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Abstract-Switched reluctance machines (SRMs) are usually 
excited by unipolar current by employing asymmetric bridge 
inverters. It is also possible to excite SRMs by bipolar current 
using a three-phase bridge inverter. The main objective of this 
paper is to derive general analytical expression of average 
torque in SRMs under both unipolar and bipolar excitations, 
and to analyze their average torque under three working bipolar 
excitation patterns, with reference to unipolar excitation. All 
analyses are verified by the finite element analysis and 
measurements on a prototype 6/4 SRM.   

 

I. INTRODUCTION 

Switched reluctance machines (SRM) have been applied to 
applications, ranging from domestic appliances to more-
electric aircrafts, due to low cost, simple and robust rotor 
structure without any winding or permanent magnet. In 
general, SRMs are usually excited by unipolar current by 
employing asymmetric bridge inverters, Fig.1. It is also 
possible to excite SRMs by bipolar current using a three-phase 
bridge inverter [1][2][3], Fig.2. In [2] the experimental results 
of SRMs with bipolar current excitation are presented by using 
a more standard 3-phase bridge inverter. It shows that by 
applying bipolar excitation in SRMs a reduction in noise 
emission [2] and an increase in efficiency due to short flux 
path of magnetic circuit can be achieved [3]. However, the 
principle of torque production is not presented theoretically, 
and only one pattern of bipolar excitation is described. In this 
paper, from the theoretical analysis of torque production, the 
principle of SRMs excited by the bipolar current will be 
obtained, thus several new bipolar excitation patterns will be 
derived and analyzed theoretically. 

In order to derive the operation principle of SRMs under 
both unipolar and bipolar excitations, it is necessary to model 
their electromagnetic torque. However, SRMs are usually 
designed to operate under deep magnetic saturation. 
Therefore, the nonlinear characteristic of self-inductance 
makes it difficult to model SRMs in order to accurately 
calculate the produced electromagnetic torque.  

In modelling SRMs, several methods such as quasi-linear 
model[4][5], Ψ-i diagram [6], curve-fitting function to 
represent the flux-linkage against both current and rotor 
position[7] have been proposed. However, quasi-linear is not 
accurate, which makes it more suitable for qualitative analysis. 
Ψ-i diagram and curve fitting function require the stored data 

of nonlinear relationship of flux-linkage with both phase 
current and rotor position. Analytical method for determining 
the coefficients of Fourier series is also often used although it 
is usually simplified and may lead to big error due to heavy 
magnetic saturation. For example, one approach takes the 
first-order harmonic as the mean value of the maximum and 
minimum self-inductances [8]. Another approach is simply to 
account for the angle from the unaligned position to the 
beginning of overlap [9].  

The main objective of this paper is to derive the general 
analytical expression of average torque in SRMs under 
unipolar and bipolar excitations, and to analyze their average 
torque under three working bipolar excitation patterns, with 
reference to unipolar excitation. Both finite element (FE) and 
analytical methods are employed in the analyses of average 
torque under alternate excitations. Analytical analyses are 
based on an improved Fourier series expression of winding 
inductance against the rotor position, with due account for the 
magnetic saturation. At last, the electromagnetic torque 
produced by the unipolar and three bipolar excitation patterns 
is verified by the FEA and measurements on a prototype 6/4 
SRM, together with the analytical analysis. 
 

II. FOURIER SERIES EXPRESSION OF VARIATION OF 
SELF-INDUCTANCE WITH ROTOR POSITION 

Due to the symmetry, the accuracy of maximum and 
minimum inductances obtained by analytical method at both 
aligned and unaligned positions is higher than that at other 
positions. Therefore, it is preferable to model SRMs using the 
maximum and minimum self-inductances with due account 
for the magnetic saturation. Establishing the model just from 
the geometry and material property not only saves time and 
cost but also convenient to apply in the motor design routine.  
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Fig.1 Three-phase 6/4 SRM and one phase leg of asymmetric bridge. 
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Fig.2 Three-phase 6/4 SRM and three-phase bridge inverter. 

Because the mutual inductance is much smaller comparing 
with the self-inductance, it is reasonable to neglect the mutual 
inductance in SRMs [4][5][6]. To obtain the nonlinear model 
of SRMs, the self-inductance is divided into four regions, as 
shown in Fig.3, in which 
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where Lu, La, Nr, β
’
s, β

’
r stand for self-inductance at unaligned 

and aligned positions, rotor pole number, stator pole arc, rotor 
pole arc with due account for the local saturation, and the slop 
k can be expressed as (La- Lu)/ βs. It is usually very difficult to 
consider the local saturation since it is affected by the current 
excitation, the airgap length, and the machine geometries. 
However, some empirical methods are available and have 
been widely employed as good approximation [6]. By way of 
example, an adjusting angle is applied to stator and rotor pole 
arcs, which is equal to 3g/r1, where g and r1 stand for the air 
gap length and the rotor outer radius. θ1, θ2, θ3, θ4 are 
determined by the stator and rotor pole arcs with due account 
for the local saturation which is written in (2). 
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Fig.3 Variation of self-inductance with rotor position. 

Due to the periodic property of self-inductance, it can be 
expressed by Fourier series expression, i.e. 

0
1 2( ) cos( ) cos(2 )

2 r r

L
L L N L N                 (3) 

in which,  

 

 

 

1 2 3

1 2

4

3 4

2 /

0 0

10

2 /

3

'
'

[ ]

[ ]

( )
(2 )

r

r

N
r

u u a
r

N

a u

a r r u
r r

N
L L d

L d k L d L d
N

k L d L d

L i N L
N



  

 

 

 

 


    

    

  
 



       
     
 

  



  

 

     
(4)

 

 

 

 

1 2

1

3 4

2 3

4

2 /

0

10

3

2 /

' '
2 '

cos( )

cos( ) [ ]cos( )

cos( ) [ ]cos( )

cos( )

4 1 1
( 1) sin( )sin(

2 2

r

r

N
r

n r

u r u r

r
a r a r

N

u r

n
r r r s

r s

N
L L nN d

L nN d k L nN d

N
L nN d k L nN d

L nN d

nN nN
n N



 



 

 





  


     

     


 

 
 



    
       
 
   

 



 

 



)( ( ) )a uL i L

  

(5)

 

In the foregoing coefficients, except the self-inductance at 
aligned position La which is a function of phase current, the 
others are all constant. From Fig.4 it can be seen that at the 
current < Is the self-inductance is almost constant, while at 
current > Is the self-inductance reduces approximately with a 
constant slope. Therefore, by applying the piecewise linear 
function it can obtain good agreement with FEA results, 
which can be written as:  
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where the slope ks can be obtained by the data from the 
lumped parameter magnetic circuit, FEA, or experiments.  

TABLE I.  MAIN PARAMETERS OF PROTOTYPE SRM 

Stator outer diameter 93.8mm Stack length 46.9mm 
Rotor diameter 46.9mm Stator pole arc 30° 

Air gap 0.3mm Rotor pole arc 32° 
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Fig.4 Self-inductance at aligned rotor position (45 deg) and other rotor 

positions. 

In Fig.4 it can be seen that the saturation slope ks is also a 
function of rotor position. Due to the assumption of 
unsaturation at unaligned position, the saturation slope can be 
determined by the overlap area of stator pole and rotor pole. 
To approximately model the relationship between the 
saturation slope and the rotor position, a piecewise linear 
function is applied, i.e. 
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Fig.5 Comparison harmonics of self-inductance of one single phase in 

SRM. 

 
where Ka

s is the saturation slope at aligned position. 
Therefore, the saturation slope can also be expressed by the 
Fourier series with the coefficients as functions of rotor 
position. Therefore, the saturation slope ks can be written as: 
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Fig.5 compares the FEA predicted and Fourier series 
expression obtained harmonics at both unsaturation and 
saturation conditions. 

III. AVERAGE TORQUE CALCULATION UNDER 
CONVENTIONAL UNIPOLAR EXCITATION BASED ON 

FOURIER SERIES MODEL 

In SRMs, the average torque of SRM is important since it 
can reveal the basic principle of torque production, and reflect 
the operation conditions. Due to periodic nature of phase 
current waveform, it can be expressed as a Fourier series with 
respect to the time t. i.e. 

 0
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                        (11) 

where ω, Nr  stands for the mechanical rotor speed, and rotor 
pole number. The origin time (t=0) is at the instant when the 
rotor slot is aligned with the stator pole of phase A. In (11) 
the I0 is the constant part and In and tn are the amplitude and 
initial time of harmonics. 

A. Unsaturation case 

When the phase current is less than Is at the knee point of 
saturation, illustrated in Fig.4 in Section II, the aligned self-
inductance is almost constant. Therefore, the flux-linkage in 
this phase is in direct proportion to the current. Then, the 
torque production of one single phase can be derived as: 
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Substitute the self-inductance and phase current, both of 
which are expressed as functions of rotor position and time, 
then the torque equation is: 
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where Ln is the nth harmonic of self-inductance of SRM. It can 
be seen that the instantaneous torque is quite complicated in 
the above expression. However, there are a lot of items which 
are periodic functions, and they will make no contribution to 
the total average torque production. Therefore, the expression 
of average torque in SRMs can be obtained by the integration 
over one cycle, i.e. 
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where θn=nNrωt, which means the leading angle of the nth 
phase current harmonic with reference to the defined time 
origin.  

In (14), the torque expression consists of four parts. The 
first part is produced by the constant current I0, current 
harmonics In, the corresponding coefficient of self-inductance 
Ln, and the leading angle of phase current ahead of the 
reference θn. The second part in (14) is only produced by the 
single harmonic, the coefficient of self-inductance with twice 
current frequency, and twice leading angle of phase current 
ahead of self-inductance at the instant of aligned position.  
The third and fourth parts are constituted by the phase current 
of two different frequencies, the frequency of self-inductance 
coefficient equals to the difference and sum of frequencies of 
two different current harmonics, and the difference and sum 
of leading angles of two different current harmonics ahead of 
self-inductance at the instant of aligned position.  

B. Saturation case 

The expression (14) is derived at the assumption of 
unsaturation. However, to increase the torque density the 



SRMs usually operate under saturation. The saturation case of 
SRM is not only related to the motor structure, but also the 
magnetic property of laminations. Therefore, it is usually 
quite difficult to obtain the nonlinear relationship of 
inductance against phase current. 

However, based on the model which is presented in Section 
II the coefficients of self-inductance have already taken the 
magnetic saturation into consideration. Therefore, the torque 
expression under saturation can be written as: 
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in which, ks is the slope of saturation, which is determined by 
the overlap area of stator pole and rotor pole.  
 

IV. AVERAGE TORQUE CALCULATION UNDER BIPOLAR 
EXCITATIONS BASED ON FOURIER SERIES MODEL 

In this section, the principle for torque production under 
new bipolar current excitations of using a 3-phase bridge 
inverter will be developed for the first time.  

In (14) it has shown that the average torque can be divided 
into four parts. Except the first part, the other parts have 
nothing to do with direct current (DC) and are produced only 
by alternate currents (AC). Therefore, it is possible to drive 
SRM with bipolar excitation using a three-bridge inverter 
(Fig.2).   

A. Driven by Current of Single Frequency 

In (14), the second part is the torque which is only related 
to the AC excitations. However, in this part the minimum 
order of self-inductance is two, which leads to the 
contribution of this part to total torque production under 
unipolar excitation is not significant. In order to utilize this 
part to produce the dominate torque, the first order harmonic 
of self-inductance L1 should be considered in this part. 
Therefore, the minimum frequency of AC excitations must 
equal to half of the frequency of ωNr  which can be written 
as:  
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Similar to the torque under unipolar excitation, at the 
amplitude of AC excitation less than Is the torque equation 
can be obtained by substituting (16) into (12), and eliminating 
the periodic items by integrating over one cycle, the overall 
average torque can be expressed as: 
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As expected, the first part in (17) contains the item which 
is contributed by the first order harmonic of self-inductance 

L1. Due to the dominance of L1 among all harmonics of self-
inductance, the SRMs under this excitation will produce 
considerable average torque. 

B. Driven by Current of Two-Frequencies-I 

In (14), the third part only contains the alternate currents 
and the fundamental component of self-inductance. However, 
the minimal order of self-inductance in the fourth part is two, 
which means the overall torque production of this part is 
relatively small. Therefore, the contribution of the third part 
can be significant if appropriate currents are injected into the 
windings. In the case of m=n=1, the fundamental component 
of self-inductance is involved in this part, which will have a 
great contribution to the overall torque. In other words, the 
average torque can be produced by a combination of AC 
excitations having two different frequencies, such as the first 
and second order harmonics of phase current. Therefore, 
another AC excitation can be obtained, i.e. 
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Substitute (18) into (12), and eliminate the periodic items, the 
average torque production can be expressed as: 

2
2

1

1 1

2 2
1 1

sin(2 )
4

sin( )
4

2
sin( )

4

r n n n
n

r n n m m n m n
m n

r m m n n m m n m
m n

n
T N I L

m
N I I L

m n
N I I L



 

 





 

 
 

 

  
 



 


 







       
(19)

 

Under this pattern of bipolar excitation, the average torque 
production is determined by the leading angle difference 
between the first and second order harmonics of phase current 
ahead of the self-inductance at the instant of aligned position 
of phase A. When the angle difference equals to 90° the 
maximum average torque will be produced under bipolar 
current excitation with alternate current components of at 
least two frequencies.  

If the machine is excited by the current consisting of two 
different frequencies, it is quite complex to determine the 
saturation situation, which is not only related with the 
amplitude of alternate currents having two different 
frequencies, but also can be influenced by the leading angle 
difference between two alternate currents of different 
frequencies at the instant of aligned position of phase A. 
Therefore, if the magnitude of peak current is higher than Is, 
the torque can be expressed as: 
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C. Driven by Current of Two-Frequencies-II
 

An alternative method is to combine the former two bipolar 
excitation patterns together. In the single frequency method , 
it can be noticed that if the alternate current with frequency of 
3/2Nrω is injected into the phase winding the overall torque 



production will be increased since the overall torque due to 
the first order harmonic of self-inductance is not only 
produced by one single frequency 1/2Nrω but also produced 
by the alternate currents of two frequencies, viz. 1/2Nrω and 
3/2Nrω. In this case, the overall torque production can be 
considered as two major constitutions, one by the single 
frequency 1/2Nrω and the leading angle of θ1/2, another one 
by two frequencies 1/2Nrω, 3/2Nrω and the leading angle 
difference of two frequencies at aligned position. It is worth 
to mention that alternate currents combined with more than 
one pattern of bipolar excitations can drive SRMs as well. 

V. EXPERIMENT VERIFICATION 

In order to verify the foregoing analyses and evaluate the 
accuracy of torque waveform and average torque prediction 
based on the Fourier series expression, the electromagnetic 
torque produced by the SRM under unipolar excitation, 
bipolar excitation of single frequency, bipolar excitation of 
two frequencies –I and II, respectively, the measurements are 
carried out on a prototype 6/4 SRM whose main parameters 
are given in Table I. 

The measured torque waveforms in the following parts will 
be simply obtained from the interpolation of static torque 
corresponding to a given specific current and rotor position. 

A. Unipolar Excitation 

Fig.6 shows the phase current waveform and the 
corresponding FEA, measured and predicted results under 
unipolar excitation. The Fourier series expression is counted 
up to the 7th and 40th harmonics of self-inductance, 
respectively. It shows that counting up to the 7th harmonic of 
self-inductance is enough and only has small error with 
measurement.  

B. Bipolar Excitation 

Fig.7 shows the phase current, predicted and measured 
results under bipolar excitation of single frequency. It 
demonstrates the unidirectional torque production under 
bipolar excitation, and shows that the Fourier series model is 
able to calculate the torque under this excitation pattern. In 
Fig.7, it can also be noticed that although small negative 
torque is produced by a single phase, the resultant torque 
produced by all three phases is positive and unidirectional. 
This portion of small negative torque produced by one phase 
can contribute to reduce the torque ripple.  

Fig.8 shows the phase current, predicted and measured 
results under bipolar excitation of two frequencies. It shows 
the torque production under this pattern of excitation is 
unidirectional, and the predicted results also have good 
agreement with measured results.  

Fig.9 shows the phase current, predicted and measured 
results under bipolar excitations of both single frequency and 
two frequencies. Unlike the former two bipolar excitations 
the average torque production under this pattern of excitation 
is not only decided by the leading angle of I1/2, but also 
determined by the leading angle difference between I1/2 and 
I3/2. 

C. Average Torque and Torque Ripples 

Fig.10 compares the average torque calculated by the 
proposed method under unipolar and all patterns of bipolar 
excitations. Fig.11 shows the average torque under the third 
pattern of bipolar excitation which is not only related to θ1/2, 
but also influenced by the leading angle difference between 
θ1/2 and θ3/2. Table II compares the maximum average torque, 
the corresponding torque ripple and RMS current under the 
same peak phase current, 10A. It should be noted that in order 
to ease the comparison under the same peak phase current, 
the unipolar current waveform is assumed to be composed of 
I0 and I1 only. It can be seen that at similar peak current the 
average torque under unipolar excitation and bipolar 
excitation with single frequency is similar. They are superior 
to that under bipolar excitation with two-frequencies I and II. 
However, the torque ripple under bipolar excitation with 
single frequency is smaller than that under unipolar 
excitation, and both are much lower than that under bipolar 
excitations with two-frequencies I and II. However, as shown 
in Table II, at maximum average torque production with the 
same peak current the RMS current values under the bipolar 
excitation with single frequency is highest and consequently 
lower maxT / RMS current than that of unipolar excitation. 
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Fig.6 Phase current waveform, predicted  and measured results under 
conventional unipolar excitation (advance angle=0°, Speed=1000rpm) 
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Fig.7 Phase current waveform, predicted (average torque=0.28Nm) and 

measured results (average torque=0.30Nm) under bipolar excitation of single 
frequency (θ1/2= 30°, I1/2=10A) 



VI. CONCLUSION 

This paper derives the general analytical expression of 
average torque in SRMs under both unipolar and bipolar 
excitation, and to analyze their average torque under three 
working bipolar excitation patterns, with reference to unipolar 
excitation. All analyses are verified by the finite element 
analysis and measurements on a prototype 6/4 SRM.  

It can be seen that at similar peak current the average 
torques under unipolar excitation and bipolar excitation with 
single frequency are similar, but the torque ripple under 
bipolar excitation with single frequency is smaller than that 
under unipolar excitation. However, both are better than other 
bipolar excitations with two frequencies in terms of torque 
and torque ripple. 
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Fig.8 Phase current waveform, predicted (average torque=0.13Nm) and 

measured results (average torque=0.13Nm) under bipolar excitation of two 
frequencies (θ1=0°, θ3=60°, I1=5A, I2=5A) 
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Fig.9 Phase current waveform, predicted (average torque=0.16Nm) and 

measured results (average torque=0.18Nm) under bipolar excitation of two 
frequencies (θ1/2=30°, θ3/2=90°,  I1/2=5A, I3/2=5A) 

TABLE I 

COMPARISON OF MAXIMUM AVERAGE TORQUE, TORQUE RIPPLE, AND 

RMS CURRENT UNDER SAME PEAK CURRENT, 10A 

Excitation pattern 1 2 3 4 

maxT (Nm) 0.317 0.317 0.158 0.255 

ΔT at maxT (Nm) 0.161 0.112 0.382 0.309 
RMS current (A) 6.12 7.07 5.69 5.0 

maxT / RMS current 0.0518 0.0448 0.0278 0.0510 

1 – Unipolar (I0=5A and I1=5A); 2 - Bipolar with single frequency 
3 - Bipolar with two frequencies-I; 4 - Bipolar with two frequencies-II 
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Fig. 10 Average torque comparison under unipolar and bipolar excitation 

with single frequency and two frequencies at the similar peak current 
(unipolar: I0=5A, I1=5A, bipolar with single frequency: I1/2=10A, bipolar 

with double with double frequencies: I1=5A, I2=5A) 

-180
-120

-60
0

60
120

180

-180
-120

-60
0

60
120

180
-0.4

-0.2

0

0.2

0.4

 

Leading angle  1(deg)Leading angle  3 (deg)
 

T
or

qu
e 

(N
m

)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25Peak value
0.254Nm(180,120)

Peak value
0.255Nm(18,-120)

 
Fig. 11 Average torque under bipolar excitation with double frequencies II 

(I1/2=5A, I3/2=5A) 
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