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Abstract—For electric and hybrid electric cars, commonly
nickel-metal hydride and lithium-ion batteries are used as energy
storage. The size of the battery depends not only on the driving
range, but also on the power demands for accelerating and
braking and life-time considerations. This becomes even more
apparent with short driving ranges, e.g. in commuter traffic. By
hybridization of the storage, adding double layer capacitors, the
battery can be relieved from the stress of peak power and even
downsized to the energy demands instead of power demands.

The dimensioning of the storage is performed by a parametric
study via Deterministic Dynamic Programming. To determine
an energy management to control the power flows to the storage
online during operation which considers the stochastic influences
of traffic and the driver, Stochastic Dynamic Programming is
investigated and compared to the optimal strategy found during
the dimensioning.

Index Terms—Energy management, dynamic programming,
hybrid energy storage system, electric vehicle

I. INTRODUCTION

The typical electrical energy storage of today’s electric and

hybrid-electric vehicles usually consists solely of nickel-metal

hydride (NiMH) or lithium-ion (Li-ion) batteries. In order to

substitute conventional cars, the capacity is often dimensioned

for driving ranges up to 250 km, as with the Tesla Roadster

or BMW Mini-E. This leads to an expensive, heavy and bulky

energy storage.

A further typical area of operation are secondary cars used

for short distance trips or commuting. The average driving

range is only approx. 30 km, with 80% of the trips being

shorter than 60 km [1]. For these cars, the energy capacity of

the storage can be designed much smaller.

However, as even traction batteries offer mainly a high

energy density but only limited power density, such a battery

storage sized for smaller energy amounts has limited or

insufficient power capabilities to drive urban and suburban

drive cycles, especially when recuperating braking power. Hy-

bridization of the storage by additional double layer capacitors

(DLC) can increase the power capabilities significantly as well

as release the battery from the dynamic stress of peak power.

When designing the hybrid energy storage system (HES),

two questions arise: Firstly the sizing of the battery and the

DLC, and secondly the determination of an online, causal

energy management for the distribution of the traction power

to both storages which takes the stochastic influences of

traffic and the driver into account. For the former, the optimal

optimization method of Deterministic Dynamic Programming

is performed on recorded driving profiles in a parametric study

to both optimize the energy management strategy and the size

of the HES at the same time. For the latter, Stochastic Dynamic

Programming is a suitable way to find a causal operating

strategy considering the stochastics.

This paper is structured as follows: After a short description

of the vehicle, the drive cycles and the possible energy storage

technologies in Section II, the optimization problem and the

dimensioning of the HES are described in Section III. The

calculation of a causal operating strategy is then explained in

detail in Section IV and simulation results are presented in

Section V.

II. SYSTEM DESCRIPTION

A. Vehicle

In this contribution, an energy storage dimensioned for a

reduced driving range of 60 km for a vehicle based on the

BMW Mini-E [2] is investigated. The BMW Mini-E is an all

electric powered car field-tested in the United States, United

Kingdom and Germany since 2009. It is propelled by a 150 kW

induction motor. Its original energy storage consists solely of

lithium ion batteries featuring a driving range of about 175 km.

Further data are specified in Table I.

TABLE I
DATA OF THE STUDIED VEHICLE

Tare weight w/o storage 1224 kg
Payload 475 kg

Maximum Drive Power 150 kW @ 7000-8000 min−1

Maximum Torque 220 Nm @ 0-5000 min−1

Drag Coefficient 0.35

Reference Cross Section Area 2 m2

B. Data Acquisition/Driving Profiles

For the dimensioning of the energy storage and the design

of an operating strategy, several driving profiles have been

recorded by GPS in urban and sub-urban traffic in Pader-

born, Germany. This contribution is based on a data base

of 7 measured profiles on the same route, but two different

978-1-4244-8218-4/10/$26.00 ©2010 IEEE



driving directions. The length of the trips is approx. 9.4 km,

comprising a difference in altitude of 57 m uphill in profiles

1-3 and downhill in profiles 4-7. The power profiles of the

electric car were then simulated by a model of the BMW

Mini-E, taking into account the variable weight of the energy

storage to be designed. The peak power at full payload was

91 kW for acceleration and up to 60 kW for recuperation.

C. Energy Storage

Common energy storages for vehicular applications are

batteries or double layer capacitors (DLC) [3], [4]. Traction

batteries, both lithium-ion (Li-ion) and nickel-metal hydride

(NiMH), offer a high energy density but only a poor power

density and small number of full load cycles. DLC on the other

hand offer a high power density and high number of cycles

without degradation at the costs of only a low energy density.

Typical characteristics of the storage examined are listed in

Table II.

Applying the recorded power profiles for the power rating

and an energy consumption of 54 MJ/100 km based on sta-

tistical data from [5], the required masses of the respective

storage technologies for driving ranges of 60 km and 100 km

are stated in Table III.

It is apparent that both batteries and DLC solely do not

satisfy the requirements of a high power and energy density,

especially when recuperating braking power. However, com-

bining both energy storage technologies to a hybrid energy

storage system (HES) complements the high energy of the

batteries and the high power of the DLC, permitting a down-

sizing of the battery storage and a higher peak power at the

same time.

For the BMW Mini-E based vehicle, a HES featuring NiMH

batteries and DLC is investigated in the following. In order

to control the power flows of each storage individually and

to adjust the state of charge dependent voltage variations,

both storages are each connected to the drive train via bi-

directional power converters. The resulting structure of the

HES is depicted in Fig. 1.

TABLE II
CHARACTERISTICS OF CONSIDERED TRACTION ENERGY STORAGES

Storage Spec. energy Spec. power (W/kg) Full load
type (kJ/kg) (disch./charge) cycles

NiMH Batt. 165 230/50 500-2000
Li-ion Batt. 380 700/100-400 500-3000

DLC 15 2000/2000 >500000

TABLE III
NECESSARY STORAGE DEVICE MASSES FOR THE INVESTIGATED URBAN

DRIVE CYCLES

Storage Driving Mass of storage in kg sized for
range energy peak power
in km (discharge/charge)

NiMH Batt. 100 330 395/1200
60 200 395/1200

Li-ion Batt. 100 145 130/600-150
(energy cell) 60 85 130/600-150

DLC 60 2160 45/30

NiMH-
Battery

DLC

Electric
Drive

3~

EM

Fig. 1. Structure of the Hybrid Energy Storage System

III. DIMENSIONING OF THE HYBRID ENERGY STORAGE

The hybrid structure of the HES offers a degree of freedom

for the distribution of the driving power to the distinct energy

storages as well as for the dimensioning of the storage. As

the size of the storage has direct influence on the operating

strategy, both have to be optimized at the same time.

Several objectives may be important for both the dimen-

sioning and the operating strategy, e.g. a high efficiency,

low deterioration or increased availability. In this paper, we

consider the objective of minimizing the energy losses ev in

the storage system. The determination of the operating strategy

can then be described as an optimization problem:

Find an optimal strategy π(t) for the power distribution to

both storages which minimizes

ev =

∫ Tend

Tstart

plosses dt (1)

with plosses being the power dissipation of the HES. Con-

straints are the maximum and minimum power of both energy

storages and the state of charge of the DLC.

To limit the influence of the operating strategy on the dimen-

sioning, an optimal optimization method like Deterministic

Dynamic Programming (DDP) is well suited. It is easy to

implement, has a limited computational effort and it can serve

as a benchmark for the causal but sub-optimal strategies to be

developed in Section IV.

The basic idea of DDP is to decompose a complex optimiza-

tion problem into several smaller, easier to solve subproblems.

The sequential solution of the subproblems then leads to the

optimum solution of the overall problem [6], [7].

For the application of DDP, the driving cycles and related

power profiles have been discretized in time. The vehicle was

described by its state xk, comprising the velocity vk, the power

demand Pel, k and the state of charge SOCDLC,k of the DLC.

At each time step k, the algorithm of DDP has to find the

optimal strategy for the power distribution to both storages

that minimizes the overall energy losses.

For the dimensioning, a parametric study of the energy

losses was performed by DDP on a detailed model of the

HES, taking into account the effect of the variable weight of

the storage on the power profiles. Two different storage config-

urations have been examined and compared to a pure battery

storage of 400 kg capable of providing both the propulsion

power and energy of the driving cycles:

Configuration 1: A HES with the same weight of 400 kg as

the pure battery, but with part of the battery replaced by

DLC.



Configuration 2: A downsized battery of 200 kg which meets

only the energy demands, and additional DLC.

In both configurations, a maximum DLC mass of 200 kg is

feasible because of the required energy of the HES and the

maximum payload of the vehicle.

The results for the different driving profiles and the average

values for uphill, downhill and all cycles are displayed in

Fig. 2 and Fig. 3. The losses are normalized to the losses

of the reference battery of 400 kg. Recuperation power which

cannot be stored is dissipated via a shunt, increasing the losses.

Compositions of the HES with DLC smaller than 32 kg in

config. 2 are not realizable as the peak power of the HES is

too small for at least some of the power profiles.

It is apparent for both configurations that the energy losses

can be reduced significantly by replacing part of the reference

battery sized for power demand by DLC (configuration 1) or
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Fig. 2. Energy Losses for Configuration 1 (Constant Storage Mass of 400 kg,
with Part of the Batteries Replaced by DLC)
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Fig. 3. Energy Losses for Configuration 2 (Constant Battery Mass of 200 kg
and Variable Mass of Additional DLC)

by adding extra DLC to the small battery downsized only for

energy demands (configuration 2). The losses first decrease

significantly with additional DLC, but rise again after attaining

a minimum due to a less favorable ratio of DLC and battery

power or the higher weight of the storage and thus the vehicle.

As the power and efficiency of the battery are lower when

recuperating, the reduction of losses is distinctly higher by

up to 18 percentage points on downhill cycles which comprise

31 % more recuperation work and 20 % less traction work.

For configuration 1, a reduction of the losses by 17.5-39 %

compared to a pure battery storage is possible, on average

by 28 %. As the costs for DLC are distinctly higher than for

batteries, a battery weight of 340 kg and DLC weight of 60 kg

was selected. This implies that 15 % of the original battery

have been replaced by DLC, resulting in a possible reduction

of the losses by 17.5-25 % (average 21 %) on uphill cycles and

25.5-37 % (average 31.5 %) on downhill cycles with higher

recuperation.

For configuration 2, the losses can be reduced by a similar

amount as with configuration 1. A DLC weight of 54 kg in

addition to the constant battery weight of 200 kg is a good

compromise to allow reductions of the losses by 17-23 %

(avg. 20 %) on uphill cycles and by 28-39 % (avg. 33.5 %) on

downhill cycles. The weight of the storage decreases by 146 kg

or 36.5 %, additionally resulting in a lower consumption of the

car of about 6 %.

For both configurations and the selected dimensioning, the

maximum power of the HES in contrast to the reference bat-

tery meets the power requirements of 150 kW of the original

car. Careful cost assessment shows that the HES of config. 2

can be cost-neutral for NiMH batteries, but details depend on

the future development of storage costs. The selected HES

configurations are summarized in Table IV.

TABLE IV
SELECTED HYBRID ENERGY STORAGE SYSTEMS

Parameter Config. 1 Config. 2

Battery weight in kg 340 200
DLC weight in kg 60 54
Storage weight in kg 400 254
Total storable energy in MJ 56.9 33.7
Energy storable in battery in MJ 56.1 33
Energy storable in DLC in MJ 0.8 0.74
Max. power in kW 198 154
Avg. loss reduction uphill in % 21 20
Avg. loss reduction downhill in % 31.5 33.5

IV. CAUSAL ENERGY MANAGEMENT

For the sizing of the HES, an optimal, non-causal operating

strategy was applicable which required the exact knowledge of

future driving power. However, for the operation of the vehicle

in urban traffic, a causal energy management is necessary

which can manage the stochastic influences on the driving

cycle and hence the power demand.

Operating strategies for a causal energy management can

be obtained by numerous ways. A conventional strategy is

the limitation of the battery power to reduce the peak power



stress, often combined with a velocity dependent adaptation

of the state of charge of the DLC [8], [9]. Another ap-

proach is to partition the demanded power to a higher and

a lower frequency share and then distribute it to the respective

storage accordingly [10]. More sophisticated strategies apply

heuristics based on boolean or fuzzy rules [11], [12] or use

knowledge of short term future power demand [13].

These approaches are often easy to implement, but they

make no use of the stochastics of the driving cycle. Hence, to

determine a causal energy management which takes stochastic

influences into account, we use the method of Stochastic

Dynamic Programming (SDP) [14], [15], [7].

A. Stochastic Dynamic Programming

Instead of the exact power profile as with the DDP,

only the stochastic process of the driving cycle has to be

known. As with the DDP, the cycle is divided into short

sections k and the system is again described by its state

xk = {vk, Pel, k, SOCDLC,k} comprising the velocity and

power of the car and the state of charge of the DLC. The power

distribution to both storages is controlled by the control signal

u, which in our case is the value discretized battery current.

Based on the recorded driving cycles and simulations of the

vehicle power and the HES, for each value of the control

variable u the transition probability of the state variables at

the end of each section are precalculated and modeled as a

homogeneous Markov chain. This implies that future states

only depend on the actual state xk, not on previous states.

As the Markov chain is homogeneous, the probability for a

transition from one state to another is independent on time

and thus the position of the vehicle.

The cost function Jπ(x0) to be minimized by SDP can only

be defined as an expectancy value of the final costs. This

is composed of the expected costs ck(xk, π(xk), ωk) of the

sections k = 0, 1, . . . , N−1 with knowledge of the probability

distribution ωk and the costs cN (xN ) of the last state xN , e.g.

for a SOC of the DLC deviating from the initial SOC [11]:

Jπ(x0) = Eωk

{

cN (xN ) +

N−1
∑

k=0

ck (xk, π(xk), ωk)

}

(2)

π(xk) denotes the possible strategies, i.e. the power distri-

bution u to both storages, at section k. The costs ck consist of

the energy losses ev(xk, u) at this section and a term which

preserves a medium SOC of the DLC:

ck(xk, u) = ev(xk, u) + α(SOCDLC,k+1 − SOCDLC,med)
2

(3)

This additional term is necessary as the prediction of the

SDP only covers a short horizon. Thus, without this term,

higher losses caused by an empty or full DLC beyond this

prediction horizon could not be prevented. Furthermore, an

approximately balanced SOC of the DLC can be achieved at

the end of the driving cycle.

B. Algorithm

The optimal strategies are calculated by a modified policy-

iteration algorithm described in [15], [16]. The objective is

to find a strategy π(x) for each state x = {v, Pel, SOCDLC}
of the state space X which selects the appropriate power

distribution u to both storages to minimize the expectancy

value of the costs stated in (2). The algorithm iterates the

following four steps for each state x:

1) Initial guess: Set the iteration index i = 1. For each state

x set the strategy π1 = 0 (which in our case means the

complete vehicle power is provided by the DLC). Set

the cost function Jπ0
= 0.

2) Evaluate the strategy: Calculate the expected truncated

costs Jπi
(x) of the strategy πi for N time steps k ahead

by iterating

Jπi
(xk) = c(xk, u) + λ

∑

xk+1∈X

P(xk+1|xk, u)Jπi
(xk+1)

(4)

backwards, starting with JπN
= Jπi−1

(the costs of

the former iteration) and finishing with the expected

costs Jπi
(x0). The strategy πi = u is kept invariant

for all iteration steps. λ is a discount factor to limit the

influence of future costs and to ensure convergence of

the costs. All costs c(xk, u) and transition probabilities

P have been calculated in advance for speedup of the

algorithm. The iteration of the second step terminates

when the costs Jπi
(xk) converge or when N steps are

completed.

3) Improvement of the strategy: Find a strategy πi+1 which

minimizes the expected costs for the next two time steps,

using the costs estimated in step 2:

πi+1(x0) =

argmin
u

{

c(x0, u) + λ
∑

x1∈X

P(x1|x0, u)Jπi
(x1)

}

(5)

Jπi+1
(x0) =

min
u

{

c(x0, u) + λ
∑

x1∈X

P(x1|x0, u)Jπi
(x1)

}

(6)

4) Break iteration if costs converge:

If |Jπi+1
(x0) − Jπi

(xk)| < ε, the optimal strategy

π(x) = πk+1(x) is found. If costs did not converge,

increase the iteration index i and repeat from step 2.

C. Application

The algorithm results in a look-up table stating for each

actual state x of the vehicle the optimal power distribution to

both storages minimizing the expected costs. This can easily

be implemented e.g. on a microcontroller. When driving the

electric vehicle, the actual state is identified, i.e. the velocity,

the propulsion power and the state of charge of the DLC.

The corresponding power distribution to both storages is then

selected from the look-up table and applied to the HES.



TABLE V
SIMULATION RESULTS (PROFILES 1-3: LOW RECUPERATION POWER, 4-7: HIGH RECUPERATION POWER)

Energy losses of energy storage system including converters Efficiency of storage including converters
Profile Pure battery Config. 1 Config. 2 Pure battery Config. 1 Config. 2

no. vehicle in kJ in kJ in % vs. pure bat. in kJ in % vs. pure bat. in % in % in %

1 784.4 692.9 88.3 696.9 88.8 85.2 86.7 85.8
2 795.2 749.4 94.2 752.2 94.6 85.6 86.3 85.4
3 651.3 632.3 97.1 631.3 96.9 86.8 87.2 86.4

Average 743.6 691.5 93.2 693.4 93.5 85.9 86.7 85.9

4 794.9 578.0 72.7 545.9 68.7 78.3 83.2 83.2
5 659.1 569.3 86.4 539.8 81.9 81.2 83.3 83.3
6 528.1 446.0 84.5 430.2 81.5 81.4 83.8 83.7
7 793.6 601.5 75.8 574.2 72.4 80.8 84.7 84.7

Average 693.9 548.7 79.8 522.5 76.1 80.4 83.8 83.7

V. SIMULATION RESULTS

The Stochastic Dynamic Programming was performed on

the data base of the 7 drive cycles. The time period of

the sections k was chosen as 5 s, as the FFT-spectra of the

cycles mainly contain frequencies above 0.2 Hz. Thus, with

this interval the expected cost are predicted long enough to

cover long-term changes in speed and power, while it is short

enough to include detailed state transitions.

The calculation of SDP consumes significant amount of

memory, so the resolution of the state variables has to be

limited. As the SOC of the DLC depends on the supplied

power and the SOC at the former time step, this quantity

should have a higher resolution than the velocity and the power

demand. With a memory of 12 GB, resolutions of 33 states

for the SOC, 13 states for velocity, 19 states for power and

19 control values for the power distribution have turned up

applicable.

The generated look-up table was applied to the individual

profiles. The results are listed in Table V. Profiles 1-3 comprise

a difference in altitude of 57 m uphill, while profiles 4-7 are

downhill. The average energy consumption uphill is 4.5 MJ for

the pure battery car and config. 1 and 4.2 MJ for the car with

reduced battery weight (config. 2). The downhill consumptions

are 2.84 MJ and 2.7 MJ respectively.

For both storage configurations, a significant reduction of

the losses on average by 6.5 % uphill for both configurations

and downhill by 20 % for config. 1 and 24 % for config. 2

is possible. As presented with the DDP, the HES increases

the efficiency of the storage especially on profiles with higher

recuperation power as the power of the pure battery is limited

when recuperating.

This also becomes apparent with the efficiency of the stor-

age, which is increased by 3.3 percentage points for the HES

compared to a pure battery when using the profiles with higher

recuperation power. For the profiles with lower recuperation

power, efficiency is increased by almost 1 percentage point

for configuration 1. For the HES with reduced weight (config.

2), the efficiency is similar compared to the pure battery,

but the overall energy demand of the car can be reduced

by 6 % due to the reduced weight. Compared to the results

of Deterministic Dynamic Programming, the results of the

causal SDP strategy decrease by approx. 14 percentage points

uphill and 10 percentage points downhill due to the limited

knowledge of the driving cycles.

The resulting trajectories of DDP (green) and SDP (red) are

exemplarily displayed for profile 4 and storage configuration 2

in Fig. 4. For both strategies, the trajectories of the battery

power are very similar. The battery only delivers a lower share

of the traction power of up to 20 kW with DDP and 29 kW

with SDP. The DLC is primarily recharged by regenerative

braking: recuperated energy is solely stored in the DLC when

applying DDP, but with the causal SDP strategy, a small part

of the recuperated energy has to be stored in the battery. A

charging of one storage by the other scarcely takes place as

it is costly due to the poor efficiency of two power converters

involved. A wider range of the SOC of the DLC is used with

DDP, as the future power is known exactly and thus can be

considered, while the SDP algorithm has to preserve a medium

SOC due to the limited knowledge of future power.

VI. CONCLUSION

Using a hybrid energy storage system combining batteries

and double layer capacitors for electric vehicles instead of a

pure traction battery results in a significant reduction of losses

in the energy storage.

Via Deterministic Dynamic Programming, the size of the

hybrid storage can be optimized. A downsizing of the battery

to the energy demands of the vehicle is possible with relatively

low additional DLC weight of 54 kg, reducing the investment

costs for the battery, weight of the car and thus energy

consumption.

Stochastic Dynamic Programming offers a way to determine

a causal strategy to distribute the power to both storages,

taking the stochastic influences of traffic into account. A

reduction of losses up to 24 % is possible.

Further work will address the consideration of multiple

competing objectives and the applicability of the determined

strategies to drive cycles which are not part of the data base.
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