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Abstract—Usually, electrical propulsion vehicles are driven
by highly dynamic drive controls. To make this possible, it is
important to know electrical parameters such as inductances,
flux and stator resistance as exactly as possible. In particular,
the ohmic stator resistance Rs changes during operation due to
temperature changes. Therefore, it is not possible to achieve a
high precision over a wide operating temperature range with an
offline measurement of Rs. In this paper, a new identification
method for stator resistance is presented and compared to
a known method. While the conventional method only works
properly at certain operating points, the new method does not
have this limitation.

Index Terms—adjustable speed drive, control of drive, drive,
electrical drive, electrical machine, permanent magnet motor,
variable speed drive

I. INTRODUCTION

Traction drives, especially, require highly utilized electric

machines. This paper is restricted to drive systems using per-

manent magnet synchronous machines (PMSM). To control

these drive systems, the field-orientated approach is widely

accepted. The electrical parameters that are needed are the

ohmic stator resistance Rs, permanent magnet flux ψp and

stator inductances Ld and Lq , where d and q correspond to

the axes of the rotor fixed coordinate system [1], as shown

in Fig. 1. If Rs and L are not known accurately, ψp and

consequently the torque T cannot be calculated well enough.

As the torque is not measured in most cases although it is

needed for the field-oriented control approach, nevertheless

an exact calculation of the instantaneous torque needs to be

made as a function of the machine parameters. According to

conventional methods, the ohmic stator resistance Rs can be

measured accurately at standstill when a high load is applied.

Especially in automotive applications, this state does not occur

very often. More often, the drive is at standstill with no load or

is running at medium speed with medium load, for example.

As shown in this paper, in these states, the measurement of

Rs by conventional methods is impossible.

To solve this problem a large variety of methods is known.

A model reference adaptive system (MRAS) technique for es-

timating the electrical parameters is chosen in [2] for instance.

Apart from this, different types of parameter identification

methods are known. Reference [3], for example, uses a current

test signal with different amplitudes on the d- and q-axes.

As this method requires an exact knowledge of ψp, it is

not applicable under most circumstances. Also, the method

has only been proven by simulation. Another approach is

based on high frequency signal injection. In the associated

publication [4], no kind of simulation or measurement results

for the identified stator resistance Rs are shown. Reference

[5] describes an identification method for stator resistance

which is unstable. An approach only suitable for sensorless

controlled machines is shown in [6]. This method calculates

the stator resistance using the actual speed estimation error as

a co-product of the HF signal needed for sensorless controlled

drives at near zero speed.

Contrary to [4] and [6], the new approach for identifying

the ohmic stator resistance Rs presented in this paper uses low

frequency current signal injection on the d-axis. Its frequency

is about 2 Hz. The identification algorithm has to be calculated

once during every half wave of the test signal. When a

2 Hz test signal frequency is used, the calculation is only

done four times a second. This results in a small amount

of computation time being used. Besides this, the proposed

method has two further significant advantages: First, when

reluctance effects are ignored, the output torque of the PMSM

remains unchanged. Second, the temperature dependency, and

thus the often inaccurately known electrical parameter ψp are

not needed in the identification equations.

II. PMSM MODEL

The general voltage phasor for a PMSM in the complex

d,q-coordinate system according to Fig. 1 can be written as:

ud,q = Rs i
d,q +

d

d t
ψd,q + jωel ψ

d,q . (1)

The basic idea of the field-oriented control approach is to

separately control the d- and q-axes, so it is convenient to split

the complex voltage phasor (1) into the two equations (2) and

(3). Together with a third equation (4) for the internal torque

Ti of the PMSM, they describe the behavior of the PMSM in
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Fig. 1. Definition of the complex d,q-coordinate system for a permanent
magnet synchronous machine with internal magnets.

d,q-coordinates.

ud = Rs id +
d

d t
ψd − ωel ψq (2)

uq = Rs iq +
d

d t
ψq + ωel ψd (3)

Ti =
3

2

p

ωel

(

dψd

d t
− ωel ψq id +

dψq

d t
+ ωel ψd iq

)

. (4)

It has to be assumed that the electrical parameters of the ma-

chine such as changes to inductances during normal operation

depend on the currents id and iq , respectively. Then, the flux

linkages ψd and ψq can in general be written as:

ψd = ψp + L
(id,iq)
d · id and (5)

ψq = L(id,iq)
q · iq . (6)

When cross coupling effects are neglected, the voltage equa-

tions (2) and (3) can be rewritten as:

ud = Rs id + L
(id,iq)
dd

d id

d t
− ωel L

(id,iq)
q iq and (7)

uq = Rs iq + L(id,iq)
qq

d iq

d t
+ ωel L

(id,iq)
d id + ωel ψp . (8)

L
(id,iq)
d and L

(id,iq)
q represent the absolute inductances. The

superscript (id, iq) indicates that the inductances are depen-

dent on id and iq . L
(id,iq)
dd and L

(id,iq)
qq represent the differential

inductances of the machine in the d,q-coordinate system. They

are abbreviations of the terms

L
(id,iq)
dd =

∂ ψd(id, iq)

∂ id

∣

∣

∣

∣

id,iq

and (9)

L(id,iq)
qq =

∂ ψq(id, iq)

∂ iq

∣

∣

∣

∣

id,iq

. (10)

Fig. 2 shows examples of curves for the inductances L
(id,iq)
d

and L
(id,iq)
q . They are the measured inductances of the PMSM

with surface-mounted permanent magnets used in test bench

2. It can be seen that the inductances shown vary significantly

with changing id and iq , respectively.

The internal torque Ti can also be rewritten with (5) and

(6) inserted into (4). As before, cross coupling effects are
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Fig. 2. Measured inductances L
(id,iq)

d
and L

(id,iq)
q of the PMSM with

surface-mounted permanent magnets used in test bench 2. All currents are
based on rated values (r).

neglected in this equation:

Ti =
3

2

p

ωel

(

L
(id,iq)
dd

d iq

d t
+ L(id,iq)

qq

d id

d t

+ ωel

(

L
(id,iq)
d − L(id,iq)

q

)

id iq + ωel ψp iq

)

. (11)

Field-orientated control of high dynamic drive applications

requires as accurate a knowledge as possible of the electrical

parameters ψp and Rs, whereas they remain unknown in (7)

and (8). Therefore an adequate identification of Rs is needed;

two methods are described in this paper.

III. CONVENTIONAL METHOD

An easy way to get the stator resistance Rs is to neglect

all derivatives of the currents (stationary state) and solve (8)

accordingly:

Rs,conv,1 =
uq − ωel L

(id,iq)
d id − ωel ψp

iq
. (12)

The problem with (12) is that, in most cases, the permanent

magnet flux ψp is normally only known approximately. This

is because the flux ψp of permanent magnets is dependent

on the rotor temperature which is normally not measured on

permanent magnet synchronous machines [7] [8]. With the

wrong ψp, a speed-dependent measurement error is introduced

into (12). In addition, there is always a current iq and therefore

a non-zero torque that is needed to evaluate (12).

The method described in (12) can be slightly optimized by

using a model-based system [9]. In general, the measurement

algorithm does not have the ideal values. At least ψp and

consequently uq are in error. So one can define two equations.

One equation assuming all parameters are well known:

uq = Rs iq + ωel L
(id,iq)
d id + ωel ψp , (13)

and another with the erroneous values

ûq = R̂s iq + ωel L
(id,iq)
d id + ωel ψ̂p . (14)



The stator resistance error ∆Rs,conv,2 = Rs − R̂s can then

be written as

∆Rs,conv,2 =
∆uq + ωel ∆ψp

iq
=

∆uq
iq

+
ωel ∆ψp

iq
. (15)

The voltage error ∆uq = uq−ûq is well known. As described

previously, the flux ψp and therefore the flux error ∆ψq =
ψq − ψ̂q is not equal to zero in many cases. Despite this, (15)

is an improvement on (12), because neither L
(id,iq)
d nor id

are required in (15) if the assumption is made that L
(id,iq)
d

is sufficiently well known, e.g. by offline measurement whith

results shown in Fig. 2.

The main disadvantages of the conventional methods (12)

and (15) for measuring Rs are obvious. If a non-zero speed

error is present, any error in ψp amplifies the error in Rs. As

iq is in the denominator of (12) and (15), this error gets even

bigger if iq and therefore the load torque is small.

Thus, the conventional measurement methods without any

test signals are only suitable at relatively high load conditions

together with near zero speed of the electrical drive system.

IV. NOVEL IDENTIFICATION THEORY

As shown, the simple conventional methods for measuring

Rs online only work at certain operating points. The proposed

algorithm was designed to take minimal computational time

and to be as robust and accurate as possible. The entire

identification process runs within the d,q-coordinate system.

In general, there are two options: As a basis for identification,

the ud-equation (7) or uq-equation (8) can be used. As both

depend on Rs, basically the identification of resistance Rs

is possible with both equations. However, (8) is not suitable

for the proposed algorithm for two reasons: First, at least

under no load conditions, an alternating test current iq would

be necessary. This would cause an intolerable amount of

oscillating torque. Second, (8) also depends on the permanent

magnet flux linkage ψp which is not known with sufficient

accuracy. So, (7) is taken as the basis of the identification

algorithm. The influence of an alternating current id due to

cross-coupling effects is very low. In addition, there is no ψp

in (7) and therefore it does not need to be known.

The new approach is based on the assumption that a high

proportion of the measurement errors are offset errors. So

an alternating test signal current id creates two time instants.

When the two generated ud-equations are subtracted from one

another, the offset errors are minimized. Errors depending on

speed and measurement noise are minimized before using an

appropriate filtering method which is described later on.

The time instants needed are named (1) and (2). Equation

(7) would then lead to the two equations

u
(1)
d = Rs i

(1)
d + L

(i
(1)
d

,i(1)q )

dd

d i
(1)
d

d t
− ω

(1)
el L

(i
(1)
d

,i(1)q )
q i(1)q (16)

u
(2)
d = Rs i

(2)
d + L

(i
(2)
d

,i(2)q )

dd

d i
(2)
d

d t
− ω

(2)
el L

(i
(2)
d

,i(2)q )
q i(2)q .

(17)

t

itest
(1)

(2)

Fig. 3. Test signal current on d-axis. The two points 1 and 2 mark the states
introduced in (16) and (17) during the identification process.

Rearranged, (16) and (17) lead to

u
(2)
d − u

(1)
d = Rs

(

i
(2)
d − i

(1)
d

)

+ L
(i

(2)
d

,i(2)q )

dd

d i
(2)
d

d t

− L
(i

(1)
d

,i(1)q )

dd

d i
(1)
d

d t
− ω

(2)
el L

(i
(2)
d

,i(2)q )
q i(2)q

+ ω
(1)
el L

(i
(1)
d

,i(1)q )
q i(1)q . (18)

The test current id does not change during the measurement of

the two time instants. This is realized by using a rectangular

test current according to Fig. 3. A constant id leads to

d i
(1)
d

d t
=
d i

(2)
d

d t

!
= 0 . (19)

So L
(id,iq)
dd does not need to be known. The test signal

frequency is about 2 Hz. Taking into account the fact that

traction drives usually have high inertia, one can assume that

the speed of the traction drive does not change very much

during a test signal period and therefore

ω
(1)
el = ω

(2)
el . (20)

Then, (18) can be simplified to

u
(2)
d − u

(1)
d = Rs

(

i
(2)
d − i

(1)
d

)

− ωel

(

L
(i

(2)
d

,i(2)q )
q i(2)q + L

(i
(1)
d

,i(1)q )
q i(1)q

)

. (21)

So, the identification equation according to the proposed

method results in:

Rs,ident
!
=

1

i
(2)
d − i

(1)
d

·

[

u
(2)
d − u

(1)
d

+ ωel

(

L
(i

(2)
d

,i(2)q )
q i(2)q − L

(i
(1)
d

,i(1)q )
q i(1)q

)

]

. (22)

It can be seen that under standstill conditions, only ud and id
are relevant variables. In addition: the higher the test current

amplitudes, the better the Rs-identification.

The main source of uncertainty in (22) is the inductance

L
(id,iq)
q , even when it is measured in advance. However, this

source of error is reduced due to the subtraction of the two

time instants. When not only the drive speed but also the



t

χ x1 ·
T
2

x2 ·
T
2

0 T
2 T

Fig. 4. Filtering of measurement signals.

0 10 20 30 40
0

0.1

0.2

0.3

0.4

t [s]

R
 [

Ω
]

(a) tf = const.

0 10 20 30 40
0

0.1

0.2

0.3

0.4

t [s]

R
 [

Ω
]

(b) tf = variable

Fig. 5. Identification results of Rs by filtering with constant (a) and variable
(b) filtering window of IPMSM (test bench 1). The speed variable filtering
method (b) does not show low frequency harmonics in the identification
results in contrast to (a).

iq current is constant within a test signal period, the speed-

dependent term of (22) simplifies to:

ωel iq

(

L
(i

(2)
d

,iq)
q − L

(i
(1)
d

,iq)
q

)

. (23)

Especially when id ≈ 0, the change in L
(id,iq)
q is rather small

and therefore the measurement errors of L
(id,iq)
q do not have

much influence on the identification result.

Due to various effects, the measurement signals are overlaid

by the 6th harmonic of the speed [10]. To eliminate this

harmonic, the measurement signals should be adequately

filtered.

The new filtering method selects an adequate period of time

within one rectangular half cycle of the test signal period. It

integrates the noisy measurement signals χ(t) over this period

and uses the mean value:

2

x1 T

T
2 (1−x2)
∫

T
2 (1−x1−x2)

χ(t) d t . (24)

Fig. 4 explains the filtering process in a more illustrative way.

The length of the filtering window is adjusted by x1, the

distance to the next rectangular half cycle of the test signal

current by x2.

When the filtering duration tf = x1
T
2 is constant, there will

be a speed-dependent beat in the filtered measured signals

because of the 6th harmonic already described, since the

filtering duration tf is not an integer multiple of the 6th
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Fig. 6. Test bench 1: Measurement ofRs by conventional method according
to (15) and ψp = ψp,real. No measurement of Rs is possible at no load
(T ≈ 0). At higher speed, the measurement gets significantly worse.
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Fig. 7. Test bench 1: Measurement ofRs by conventional method according
to (15) and ψp = 0, 9ψp,real. With no exact permanent magnet flux known,
the measurement gets considerably worse compared to Fig. 6.
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Fig. 8. Test bench 1: Measurement of Rs by new identification method

according to (22). Contrary to the conventional method, the error is always
less than 10% and identification is also possible at zero load (T = 0)

harmonic. This is why the filtering duration tf is adapted

by means of the parameter x1(ωel). This eliminates the low

frequency beat. Fig. 5 shows the difference between a constant

tf (a) and a speed-dependent tf (b). Fig. 5a is overlaid with

a low frequency beat. As this beat can have a cycle time

of 30 seconds and more, it prevents an exact identification

of Rs and therefore it is most important to eliminate it.

Measurements covering the entire operating range were made.

Due to this new filtering method, the beat was effectively
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Fig. 9. Test bench 2: Measurement ofRs by conventional method according
to (15) and ψp ≈ ψp,real. The only reliable operating point exists at zero
speed and rated load.

−0.5
0

0.5

−1

0

1

0

0.5

1

1.5

n
nr

T
Tr

R
s
,
c
o
n
v
,
2

R
s
,
r

(a) 3D view

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.5 0 0.5 1

 

 0.85

0.9

0.95

1

1.05

1.1

n
nr

T
Tr

(b) 2D view

Fig. 10. Test bench 2: Measurement of Rs by conventional method

according to (15) and ψp ≈ 0.98ψp,real. With no exact permanent magnet
flux known, the measurement gets considerably worse compared to Fig. 9.

eliminated where present.

A further advantage of this filtering method lies in the

considerably reduced computing time compared to other fil-

tering methods, because only one register is needed for the

integration process. The use of a sliding average method, for

example, would require one register per averaging step and

thereby need a lot more computation time.

V. ERROR ANALYSIS

For a function y = f (x1, x2, . . . , xn), the input errors δxi
are related to the output errors δy by:

δy =

n
∑

i=1

∣

∣

∣

∣

∂

∂xi
f (x1, x2, . . . , xn)

∣

∣

∣

∣

δxi . (25)

To simplify the calculation, only a permanent magnet flux

error δψ and voltage error δu are considered. The flux is

dependent on the unknown rotor temperature. The voltages

ud and uq can only be calculated via the duty cycle of the

converter. As the converter does not have exactly known non-

linearities, even linearized voltages have a relevant error.

Based on (25), the error in the conventional method from

(15) is

δRs,conv,2 =
1

|iq|
· δuq +

∣

∣

∣

∣

ωel

iq

∣

∣

∣

∣

· δψp , (26)
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Fig. 11. Test bench 2: Measurement of Rs by conventional method

according to (15) and ψp = 0.95ψp,real. No measurement of Rs is possible
with no load (T ≈ 0).
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Fig. 12. Test bench 2: Measurement of Rs by new identification method

according to (22). In contrast with the conventional method, the error is
always less than 15 % and identification is also possible at zero load (T = 0).

whereas the identification error in the new method is

δRs,ident =
δu

(2)
d + δu

(1)
d

∣

∣

∣
i
(2)
d − i

(1)
d

∣

∣

∣

. (27)

One can easily see that in (26) the error depends on iq and

ωel. These values change during operation. In contrast, the

new algorithm (27) has an error that is only dependent on the

amplitude of the low frequency test signal and therefore does

not change during operation. If the errors of u
(1)
d and u

(2)
d are

offset errors with the same algebraic sign, then according to

(27) the two errors cancel out each other.

VI. TEST BENCH 1

Both methods, the conventional method according to (15)

and the new identification method according to (22), were

implemented on a test bench with an internal permanent

magnet synchronous machine (IPMSM) with a rated output

power of 22 kW and armature windings consisting of con-

centrated coils. The IPMSM generated extensive harmonics.

Along with the limited PWM inverter switching frequency of

2 kHz, the maximum speed for test bench 1 was as low as

n = 0.1 · nrated = 150 1
min

.

Figures 6 and 7 show the measurement results obtained

with by conventional method. The surfaces shown are con-



structed from 169 stationary state operating points which were

uniformly distributed over the operating range to cover all

possible speed and torque combinations. To make the figure

more understandable, the identification results were scaled by

the real ohmic stator resistance which is calculated from an

offline reference value of Rs,20◦C combined with the actual

measured stator temperature. For example, a value of 1.1 in

Fig. 6 represents an identification error of 10%.

In Fig. 6, the permanent magnet flux ψp in (15) was known

as exactly as possible, in the second one it is assumed to be

10 % lower. The latter simulates an imperfectly known flux

ψp, e.g. caused by temperature changes of the rotor magnets.

It can be seen, that the conventional method has a significant

dependency on the flux ψp. If this is not known accurately, as

shown in Fig. 7 for example, the measurement of Rs is almost

impossible, the relative errors can readily exceed the real value

of Rs by much more than 10 %. Especially at non-zero speeds,

the conventional approach is of no use. In addition, at near

zero load, no measurement is possible, even when ψp is known

exactly.

In contrast, Fig. 8 shows the identification of Rs according

to the new identification method. Over the entire measuring

range, the identification error is less than ±10% of the real

value of Rs. Apart from this, identification is also possible at

zero load with no limitations.

VII. TEST BENCH 2

In addition, the two methods are compared on a second

test bench with a PMSM with surface-mounted permanent

magnets and a rated output power of 26 kW. Contrary to test

bench 1, higher speeds up to n = 1500 1
min

= 0.75 ·nrated are

possible on test bench 2. The maximum speed was limited by

test bench limitations, not because of identification issues.

Figures 9, 10 and 11 show the identification results obtained

with the conventional method by measuring Rs according to

Eq. (15). As on test bench 1, the speed and torque were held

constant at each operating point. The identified ohmic stator

resistance was scaled by the real value. It can be seen that

even small changes in the permanent magnet flux ψp have

a significant effect on the Rs calculation. This is why even

in Fig. 9 when ψp is assumed to be known as ideally as

possible, the result obtained by the conventional method is

only accurate at high load under standstill conditions. Figures

10 and 11 show the results from the conventional method

when the wrong ψp is assumed: By 2 % and 5 %, respectively.

The error is considerably higher than in Fig. 9 where ψp ≈
ψp,real.

The new identification method is shown in Fig. 12. In con-

trast with the conventional measurement results, the maximum

error over the whole operating range is limited to ±15%. In

addition, identification is possible under conditions with no

load.

VIII. CONCLUSION

For traction drives especially, drive control has to be

simultaneously dynamic and accurate. Therefore, knowledge

of the highly temperature-dependent ohmic stator resistance

Rs is relevant. In this paper, a new approach for identifying

the ohmic stator resistance Rs online with low frequency test

signals is compared to a conventional method. The limitations

of the conventional method are shown, especially under con-

ditions of no load and non-zero speed when measurements

are almost impossible by the conventional method.

In contrast, the new identification method is insensitive to

input parameter errors and the permanent magnet flux is not

needed for the identification process. The new method is not

limited to any special speed or load operating point.
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