPted by the statistical analysis of the residuals, defase
pressure lags behind due to turbocharger inertia, redusing 1 = ¥ —Y . If the model captures all the dominant dynamics
in-cylinder air-fuel ratios. The controller monitors thiand it Of the system, the residuals should closely resemble white

limits the amount of fuel injected, nevertheless instagears  0iS€- Fig. 8 shows the autocorrelation of the residuals for
excursions of air/fuel ratio and residual exhaust gas afgiS dataset. Also plotted is thg9% confidence interval
quite probable. Additionally, the momentum of the incominéor the autocorrelation of white noise containing an equal
charge and the swirl intensity are reduced. This impedes tRgMber of samplesig, 601). It can be seen that the residuals
mixture preparation, and increases the heterogeneity eof tﬁlosely reser_nblt_a white noise. Similar results _are obFalned
mixture resulting in an overshoot in particulate and gaseol1‘|or_0ther validation datasets, and the model is considered
emissions [1], [2]. None of these effects are captured by th@lidated.
steady-state maps because they are not memory based, antihe improvements in prediction accuracy over steady-state
hence fall short of accurate soot predictions during temtsi  maps are measured in termslof error norms over the entire
The predictions were, however, biased for the steady-stafd P-75 cycle. Fig. 9 shows the results of improvements for
operation. This disparity can be explained by considerinthe different configurations (datasets different from tifen
the physics of soot formation. Particle formation due taation datasets). It can be seen that the model estimates are

nucleation is predominant at low-load steady-state owerait about17%, and 21% more accurate than the quasi steady



x 10

-4 Volterra Series Model Applied on Validation Dataset (Downsized Engine)

M — Experimental Data
——Model Estimates
—— Quasi-steady state Predictions

Soot(g/s)
=

T T T =

and validated. It was shown that the model estimated the
transient soot significantly better than the steady-statpsn
both qualitatively and quantitatively, while still reméaig
computationally efficient. Development of this model, thus
provides a valuable tool required for the offline powertrain
control system development of conventional and diesel hy-
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state predictions for conventional vehicle and downsized®!
engine, respectively. Improvements are much higher for the
hybrids,41% for the parallel electric and7% for the series
hydraulic, as engine tip-in becomes more frequent. Overalll]
the models estimate soot both qualitatively and quantébti
better than steady-state maps, and it does so by just using a
25 parameter third-order model, thus being computationally’]
efficient and conducive to controls work.

8
VI. CONCLUSIONS 8]

This work presented the development of black-box tran-
sient soot models using Volterra series with only two in-g
puts w. and . Experimental data were recorded using
numerous EIL experiments. Based on the data, a third-order
25 parameter discrete-time \olterra series was developedy)
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