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Abstract—. This study considers a Hybrid Electrical Vehicle In off-line category, Dynamic Programming (D.P.) is
supplied by a Fuel Cell stack and supercapacitances used as gne of the most used algorithms. Its principle is based on
Storage Element. In such an application, real time energy the Bellman’s principle [2] and starts computation from
management is of paramount importance in order 10 ha eng of the profile to find an optimal path reaching the
g‘;rrti?s:d a;goxgrm yd e?::n dbe Maa?:s g;f_"dneeal pgnw-‘lel?e ﬂ(\x\',th beginning and leaving the optimization criterion as low as
optimization principles are available but on-line algorithms possible. Then, the founded path s.hould be re—.played.
are preferred and should be derived for optimal Some considerations should be given to having an
management of the instantaneous power splitting between accurate solution but problems arise when constraints are
the different available power sources. Based on particle added and when computer time computation is limited.
swarm optimization algorithm, this study defines the Optimal control is also use to replay a sequence of control
parameters tuning of such algorithm in real time. The final  computed optimally off-line using Pontryagin principle
power splitting allows not iny recovering energy braking [3]. This technique provides good results when the
but also is robust to some disturbances occurring during the  yjterion can be expressed linearly and thus derived.
trip. The solution provides good-quality and high- Constraints are also not obvious to include and some
robustness results in a certain class of mission profile and parameters are hard to be tuned to obtain the solution

power disturbance.
Real time energy management strategies are mainly
Key Words :Particle Swarm Optimization, Hybrid Electric ~ based on linguistic rules or artificial intelligence

Vehicle, Multi-source System. [4],[5],[6]. Commonly used in HEV, logical rules are
quite easy to define, when considering the management of
. INTRODUCTION 2 or 3 sources. These rules impact directly on the

. ) ) . _.consumption and should be optimized as well. Fuzzy-
Replacing oil-based engines, and dealing Wwith gic supervisor, Neural Networks [4], System with
renewable sources is a challenge because the POwWGhi-agent or adding Genetic Algorithm [10] are also
distribution structure change drastically. In transporf,seq. Al methods suffer from the same problems:

applications when zero emission is foreseen, Hybrid,mnsjexity is increasing and all methods are based on
Electrical Vehicles are composed with a main sources %arning patterns.

Energy (or Power) and storage elements to be able to store

and to restitute an additional energy (or power) when d. Particle S ) thod t I '
requested [1]. In transport applications, it is obvious thap USed. Farticie swarm is a method 1o explore a given

energy braking recovery should be performed and thaPace V\{here_ an optlmal solution is soug_ht. In th'$ case
stored energy should be provided to the powertrain nTeveral iterations will ensure that the optimal solution is

In this paper a stochastic on-line optimization principle

only to respond to some high power requests but also und. Therefore, a set of parameters can be tuned to reach

. ; e solution while keeping a low computation time. When
manage the global efficiency of the electrical system. the power splitting should be refreshed with a certain

_Maintaining the global efficiency at a maximum level e rjqgicity, this kind of algorithm can provide a sub-
with a dedicated energy management strategy allowssiima solution or even reach the optimal one.
autonomy to increase, minimizing the consumption on a o .
given mission profile, and also allows increasing the In part I.I’ the HEV. powertrain is described and _aII
durability of the different electrical and/or electroc:hemicalcharaCte”StICS of the different onboard sources are given.

components (Fuel Cell, Supercap or Batteries...). An part 11, the problem formulation is detailed to minimize

certain level of knowledge of the power demand istr;te c:!terl_onfand todrespeotl:t aIItI|sted (;otﬂstramts. In dparttl_\/l
requested to optimize the consumption. With thihtention IS focused on advantages ot In€ proposed particle

consideration two categories of optimization principlesSWarm algorlthm. Part V presents th? complgte st_udy of
can be listed parameters tuning and results obtained using different
o o actual profiles, with or without perturbations. Analysis,
- off line global optimization

. _ et limitation and conclusion are given in Part VI.
- on line ‘partial’ optimization
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.  PROBLEM DESCRIPTION it presents a different efficiency depending on ploever
delivered [7]. Local controls are considered effect
A. Power flows and Energy Onboard Fuel Cell Stack stay at a given temperature andspre

In this paper a classical Hybrid Electrical Vehicde and hygrometry are supposed to be well-maintained
considered. Different power trains can be defined a [8],[9]. Homogenous current repartition in the FCS
sizing of all elements should be optimized as vildl.not ~ allows dealing with a global FCS efficiency behavio
treat ‘systemic’ problem, a given hybridization figed Nec, described in Fig 3. In the same way, the storage
here and only two electrical sources are linkedth®
same DC bus with their own choppers. Figl desctibes
considered serial electrical structure. It can loéiced
that an electrical node appears between the differe
subsystems.

element is made with several commercial supercaps i
serial and parallel to obtain the System Storagamght
(SSE). Balance between supercap elements is also
considered effective and just one constant equivale
resistanceRsc and capacitanc€sc are considered with
losses only depending on losses in chopper, therdifie

Hydroger Fuel g o
—— >
Tank Cell H global efficiency/] ¢ is given in Fig 4.
ﬁ ! 0.5 ‘
Energy . > Electric . L
Management E Motor 2o S |
E 0.3 /
Storage g /
Element =0.
Fig 1: serial electrical structure for HEV with E@d SE ] 0 /
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(Compressor, Valves and local control...) and tle& n _
Fuel cell power available on DCbus (W) x 16

reversible chopper are grouped constituting thd Eed
System and considered as the primary sources - FCS.
On the other hand, Supercaps Elements and its 100
reversible chopper allow constituting a second teted an
source - SSE — which can store or restitute energy. 8O |-
The moto-propulsion group is here simplified beeaus o
only the electrical power demand is considered hwits
consideration if the powertrain architecture change
(boggy or wheels, synchronous or DC machine...) only

Fig 3: Fuel Cell system global efficiency curve
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the electrical power demand should be computed when 20 |-n-
leaving all the other elements in the optimization 10
algorithm. 0

E.S. Power (W) w10t
Fig 4 : Reversible Storage Element global efficiecarve
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Note that the Maximum Efficiency Point for a Fuel
Cell System is allocated at about 25% to 30% of the
nominal power (22kW here for a 60kW FCS).

Py g Fig 3 and 4 provide the efficiency maps to be
considered by the algorithm to compute the efficieaf
the powertrain through a criterion to be minimized.

Fig 2 : Multi-source system problem formulation The two power demands used are presented in fig 5 -

Fig 2 presents the composition of the two main NRETS is an ur.barrl] profile forfa personal vahiahel eﬁg
sources focusing on different efficiencies (loss&kjch 6 - ESKISEHIR is the name of a power profile measur

should also be easily adapted if some elementargihg on a tramway line in Turkey [9],[10].
(different FC size, different switching componerits
chopper etc.). Fig 2 also represents the electnodé and
the power and efficiency data requested to be @bian
an optimization algorithm in such an application.
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Algorithms, solving the optimal energy management Torps )
problem are fed with data describing the efficienall Fig. 5. INRETS : Power profile of a hybrid vehigteurban area
elements. Each source has its own behavior medatg
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The element sizing is made to let the power spfitti
explore all possible solutions and let emerge ggiue
solutions using only FCS or only SSE, or all conaliion
to supply the power demand. No ‘systemic’ hybritiaa
linked to size or weight is considered in this azmh to
provide efficient algorithms whatever the HEV
characteristic is (parameters used are given iteTiab

TABLE |
SYSTEM POWER ANDENERGY CONSTRAINTS

Symbol Quantity Value
PSEmin -60kW
PSEmax 60 kW
PFCmin 0 kw
PFCmax 70 kw
SOEmin 400 kW.s
SOEmax 1600 kW.s

Considering a given requested power profile (cf.

figures 5 and 6), this paper proposes to respontheo
following question : what is the optimal power #dig in
order to obtain a maximal efficiency of the vehi¢nd
thus the lowest fuel consumption) on the drivingley
under Table | constraints ?

. ALGORITHMS AND ENERGY MANAGEMENT

(VPP) Confere2€40, Lille, FR
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Satisfying the power demand imposes an equality
constraint (4):

PSE + PFC - Pdem: O (4)

The Storage Element efficiency must be used at this
step to add its behaviour as the Fuel Cell. An taaldil
condition (5) is imposed artificially in order togure that
the state of charge is maintained at the end otyloée
and to facilitate cycling the power demand withanty
more consideration from an energy management pdint

Vview. _ ( t )

E(t)

A. On-line principles : Rules-Fuzzy-Al

Based on expert knowledge, logical rules are easy t
establish. In fact it is easy to say the systenulshase
the FC when SE is empty or should use both FC &d S
when power is high and SE in its average State l@frge
etc. A lot of research deal with such ‘natural’ eggch
only listed here to show advantages of the follgwin
proposed solution.

These rules are impacting directly on the consumnpti
and the expert should come up with a way to pas® fr
one rule to the other. So the fuzzy approach islatisn
to define each rule, the membership functions dred t
universe of discourse [5],[6]. Moreover position aif
membership functions can be optimized on a given
profile. In fact, Genetic Algorithm [10] or Neural
Network [6] can ‘learn’ the profile and the optiration is

®)

The energy management problem is formulated here &8l made off-line on a given profile but the suyisor

a global dynamic optimization problem under coristsa
The hydrogen consumption is quantified as a co
function to be minimized. The cost function is exded
over a defined period of time. The system’s dynami
equation is:
E=-Pec(t)

Where the energy level stor&dis the state variable
and the powePyc the control variable.

The cost function to minimize is the "total consuime

energy" of hydrogerEHz over a period of timetft;].

PFC (t)

— jtt
Tl
PN e (P (1)
Using the previously defined efficiency, the costetion
is therefore:
P, (1)

y_ FC

1 (P (1))

)

)

build in this way is able to propose an optimalnear-

Jpptimal solution even if the profile is not exacthe one

known. Artificial intelligence and expert analyzstsould

éJe mixed to have not only an accurate optimal gmoiut

respecting constraints but also an algorithm kegpin
under control the complexity and the computer time
requested to reach the solution in real time.

B. On-line stochastic : Particle Swarm

Considering that computing all solutions is not
possible on-line and in real time (with actual mssor).
Considering that rule-based algorithm should <tid
optimized off-line and using them on-line can sdmes
not respect important constraints, the idea is henese
both advantages using particle swarm optimization
principle. Particle Swarm Optimization (PSO) prpileiis
based on (6) and (7):

vk+1:émvk+61Dr1D(ﬁl_)?k) (6)
+b2 Drz D(ﬁZ_)?k)
)?k+1 =cu )?k +d kaﬂ (7)

The system is subject to non linear constraints of

inequality related to the constraints linked to dlesign of
the stack, the storage element power and statharfye
resumed in (3):

Where V is a vector of particles speed their

positions and [ represents terms by terms vector
multiplication [11],[12].
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This stochastic algorithm explores randomly thecepa The criterion is minimized on the window size and
of solution and depending on the number of paieled consumption is minimized optimally using energyeisv
the number of iterations made; engineer can fiuemy  E, andE.;. These levels used as references should have
and limit the requested computation time. been computed off-line by Dynamic Programming

This evolution (6) is based on bee behavior (randonalgorithm. It can be noticed that this approacheasithe
flights of bee swarm) and to the optimal solutidtera off-line optimization and the on-line minimizatiavhich
some iterationk-> infinity, the swarm conserves the can be seen as an adaptation capacity. In faaoif
better value seen in the previous iteratiprand the best disturbance occurs, particle swarm optimizationustho
value ever seep, to update velocities and thus particle converge to the same path as Dynamic Programming. |
positions. Attracting coefficientsa, b, c, d ensure case of disturbance, the rejection is ensured biicfg
exploration and convergence form (zigzaggingswarm to locally change the path and return, ifsjue,
oscillating, exponentially converging...). In this to the optimal energy levdt,,,; that ensure an optimal
considered classical case (no abrupt optimal or- sulending (with no other disturbance).
optimal minima) values found in literature are used All set of parameters can be tested on a profila in
a=0.729 b=1.494 and without loss of generalb=1, first step to be roughly defined. The correct dsusd
d=1 andrl andr2 are randomly chosen in [0 1], [11]. ensure almost 50% of swarm funding the optimal path
Details should be added in the final paper. and delivering a result in a time lower than thieeghing

reference period.-ty.
IV. PARTICLE SWARM ANDON-LINE HEV ENERGY

MANAGEMENT A. Simulation based tuning

In the HEV on-line energy management problem, the Running some simu!ati_ons with different sets of
number of particlesnb_part the number of iteration Parameters allows establishing the values shovifabie
nb it and the number of swarmb swarmshould be !ll. Obviously, the higher are theb_swarmor nb_it or
fixed. Moreover to limit the number of calculus atee  P_parthigher the computation time. If 3 on 5 swarms
computing time, the problem should be reduced to afave found the optimal path means the path is fouittd
optimization in a given window size, so, the whptaver 60% of chance, so the path can be considered always
profile demand should be divided (Fig 7). four!d. It can also be seen tth using 5 _swarm_sZﬁhd

The optimization purchased is always the |owe,part|cle_s is correct because_ this set prowdesoptsmal
consumption cost but made in a window where begni path W|_th 6_0% of chance in a I0\_/v and feasible dctua
and ending power is known as the best one. Theawad COMPputing time. Lower values provide less than §h
bound are computed off-line by the dynamicf_ound and_are_ considered too risky to be used enrdial
programming optimization and available in a lookaple ~ time optimization problem.
for example. The solution is still the Fuel Cellwsr to NB: program executed in Matlab® R2008a on a
deliver Prc and in consequence the power delivered byVindows XPpro environment dedicated to calculus
the storage Elemerfse this computation is made in real (processor: PowerEdge 6850, Quadri Xeon, 3.2GHz,
time in the windows and if there is no power demand®2Go Ram, 2x150 Go Scsi UTRA 320)

disturba_nces the optimal solution must be founduask TABLE Il
as pOSSIble.. . . . Set of parameters and solution found
A certain number of particlenb_part is fixed Average ,
randomly at different energy level at each timeain | nb_swarm| nb_part | nb_it | computation pg’tﬂ“frgsr'] g
window [tk tk+1]. The sampling timedt and window’s time (s)
size increase the computation time. All particles faee 5 50 100 4.28s S
to explore all energy level from [0 100%)] with &stof 5 50 50 1.78s 5
about 1%, thisdE is chosen to be as accurate as possible 5 40 100 3.42s 5
taking into account the possible chopper and source 5 40 50 1.38s 4
capacity to maintairE, and also to preserve a realistic 5 30 100 2.46s 4
computation time. 5 30 50 1.06s 4
5 20 100 1.56s 3
nb_part 5 20 50 0.76s 3
Of course, depending on the processor used, thethig
n_swan oy is the number of swarm or number of iteration, lifggher
- b is the probability to found the best path in a gitene.
Even if the program and communication data are not
( 1 t impl_emer_ned on the f_inal processing system, sutd cin
fod boumded R l;s E" i put in evidence relatively the cost and advantaijethe
S e O arew : different parameters. Thus, the code should be also

Time window size optimized so values given in Table Il should bedisnly
Fig 7 : set of parameters of the particle swarnoritigm in a relative way.
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B. Validation on actual profiles information but also information to tune accurately

Using sampling time ofit=2s, AE=1kWs, the power optimization parameters in the algorithm.
demand is satisfied and state of charge of theagtor
element is shown in Fig 8.

Energy management State of Charge -INRETS Profile - AE=1kWs et At=2s

Power variation — INRETS Profile

Occurrence(%)

© = N w o n @
——S—=

2 —— Fuzzy
g / \ — 60 - -20 0 20
i Power (kW)
g Vv Power variation — ESKISEHIR Profile _
2 . ‘ ESKISEHIR
8 V\ 0 e 1
= il ]
IR W |
s 320 —
4] i fr O ig B
é v ‘\N / 0-80 -60 -40 -20 0 20 40 60 I‘iO 100/
2 " n ' \ Power (kW)
& v ' . L L .
g v VV\ \V ‘U Fig 9 : Power variation occurrence in differentges of magnitude
2]

N ampled e = - Using nb_part20, nb_it=50, nb_swarm=7 is

Fig 8 : Energy management State of Charge -INRETS Profile -cqonvenient for both profiles. The same study shded
AB=1KWs etdt=2s made on other profiles to be sure to be able tomipe

In this figure with no perturbation on the profiié, the criterion. Even if the optimization is not apél, the
can be noticed that D.P. path is the same as thding  particle swarm algorithm provides a solution bettem
in each Particular Swarm window, the curves obthineoptimization following off-line references. Adding
with fuzzy logic is only provided to see the possib perturbation on a given profile may justify the
different energy managements and details are ih [10 ~ adaptation ability of particle swarm algorithm.

It has to be noticed that both optimization proside
quite the same consumption of energy on the whol8. Performance and robustness comparison

profile (Part. Swarm/D.P.= 10362kW.s and Fuzzy= To verify the possible adaptation of the proposed
10358kW.s) but fuzzy leaves some power demands nelgorithm, a perturbation is added to the known gow
furnished (due to saturation at low SOC) and isyonl demand INRETS limited to the B0first point (50s)
shown for comparison purposes. Storage element fsigil. In Fig 11, a non expected positive power aien
considered to be charged at 900kWs and respentiits js added during 5s (acceleration required for exardpe

and max S.O0.C. during the trip and allows managingo the road traffic). In Fig 11bis the disturbanise
optimally the energy on board. proposed to be negative to simulate a non expected
braking... The perturbation occurs during 5s whickhis
size of the optimization window; tests could be mé#aor

Previous sections demonstrate that particular swarmanger disturbances but are out of scope of thiepa
algorithm is able to found the optimal path, windoly

windows, using the off-line energy level computed f 10
example with D.P. on a given profile as a referefides 50
section tests the proposed algorithm on differenfiles 0
and with an unknown perturbation added atrtificiatidy 50,
characterize the robustness of such an approach. 100

50

V. VALIDATION AND COMPARISON

A. First comparison

In fact, depending on the power profile, parameter
adjustment should be made. Of course, partandnb_it 50,
are linked to the convergence velocity and thus the
possibility to adapt the particle speed quickly tte
profile variation. Therefore, using ESKISEHIR piefi
instead of INRETS with the set of parameter part50, or
nb_it=50, nb_swarns5 is not sufficient. Analyzing where S0t 10 15 20 25 30 35 40 45 50
are the problems, it has been noticed that no isalut sampled time for INRETS profile (points with i=25)
where found in some specific windows (the others ar - ] o
computed without any problem). For these windoves th'njchI?e dléis:t:'ggl'(%'v ?Crgg'eeai:g%‘fnce selected andstfidisturbance
power variation is greater as in INRETS profile and
difference is shown in Fig9. This profile presestsne 10

section with a higher power variation so thie_part or ot f\/j/\\ ]
nb_it should be increased to be able to found the optima F——— ' \/4J

m P i N4 Yaalil

é 1ID 1‘5 QID ] 2’5 S‘D 3‘5 4‘D 4‘5 il

Power demand (kW)

100
50

path. Thus, as for many other methods, analyzig th
power demand in terms of max power, mean power and
power variation demand, not only provides sizing Fig11b:second disturbance type : Dist=-40kW @dist<0)

0 0
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From the start point 0 to point 50, with no these approaches but focusing our attention ontiraal
disturbance, the optimal energy consumption is implementation and tracking accuracy of the sotutio
790kWs, with positive disturbance used, the with modifications of the mission profile is of ganount
consumption is 1404kWs and when a braking energyimportance.
not expected is used (negative disturbance) the The proposed solution strategy one of the goods
consumption is 592kWs. solution to split the energy supplies referenceshéo

Depending on the position and here mainly on théllowed to provide the power demand of the HEV
perturbation magnitude, it is possible or not tdirnjze = composed here with a Fuel Cell stack and Storage wi
the criterion in a given window size. In the caseler supercapacitance elements.
study, the profile does not present high power delna Particles are able to compute in real time thenogiti
after the disturbance point [25-28] and the energpath with some capacity to reject disturbancesiaméch
recovered can not be delivered in the foreseenavisd case to adapt the optimal path to a sub-optimah pat
Moreover, if the energy stored is quickly used list respecting real time  computing constraints.
phase, the Fuel Cell power may decrease, decreésing Implementation on an actual vehicle should be niage
efficiency, thus a bad criterion is obtained. Usiag next step in order to validate the approach.
window twice larger (Fig 11b), the algorithm candia
solution to return to the energy state imposed aetspgy
constraints of the system. Increasing the optinonat
window size means increasing the computation time a
the necessity to verify real time constraimtb. swarrsl
solves partially this issue but 4 tests on 10 mlesino
optimal path (only with an increase of fuel constimp FEMTO-Sr/FCLAB: to provide actual data obtained on
limited to 1%). fuel cell test bench developed in Belfort (Franeed
collaboration in this study.
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