
Modeling and Control of Power-Split Hybrid
Electric Vehicles

Roberto Zanasi
Information Engineering Department

University of Modena e Reggio Emilia
Via Vignolese 905

41100 Modena, Italy
roberto.zanasi@unimore.it

Federica Grossi
Information Engineering Department

University of Modena e Reggio Emilia
Via Vignolese 905

41100 Modena, Italy
federica.grossi@unimore.it

Abstract—In this paper a Power-split hybrid automotive sys-
tem is considered, including a multi-phase synchronous motor, an
internal combustion engine and a planetary gear as key element
to split power in this propulsion system. The dynamic model
of a planetary gear with internal elasticity is presented and the
model of the whole vehicle is given using the Power-Oriented
Graphs approach. A global control is designed to obtain different
operation modes of the vehicle: engine start, battery charging,
hybrid traction, recovery of braking energy. Simulation results
of the modeled HEV are provided showing the effectiveness of
the proposed model and control.

I. I NTRODUCTION

The analysis of the dynamic behavior of hybrid electric
vehicles is nowadays a very important topic, especially aiming
at reducing fuel consumption and exhaust emissions. The
definition of hybrid vehicle comes from the presence on the
vehicle of two different energy sources. This paper deals with
power-split propulsion system of hybrid electric vehicles, in
particular the one equipped with an internal combustion engine
and one electric machine with batteries and where the power
split is carried out by means of a planetary gear system.
In this paper the Power-Oriented Graphs (POG) modeling
technique is exploited to provide the models of the considered
dynamic systems: a planetary gear with internal elasticity
and dissipation, a multi-phase permanent magnet synchronous
motor and a power-split hybrid vehicle. The POG technique
allows to graphically describe the dynamic model of any type
of physical system (in different energetic domains) putting in
evidence the power flows within the modeled systems. The
POG schemes are easy to use, easy to understand even by
a neophyte and can be directly implemented in Simulink.
Starting from the analysis of the power flows the control of
the vehicle propulsion is designed. Different operation modes
are possible and they will be examined in the paper. The
paper is organized as follows: Sec. II states the POG basic
features, Sec. III introduces the HEV model and Sec. IV shows
simulation results.

II. POWER-ORIENTED GRAPHS BASIC FEATURES

The Power-Oriented Graphs technique, see [1], is suitable
for modeling physical systems. The POG block schemes are
normal block diagrams combined with a particular modular
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Figure 1. POG basic blocks and variables: a)elaboration block; b)connection
block; c)across and through variables.

structure essentially based on the use of the two blocks
shown in Fig. 1.a and Fig. 1.b: theelaboration block(e.b.)
stores and/or dissipates energy (i.e. springs, masses, dampers,
capacities, inductances, resistances, etc.); theconnection block
(c.b.) redistributes the power within the system without storing
nor dissipating energy (i.e. gear reduction, transformers, etc.).
The e.b. and the c.b. are suitable for representing both scalar
and vectorial systems. In the vectorial case,G(s) andK are
matrices:G(s) is always a square matrix composed by positive
real transfer functions; matrixK can also be rectangular. The
circle present in the e.b. is a summation element and the
black spot represents a minus sign that multiplies the entering
variable. Power-Oriented Graphs keep a direct correspondence
between the dashed sections of the graphs and real power
sections of the modeled systems: the scalar productxTy of
the two power vectorsx andy involved in each dashed line
of a power-oriented graph, see Fig. 1, has the physical meaning
of power flowing through that particular section. The Bond
Graphs technique, see [2] and [3], is based on the same idea,
but it uses a different and specific graphical representation.

The main energetic domains encountered in modeling phys-
ical systems are the electrical, the mechanical (translational
and rotational) and the hydraulic, see Fig. 1.c. Each energetic
domain is characterized by twopower variables: anacross-
variable ve defined between two points (i.e. the voltageV ,
the velocity ẋ, etc.), and athrough-variablevf defined in
each point of the space (i.e. the currentI, the forceF , etc.).
Each Physical Element (PE) interacts with the external world
through the power sections associated to its terminals.
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Another important property of the POG technique is the
direct correspondence between the POG schemes and the
corresponding state space dynamic equations. For example,the
POG scheme shown in Fig. 2 can be represented by the state
space equations (1) where theenergy matrixL is symmetric
and positive definite:L = LT > 0. It can be easily shown that
whenD = 0 it follows that C = BT.
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Figure 2. POG block scheme of a generic dynamic system.

III. POG MODELING OF AN HYBRID AUTOMOTIVE SYSTEM

The power-split architecture considered in this paper is
shown in Fig. 3: it includes an internal combustion engine
(ICE), a multi-phase Permanent Magnet Synchronous Machine
(PMSM) and the vehicle, see [4], [10] for other architectures.
The ICE is rigidly connected to the Carrier (C), the PMSM
is connected to the Sun (S) and the vehicle driving axle is
connected to the Ring (R). This hybrid system can be dynam-
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Figure 3. Scheme of the considered power structure of the vehicle

ically described by the “high level” POG block scheme shown
in Fig. 4. Note that the power sections1 - 5 shown in Fig. 4
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Figure 4. POG graphical representation of the considered hybrid vehicle.

correspond to the physical power sections indicated in Fig.3.

Hybrid propulsion systems also include some devices in order
to store electrical energy such as batteries, supercapacitors and
others, but in this paper they are not taken into account.

A. Internal Combustion Engine model

In order to simulate the hybrid power train an engine model
is needed. Since for our focus it is sufficient to consider the
main mechanical dynamics of the engine, a simplified model is
proposed. In Fig. 5 the POG scheme of the proposed engine
model is shown, whereJe is the engine shaft inertia,be is
the friction coefficient andωcref

is the reference rotational
velocity. The throttle control is a proportional controller Kice
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Figure 5. POG scheme of the ICE model.

with a saturationsat(·) = sat (Kicee, τ(ωc)). The saturation
depends onωc according to the ICE torque-speed map reported
in Fig.6.
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Figure 6. Internal combustion engine Torque−Speed map.

B. Planetary Gear modeling

Let us consider the planetary gear shown in Fig. 7. The
main parameters of the system are:rs, rc, rr and rp are the
sun, carrier, ring and planet radii;Js, bs, Jc, bc, Jr, br, Jp

and bp are the inertia and linear friction coefficients of the
sun, carrier ring and planet, respectively;Ksc, dsc, Kcr and
dcr are the stiffness and friction coefficients of the sun-carrier
and carrier-ring elastic elements, respectively.

The carrier, the planets and the ring interact each other
through the two elastic elementsKcr and Ksc. Considering
that the planetary gear inertias will be connected to the shafts
of the ICE, PMSM and driving axle of the vehicle, it is
convenient to provide a reduced elastic model of the planetary
gear when inertiasJs, Jc andJr go to zero. In [7] the POG
technique is exploited to obtain different reduced models of
the planetary gear using proper mathematical transformations.
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Figure 7. Planetary gear and related parameters.

ms number of motor phases;
p number of polar expansions;

θ, θm electric and rotor angular positions:θ = p θm;
ω, ωm electric and rotor angular velocities:ω = p ωm;

Rs i-th stator phase resistance;
Ls i-th stator phase self induction coefficient;

Ms0 maximum value of mutual inductance between
stator phases;

φc(θ) total rotor flux chained with stator phase 1;
ϕc maximum value of functionφc(θ);
Jm rotor moment of inertia;
bm rotor linear friction coefficient;
τm electromotive torque acting on the rotor;
τe external load torque acting on the rotor;
γs basic angular displacement (γs = 2π/ms)

Table I
PARAMETERS OF THE MULTI-PHASE SYNCHRONOUS MOTOR.

The state space equations of the system are shown in Fig. 8
and in compact form they can be written as

{
L̃e

˙̃x = −Ãe x̃ + B̃e ũ

ỹ = C̃e x̃ + D̃e ũ
(3)

Note that in this elastic model the velocities are the input and
the torques are the output.

C. Electrical motors modeling

In this paper we refer to a permanent magnet synchronous
motor with anodd numberms of star-connected phases [6]
characterized by the parameters shown in Tab. I. Let us
introduce the following vectors:

tIs =








Is1

Is2

...
Isms







, tVs =








Vs1

Vs2

...
Vsms







, tq̇=

[
tIs

ωm

]

, tV=

[
tVs

−τs

]

(5)

where tIs, tVs are the current and voltage stator vectors
and tq̇, tV are the state and input vectors of the global
system. Using a “Lagrangian” approach, see [5], the dynamic

equations of the electric motor are obtained:
[

tLs 0
0 Jm

]

︸ ︷︷ ︸

tL

[
˙tIs

ω̇m

]

︸ ︷︷ ︸

tq̈

=−

[
tRs

tKτ (θ)
− tKT

τ (θ) bm

]

︸ ︷︷ ︸

tR + tW

[
tIs

ωm

]

︸ ︷︷ ︸

tq̇

+

[
tVs

−τs

]

︸ ︷︷ ︸

tV
(6)

where matrix tLs is defined as follows:

tLs = Ls0 Ims
+ Ms0

i j

|[ cos((i − j)γs) ]|
1:ms 1:ms

with Ls0 = Ls − Ms0. Matrices tR and tW are defined as:

tR=

[
tRs 0

0 bm

]

, tW=

[

0 tKτ (θ)

− tKT
τ (θ) 0

]

where tRs = Rs Ims
and the torque vectortKτ (θ) is:

tKτ (θ) = pϕc

h∣
∣
∣
∣
∣

[

−

∞∑

n=1:2

nan sin[n(θ−h γs)]

]∣
∣
∣
∣
∣

0:ms−1

. (7)

Parametersan in (7) are the coefficients of the periodic nor-
malized rotor flux functionφ̄(θ) expressed in Fourier series:
φ̄(θ) =

∑
∞

n=1:2
an cos(nθ).

Let us now consider the transformation matrix:

ωTt(θ) =

√
2

ms

k h∣
∣
∣
∣
∣

[
cos(k (θ − h γs))

sin(k (θ − h γs))

]∣
∣
∣
∣
∣

1:2:ms−2 0:ms−1

(8)

which is a function of the electrical angleθ and transforms
the system variables from the original reference frameΣt to a
transformed rotating frameΣω. Applying transformationtq̇ =
ωTT

t
ωq̇ to system (6), one obtains the following transformed

system:
[

ωLs 0
0 Jm

]

︸ ︷︷ ︸
ωL

[
ω İs

ω̇m

]

︸ ︷︷ ︸
ωq̈

=−

[
ωRs+ωLs

ωJs
ωKτ (θ)

− ωKT
τ (θ) bm

]

︸ ︷︷ ︸
ωR + ωW

[
ωIs

ωm

]

︸ ︷︷ ︸
ωq̇

+

[
ωVs

−τs

]

︸ ︷︷ ︸
ωV

(9)
where ωIs = tTT

ω
tIs, ωLs = tTT

ω
tLs

tTω, ωRs =
tTT

ω
tRs

tTω, ωJs = tTT
ω

tṪω, ωKτ = tTT
ω

tKτ e ωVs =
tTT

ω
tVs. MatricesωLs and ωJs have the following structure:

ωLs =










Lse 0 0 · · · 0
0 Lse 0 · · · 0
0 0 Ls0 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ls0










, ωJs =

k∣
∣
∣
∣

[
0 −k ω

k ω 0

]∣
∣
∣
∣

1:2:ms−2

,

whereLse = Ls0+ ms

2
Ms0 and ω = θ̇. VectorsωIs and ωVs

in (9) are:

ωIs =

k∣
∣
∣

[
ωIsk

]∣
∣
∣

1:2:ms−2

=

k∣
∣
∣
∣

[
Idk

Iqk

]∣
∣
∣
∣

1:2:ms−2

, ωVs =

k∣
∣
∣

[
ωVsk

]∣
∣
∣

1:2:ms−2

=

k∣
∣
∣
∣

[
Vdk

Vqk

]∣
∣
∣
∣

1:2:ms−2
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Figure 8. State space equations of the planetary gear elastic model whenJs = Jc = Jr = 0 and the velocities are the inputs.
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spaceΣω .

whereIdk, Iqk, Vdk and Vqk are, respectively, thedirect and
quadraturecomponents of the current and voltage vectorsωIs

and ωVs. Note that using transformationtq̇ = ωTT
t

ωq̇, the
original state spaceΣt has been transformed into(ms − 1)/2
two-dimensional orthogonal subspaces namedΣωk with k ∈
{1 : 2 : ms − 2}. A detailed discussion of the properties of
vectorωKτ (θ) can be found in [5].

The POG block scheme of the synchronous motor in the
transformed spaceΣω, see eq. (9), is shown in Fig. 9.

The torque control of the PMSM is realized by the the
following control law:

ωVs =(ωRs+
ωJs

ωLs)
ωIs+

ωKτ ωm−Kc(
ωIs−

ωId) (10)

where ωId is the constant desired current andKc > 0 is a
diagonal matrix used for the tuning of the control, see [6].

D. Simplified model of the vehicle with tire elasticity

A simplified dynamic model of the vehicle is considered
which takes into account also the tire elasticity. The POG
scheme is shown in Fig. 10 whereJw is the wheel inertia,
Rw is the wheel radius,Kt is the tire longitudinal stiffness,bt

is the friction coefficient andMv is the mass of the vehicle.

IV. SIMULATION OF THE HYBRID POWER STRUCTURE

The hybrid automotive system shown in Fig. 3-4 has been
implemented in Matlab/Simulink as shown in Fig. 11 where
the main subsystems are included in masked blocks. In par-
ticular, the considered model of the ICE presented in Section
III-A has been implemented in Simulink as shown in Fig.12.
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Figure 10. POG scheme of the simplified vehicle model.
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Note that the ICE Simulink scheme clearly corresponds to the
POG scheme of Fig. 5.

In the considered power-split HEV system many different
operation modes are possible, see [8] and [9]: each operation
mode corresponds to a different way of controlling the power
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Figure 12. Simulink block scheme of the Internal Combustion Engine model.



Time [s] Operation
1 0 - 2.5 engine starts while wheels are stopped
2 2.5 - 11 the wheels are released and the vehicle accelerates
3 11 - 12 the vehicle speed is kept constant

Table II
MAIN STEPS IN THE SIMULATION.
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Figure 13. Reference control signals.

flows among the two energy sources and the traction load,
remembering that the electrical machine PMSM is a bidirec-
tional power source. In the presented simulations the control
of PMSM is either a torque control, see relation (10), or a
speed control realized by a PID controller. TheSwitch in the
Simulink scheme of Fig. 11 allows to activate either the torque
(S = 1) or the speed (S = −1) control according to the
control strategy. The simulation results shown from Fig. 13
to Fig. 17 correspond to three different operating modes: 1)
starting of the ICE while wheels are stopped, 2) acceleration of
the vehicle, 3) cruise speed of the vehicle. The three operating
modes are resumed in Table II. The reference signalsωc,ref ,
ωs,ref andτr,ref for the carrier velocityωc, the sun velocityωs

and the motor torqueτs are shown in the upper part of Fig. 13.
The switch signalS is shown at the bottom of Fig. 13. The
main parameters of the system are reported in Table III. The
parameters of the PID controller are:Kp = 96.9, Ti = 4.854
andTd = 0.357.

The simulation begins with a torque control (S = 1) on
the PMSM which makes the ICE start. Fort ∈ [1.6, 2] s a
small negative torque is required in order to have a power flow
towards the battery which can be used to recharge the battery.
During this phase the vehicle wheels are kept stopped. At
t = 2 s the speed control of PMSM is activated (S = −1) and
then att = 2.5 s the wheels are released. Fort ∈ [2.5, 11]
s the vehicle accelerates from0 to 130 km/h. The vehicle
acceleration is determined by the shape of the speed reference
signalsωc,ref and ωs,ref . At t = 11 s the cruise speed is
reached. The velocitẏxv of the vehicle is shown in the upper
part of Fig. 14. In the lower part of the same figure the ring

Vehicle
mass Mv 1232 kg
wheels moment of inertia Jw 1.06 kg m2

wheels radius Rw 32.55 cm
tires longitudinal stiffness Kt 3600000 N/m

Planetary Gear
sun radius rs 10.2 cm
ring radius rr 24.8 cm
stiffness coefficients Ksc, Kcr 107 N/m
damping coefficients dsc, dcr 15000 N s/m
planets moment of inertia Jp 0.0812 kg m2

friction coefficients bp, bs, bc, br 0 N m s/rad
Electric motor

number of phases ms 5
resistance Rs 0.1 Ω
self induction Ls 0.03 H
mutual induction Ms0 0.008 H
maximum of the flux function ϕc 0.9 Wb
moment of inertia Jm 0.00128 kg m2

friction coefficient bm 0.01 N m s/rad

Table III
MAIN PARAMETERS USED IN THE SIMULATION.
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Figure 14. Velocity of the vehiclėxv and velocities of the planetary gear:
ωr vs ωs. The black dashed lines represent lines with constant speedωc.

velocity ωr of the planetary gear is plotted as a function of the
sun velocityωs, together with some lines at constant carrier
velocity ωc. The velocitiesωs, ωc, ωr and the torquesτs, τc,
τr of the planetary gear are shown in Fig. 15. The power
flows within the system are shown in Fig. 16: the powerPb

entering the PMSM system is reported in the upper part of the
figure, while in the lower part the powersPs, Pc andPr at the
planetary gear ports are shown. The positive directions of the
powersPb, Ps, Pc andPr are shown in Fig. 3. In Fig. 17 the
torqueτe provided by the ICE is plotted as a function of the
engine speedωc together with the maximum engine torque.

Note that with the considered power-split architecture it
is not possible to make a strong regenerative braking by
controlling the electric motor because the ICE cannot provide
negative torques. In fact, at high speed, the electric motor
can apply a strong negative torque to the vehicle only in not-
regenerative mode. Moreover in this situation the velocitiesωc
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ωc, τc (blue, dashed) andωr , τr (black, dash-dotted).
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Figure 16. Power flowsPb, Ps, Pc andPr within the system.

andωs of the ICE and the PMSM rapidly reach unacceptable
values as shown in the simulation results reported in Fig. 18.
The considered power-split architecture allows to make regen-
erative braking only in the pure electric mode when the ICE
is switched off, see [7]. Otherwise, the regenerative braking
of the system could be achieved, for example, by adding a
second electric machine on the Ring (see the Toyota Hybrid
System in [4]) and controlling it properly during braking.

V. CONCLUSIONS

In this paper a power-split hybrid electric vehicle is modeled
using the Power-Oriented Graphs technique. The model in-
cludes a multi-phase permanent magnet synchronous machine,
an internal combustion engine, a planetary gear and the vehicle
dynamics. The modeled system has been controlled in different
operating modes such as engine start, hybrid traction and
hybrid braking. Simulation results are provided showing the
effectiveness of the proposed model and control.
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Figure 17. Torqueτe provided by the ICE versus velocityωc.
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ẋ
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