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Abstract—. This study considers a Hybrid Electrical Vehicle 
supplied by a Fuel Cell stack and supercapacitances used as 
Storage Element. In such an application, real time energy 
management is of paramount importance in order to 
increase autonomy and be able to deal on-line with 
perturbed power demand. Many off-line power flow 
optimization principles are available but on-line algorithms 
are preferred and should be derived for optimal 
management of the instantaneous power splitting between 
the different available power sources. Based on particle 
swarm optimization algorithm, this study defines the 
parameters tuning of such algorithm in real time. The final 
power splitting allows not only recovering energy braking 
but also is robust to some disturbances occurring during the 
trip. The solution provides good-quality and high-
robustness results in a certain class of mission profile and 
power disturbance. 

Key Words : Particle Swarm Optimization, Hybrid Electric 
Vehicle, Multi-source System. 

I. INTRODUCTION 

Replacing oil-based engines, and dealing with 
renewable sources is a challenge because the power 
distribution structure change drastically. In transport 
applications when zero emission is foreseen, Hybrid 
Electrical Vehicles are composed with a main sources of 
Energy (or Power) and storage elements to be able to store 
and to restitute an additional energy (or power) when 
requested [1]. In transport applications, it is obvious that 
energy braking recovery should be performed and the 
stored energy should be provided to the powertrain not 
only to respond to some high power requests but also to 
manage the global efficiency of the electrical system. 

 Maintaining the global efficiency at a maximum level 
with a dedicated energy management strategy allows 
autonomy to increase, minimizing the consumption on a 
given mission profile, and also allows increasing the 
durability of the different electrical and/or electrochemical 
components (Fuel Cell, Supercap or Batteries…). A 
certain level of knowledge of the power demand is 
requested to optimize the consumption. With this 
consideration two categories of optimization principles 
can be listed : 

- off line global optimization 

- on line ‘partial’ optimization 

In off-line category, Dynamic Programming (D.P.) is 
one of the most used algorithms. Its principle is based on 
the Bellman’s principle [2] and starts computation from 
the end of the profile to find an optimal path reaching the 
beginning and leaving the optimization criterion as low as 
possible. Then, the founded path should be re-played. 
Some considerations should be given to having an 
accurate solution but problems arise when constraints are 
added and when computer time computation is limited. 
Optimal control is also use to replay a sequence of control 
computed optimally off-line using Pontryagin principle 
[3]. This technique provides good results when the 
criterion can be expressed linearly and thus derived. 
Constraints are also not obvious to include and some 
parameters are hard to be tuned to obtain the solution. 

Real time energy management strategies are mainly 
based on linguistic rules or artificial intelligence 
[4],[5],[6]. Commonly used in HEV, logical rules are 
quite easy to define, when considering the management of 
2 or 3 sources. These rules impact directly on the 
consumption and should be optimized as well. Fuzzy-
Logic supervisor, Neural Networks [4], System with 
Multi-Agent or adding Genetic Algorithm [10] are also 
used. All methods suffer from the same problems: 
complexity is increasing and all methods are based on 
learning patterns. 

In this paper a stochastic on-line optimization principle 
is used. Particle Swarm is a method to explore a given 
space where an optimal solution is sought. In this case 
several iterations will ensure that the optimal solution is 
found. Therefore, a set of parameters can be tuned to reach 
the solution while keeping a low computation time. When 
the power splitting should be refreshed with a certain 
periodicity, this kind of algorithm can provide a sub-
optimal solution or even reach the optimal one.  

In part II, the HEV powertrain is described and all 
characteristics of the different onboard sources are given. 
In part III, the problem formulation is detailed to minimize 
the criterion and to respect all listed constraints. In part IV 
attention is focused on advantages of the proposed particle 
swarm algorithm. Part V presents the complete study of 
parameters tuning and results obtained using different 
actual profiles, with or without perturbations. Analysis, 
limitation and conclusion are given in Part VI. 
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II. PROBLEM DESCRIPTION 

A. Power flows and Energy Onboard 

In this paper a classical Hybrid Electrical Vehicle is 
considered. Different power trains can be defined and 
sizing of all elements should be optimized as well. To not 
treat ‘systemic’ problem, a given hybridization is fixed 
here and only two electrical sources are linked to the 
same DC bus with their own choppers. Fig1 describes the 
considered serial electrical structure. It can be noticed 
that an electrical node appears between the different 
subsystems. 
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Fig 1: serial electrical structure for HEV with FC and SE 
 
The Hydrogen Tank, the Fuel Cell and its ancillaries 

(Compressor, Valves and local control...) and the non 
reversible chopper are grouped constituting the Fuel Cell 
System and considered as the primary sources - FCS. 

On the other hand, Supercaps Elements and its 
reversible chopper allow constituting a second electrical 
source - SSE – which can store or restitute energy. 

The moto-propulsion group is here simplified because 
only the electrical power demand is considered. With this 
consideration if the powertrain architecture changes 
(boggy or wheels, synchronous or DC machine…) only 
the electrical power demand should be computed when 
leaving all the other elements in the optimization 
algorithm. 

 
Fig 2 : Multi-source system problem formulation 

Fig 2 presents the composition of the two main 
sources focusing on different efficiencies (losses) which 
should also be easily adapted if some element is changing 
(different FC size, different switching components in 
chopper etc.). Fig 2 also represents the electrical node and 
the power and efficiency data requested to be able to run 
an optimization algorithm in such an application. 

B. Efficiency of the main elements 

Algorithms, solving the optimal energy management 
problem are fed with data describing the efficiency of all 
elements. Each source has its own behavior meaning that 

it presents a different efficiency depending on the power 
delivered [7]. Local controls are considered effective. 
Fuel Cell Stack stay at a given temperature and pressure 
and hygrometry are supposed to be well-maintained 
[8],[9]. Homogenous current repartition in the FCS 
allows dealing with a global FCS efficiency behavior 

FCη , described in Fig 3. In the same way, the storage 

element is made with several commercial supercaps in 
serial and parallel to obtain the System Storage Element 
(SSE). Balance between supercap elements is also 
considered effective and just one constant equivalent 
resistance Rsc and capacitance Csc are considered with 
losses only depending on losses in chopper, therefore the 

global efficiency SEη  is given in Fig 4. 
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Fig 3: Fuel Cell system global efficiency curve 
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Fig 4 : Reversible Storage Element global efficiency curve 

 
Note that the Maximum Efficiency Point for a Fuel 

Cell System is allocated at about 25% to 30% of the 
nominal power (22kW here for a 60kW FCS).  

Fig 3 and 4 provide the efficiency maps to be 
considered by the algorithm to compute the efficiency of 
the powertrain through a criterion to be minimized. 
The two power demands used are presented in fig 5 - 
INRETS is an urban profile for a personal vehicle and fig 
6 - ESKISEHIR is the name of a power profile measured 
on a tramway line in Turkey [9],[10]. 
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Fig. 5.  INRETS : Power profile of a hybrid vehicle in urban area 
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Fig. 6.  ESKISEHIR : Power profile of a tram on the line of 

Eskisehir (Turkey) 
 
The element sizing is made to let the power splitting 

explore all possible solutions and let emerge if possible 
solutions using only FCS or only SSE, or all combination 
to supply the power demand. No ‘systemic’ hybridization 
linked to size or weight is considered in this approach to 
provide efficient algorithms whatever the HEV 
characteristic is (parameters used are given in Table I).  

 
TABLE I 

SYSTEM  POWER  AND ENERGY CONSTRAINTS 

Symbol Quantity Value 

PSEmin -60kW 
PSEmax 60 kW 
PFCmin 0 kW 
PFCmax 70 kW 

SOEmin 400 kW.s 
SOEmax 1600 kW.s 

 
Considering a given requested power profile (cf. 

figures 5 and 6), this paper proposes to respond to the 
following question : what is the optimal power splitting in 
order to obtain a maximal efficiency of the vehicle (and 
thus the lowest fuel consumption) on the driving cycle 
under Table I constraints ?   

III.  ALGORITHMS AND ENERGY MANAGEMENT 

The energy management problem is formulated here as 
a global dynamic optimization problem under constraints. 
The hydrogen consumption is quantified as a cost 
function to be minimized. The cost function is evaluated 
over a defined period of time. The system’s dynamic 
equation is: 

)(tPE FC−=&   

Where the energy level storedE  is the state variable 
and the power PFC the control variable. 

The cost function to minimize is the "total consumed 

energy" of hydrogen 
2HE over a period of time [tf-ti]. 

dt
tP
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Using the previously defined efficiency, the cost criterion 
is therefore:  

( )
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η
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The system is subject to non linear constraints of 

inequality related to the constraints linked to the design of 
the stack, the storage element power and state of charge 
resumed in (3): 

( )_ min _ maxSE SE SE
P P t P≤ ≤  ; ( )_ min _ maxFC FC FC

P P t P≤ ≤   

( )min max
E E t E≤ ≤     (3) 

 
Satisfying the power demand imposes an equality 

constraint (4): 

0
SE FC dem

P P P+ − =    (4)  

The Storage Element efficiency must be used at this 
step to add its behaviour as the Fuel Cell. An additional 
condition (5) is imposed artificially in order to ensure that 
the state of charge is maintained at the end of the cycle 
and to facilitate cycling the power demand without any 
more consideration from an energy management point of 
view. 

( ) ( )f i
E t E t=     (5) 

A. On-line principles : Rules-Fuzzy-AI 

Based on expert knowledge, logical rules are easy to 
establish. In fact it is easy to say the system should use 
the FC when SE is empty or should use both FC and SE 
when power is high and SE in its average State Of Charge 
etc. A lot of research deal with such ‘natural’ approach 
only listed here to show advantages of the following 
proposed solution. 

These rules are impacting directly on the consumption 
and the expert should come up with a way to pass from 
one rule to the other. So the fuzzy approach is a solution 
to define each rule, the membership functions and the 
universe of discourse [5],[6]. Moreover position of all 
membership functions can be optimized on a given 
profile. In fact, Genetic Algorithm [10] or Neural 
Network [6] can ‘learn’ the profile and the optimization is 
still made off-line on a given profile but the supervisor 
build in this way is able to propose an optimal or near-
optimal solution even if the profile is not exactly the one 
known. Artificial intelligence and expert analyzes should 
be mixed to have not only an accurate optimal solution, 
respecting constraints but also an algorithm keeping 
under control the complexity and the computer time 
requested to reach the solution in real time.  

B. On-line stochastic :  Particle Swarm 

Considering that computing all solutions is not 
possible on-line and in real time (with actual processor). 
Considering that rule-based algorithm should still be 
optimized off-line and using them on-line can sometimes 
not respect important constraints, the idea is here to use 
both advantages using particle swarm optimization 
principle. Particle Swarm Optimization (PSO) principle is 
based on (6) and (7): 
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Where v
r

 is a vector of particles speed, x
r

 their 

positions and ⊗ represents terms by terms vector 
multiplication [11],[12]. 
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This stochastic algorithm explores randomly the space 
of solution and depending on the number of particles and 
the number of iterations made; engineer can fix accuracy 
and limit the requested computation time. 

This evolution (6) is based on bee behavior (random 
flights of bee swarm) and to the optimal solution after 
some iteration k-> infinity, the swarm conserves the 
better value seen in the previous iteration p1 and the best 
value ever seen p2 to update velocities and thus particle 
positions. Attracting coefficients a, b, c, d ensure 
exploration and convergence form (zigzagging, 
oscillating, exponentially converging…). In this 
considered classical case (no abrupt optimal or sub-
optimal minima) values found in literature are used: 
a=0.729, b=1.494 and without loss of generally c=1, 
d=1 and r1 and r2 are randomly chosen in [0 1], [11]. 
Details should be added in the final paper. 

IV.  PARTICLE SWARM AND ON-LINE HEV ENERGY 

MANAGEMENT 

In the HEV on-line energy management problem, the 
number of particles nb_part, the number of iteration 
nb_it, and the number of swarm nb_swarm should be 
fixed. Moreover to limit the number of calculus and the 
computing time, the problem should be reduced to an 
optimization in a given window size, so, the whole power 
profile demand should be divided (Fig 7). 

The optimization purchased is always the lower 
consumption cost but made in a window where beginning 
and ending power is known as the best one. The windows 
bound are computed off–line by the dynamic 
programming optimization and available in a lookup table 
for example. The solution is still the Fuel Cell power to 
deliver PFC and in consequence the power delivered by 
the storage Element PSE, this computation is made in real 
time in the windows and if there is no power demand 
disturbances the optimal solution must be found as quick 
as possible. 

A certain number of particle nb_part, is fixed 
randomly at different energy level at each time in a 
window [tk tk+1]. The sampling time ∆t and window’s 
size increase the computation time. All particles are free 
to explore all energy level from [0 100%] with a step of 
about 1%, this ∆E is chosen to be as accurate as possible 
taking into account the possible chopper and source 
capacity to maintain Ek and also to preserve a realistic 
computation time. 

 
Fig 7 : set of parameters of the particle swarm algorithm 

The criterion is minimized on the window size and 
consumption is minimized optimally using energy levels 
Ek and Ek+1. These levels used as references should have 
been computed off-line by Dynamic Programming 
algorithm. It can be noticed that this approach mixes the 
off-line optimization and the on-line minimization which 
can be seen as an adaptation capacity. In fact, if no 
disturbance occurs, particle swarm optimization should 
converge to the same path as Dynamic Programming. In 
case of disturbance, the rejection is ensured by particle 
swarm to locally change the path and return, if possible, 
to the optimal energy level Ek+1 that ensure an optimal 
ending (with no other disturbance). 

All set of parameters can be tested on a profile in a 
first step to be roughly defined. The correct set should 
ensure almost 50% of swarm funding the optimal path 
and delivering a result in a time lower than the refreshing 
reference period tk+1-tk. 

A. Simulation based tuning 

Running some simulations with different sets of 
parameters allows establishing the values shown in Table 
III. Obviously, the higher are the nb_swarm or nb_it or 
nb_part higher the computation time. If 3 on 5 swarms 
have found the optimal path means the path is found with 
60% of chance, so the path can be considered always 
found. It can also be seen that using 5 swarms and 20 
particles is correct because this set provides the optimal 
path with 60% of chance in a low and feasible actual 
computing time. Lower values provide less than 50% path 
found and are considered too risky to be used in the real 
time optimization problem. 

NB: program executed in Matlab® R2008a on a 
Windows XPpro environment dedicated to calculus 
(processor: PowerEdge 6850, Quadri Xeon, 3.2GHz, 
32Go Ram, 2x150 Go Scsi UTRA 320)  

TABLE III 

Set of parameters and solution found 

nb_swarm nb_part nb_it 
Average 

computation 
time (s) 

Optimal 
path found 

5 50 100 4.28s 5 

5 50 50 1.78s 5 

5 40 100 3.42s 5 

5 40 50 1.38s 4 

5 30 100 2.46s 4 

5 30 50 1.06s 4 

5 20 100 1.56s 3 

5 20 50 0.76s 3 

Of course, depending on the processor used, the higher 
is the number of swarm or number of iteration, the higher 
is the probability to found the best path in a given time. 
Even if the program and communication data are not 
implemented on the final processing system, such data can 
put in evidence relatively the cost and advantages of the 
different parameters. Thus, the code should be also 
optimized so values given in Table III should be used only 
in a relative way. 
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B. Validation on actual profiles 

Using sampling time of ∆t=2s, ∆E=1kWs, the power 
demand is satisfied and state of charge of the storage 
element is shown in Fig 8. 

Energy management State of Charge -INRETS Profile - ∆E=1kWs et ∆t=2s
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Fig 8 : Energy management State of Charge -INRETS Profile - 

∆E=1kWs et ∆t=2s 

In this figure with no perturbation on the profile, it 
can be noticed that D.P. path is the same as the one find 
in each Particular Swarm window, the curves obtained 
with fuzzy logic is only provided to see the possible 
different energy managements and details are in [10]. 

It has to be noticed that both optimization provides 
quite the same consumption of energy on the whole 
profile (Part. Swarm/D.P.= 10362kW.s and Fuzzy= 
10358kW.s) but fuzzy leaves some power demands not 
furnished (due to saturation at low SOC) and is only 
shown for comparison purposes. Storage element is 
considered to be charged at 900kWs and respect its min 
and max S.O.C. during the trip and allows managing 
optimally the energy on board. 

V. VALIDATION AND COMPARISON 

Previous sections demonstrate that particular swarm 
algorithm is able to found the optimal path, windows by 
windows, using the off-line energy level computed for 
example with D.P. on a given profile as a reference. This 
section tests the proposed algorithm on different profiles 
and with an unknown perturbation added artificially to 
characterize the robustness of such an approach. 

A. First comparison 

In fact, depending on the power profile, parameter 
adjustment should be made. Of course, nb_part and nb_it 
are linked to the convergence velocity and thus the 
possibility to adapt the particle speed quickly to the 
profile variation. Therefore, using ESKISEHIR profile 
instead of INRETS with the set of parameter nb_part=50, 
nb_it=50, nb_swarm=5 is not sufficient. Analyzing where 
are the problems, it has been noticed that no solution 
where found in some specific windows (the others are 
computed without any problem). For these windows the 
power variation is greater as in INRETS profile and 
difference is shown in Fig9. This profile presents some 
section with a higher power variation so the nb_part or 
nb_it should be increased to be able to found the optimal 
path. Thus, as for many other methods, analyzing the 
power demand in terms of max power, mean power and 
power variation demand, not only provides sizing 

information but also information to tune accurately 
optimization parameters in the algorithm. 

Power variation – ESKISEHIR Profile

-80 -60 -40 -20 0 20 40 60 80 1000  

10

20

30

40

50

60

70

Power (kW)

O
cc

ur
re

nc
e(

%
)

Power variation – INRETS Profile

-60 -40 -20 0 20 40 60 800  

10

20

30

40

50

Power (kW)

O
cc

ur
re

nc
e(

%
)

Power variation – ESKISEHIR Profile

-80 -60 -40 -20 0 20 40 60 80 1000  

10

20

30

40

50

60

70

Power (kW)

O
cc

ur
re

nc
e(

%
)

Power variation – ESKISEHIR Profile

-80 -60 -40 -20 0 20 40 60 80 1000  

10

20

30

40

50

60

70

Power (kW)

O
cc

ur
re

nc
e(

%
)

Power variation – INRETS Profile

-60 -40 -20 0 20 40 60 800  

10

20

30

40

50

Power (kW)

O
cc

ur
re

nc
e(

%
)

Power variation – INRETS Profile

-60 -40 -20 0 20 40 60 800  

10

20

30

40

50

Power (kW)

O
cc

ur
re

nc
e(

%
)

 

Fig 9 : Power variation occurrence in different ranges of magnitude 

Using nb_part=20, nb_it=50, nb_swarm=7 is 
convenient for both profiles. The same study should be 
made on other profiles to be sure to be able to optimize 
the criterion. Even if the optimization is not optimal, the 
particle swarm algorithm provides a solution better than 
optimization following off-line references. Adding a 
perturbation on a given profile may justify the 
adaptation ability of particle swarm algorithm. 

B. Performance and robustness comparison 

To verify the possible adaptation of the proposed 
algorithm, a perturbation is added to the known power 
demand INRETS limited to the 50th first point (50s) 
Fig11. In Fig 11, a non expected positive power demand 
is added during 5s (acceleration required for example due 
to the road traffic). In Fig 11bis the disturbance is 
proposed to be negative to simulate a non expected 
braking… The perturbation occurs during 5s which is the 
size of the optimization window; tests could be made for 
longer disturbances but are out of scope of this paper. 
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Fig 11 : Initial profile, sequence selected and first disturbance 
injected Dist=50kW (case dist>0). 

 

Fig 11b : second disturbance type : Dist=-40kW (Case dist<0) 
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From the start point 0 to point 50, with no 
disturbance, the optimal energy consumption is 
790kWs, with positive disturbance used, the 
consumption is 1404kWs and when a braking energy 
not expected is used (negative disturbance) the 
consumption is 592kWs. 

Depending on the position and here mainly on the 
perturbation magnitude, it is possible or not to optimize 
the criterion in a given window size. In the case under 
study, the profile does not present high power demands 
after the disturbance point [25-28] and the energy 
recovered can not be delivered in the foreseen windows. 
Moreover, if the energy stored is quickly used in this 
phase, the Fuel Cell power may decrease, decreasing its 
efficiency, thus a bad criterion is obtained. Using a 
window twice larger (Fig 11b), the algorithm can find a 
solution to return to the energy state imposed respecting 
constraints of the system. Increasing the optimization 
window size means increasing the computation time and 
the necessity to verify real time constraints. nb_swarm=1 
solves partially this issue but 4 tests on 10 provides no 
optimal path (only with an increase of fuel consumption 
limited to 1%). 

TABLE IV 

Set of parameters and robustness 
 Ideal Dist >0 Dist<0 

Window size 
(nb points) 

5 5 12 

nb_swarm 7 1 7 

nb_part 20 20 100 

nb_it 50 50 50 

This last study means that an adaptation is requested 
on line when a disturbance is detected to be able to switch 
the strategy (different set of parameters for the particular 
swarm – resumed in Table IV) to obtain a good result. Of 
course, a prediction or a statistical data-base can be used 
to classify the different possible disturbances as well as 
the requested analysis to classify the profile. 

VI.  CONCLUSIONS 

Particle swarm optimization is an efficient solution 
for on-line energy management for Hybrid Electrical 
Vehicle. It did not pass over common problems in such 
application: the profile should be studied and classified to 
found accurate set of tuning parameters. Performances 
are better when references are provided with off-line 
global optimization. Disturbances should be predicted or 
a degree of freedom should be used to cancel their 
influences. 

This approach is not really an Artificial Intelligence 
approach using learning phase, but using optimal 
references, the particular swarm optimization algorithm is 
able to compute, in a limited computation time, the 
optimal path in terms of fuel consumption. The proposed 
solution combined on-line and off-line optimization 
scheme in their classical form. There is no need at this 
level to track new evolution and new programming of 

these approaches but focusing our attention on real time 
implementation and tracking accuracy of the solution 
with modifications of the mission profile is of paramount 
importance. 

The proposed solution strategy one of the goods 
solution to split the energy supplies references to be 
followed to provide the power demand of the HEV 
composed here with a Fuel Cell stack and Storage with 
supercapacitance elements. 

Particles are able to compute in real time the optimal 
path with some capacity to reject disturbances and in each 
case to adapt the optimal path to a sub-optimal path 
respecting real time computing constraints. 
Implementation on an actual vehicle should be made in a 
next step in order to validate the approach.  
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