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Abstract—To guarantee high availability of naval drives and
power-supply systems, error scenarios have to be simulated. The
chosen differential-equations set has to represent the physical
behaviour of complex naval induction machines, e.g. with 5- or
7- phase or double-star stator windings including asymmetric
faults which is not featured by any simplified single-phase ECD.
After a brief introduction of used simulation concept and

modelling approach for motor drives with sinusoidal flux distri-
bution, the torque calculation for n stator and m rotor windings is
presented. The performance is demonstrated with the simulation
of a five-phase induction machine emulating a single-phase
failure.

I. INTRODUCTION

Stable operation of onboard grids and harbour-ship power

supplies with high availability is a major concern in naval

applications. To avoid stability problems and to prove the

conceived redundancy of the chosen topology before erection

and commissioning, the complex power-electronic systems in

use today have to be simulated with high accuracy. To perform

a simulation providing sufficient results, several requirements

have to be fulfilled: On the one hand a simulation concept fea-

turing multiterminal power-electronic systems is needed [1].

In detail such systems consist of power-electronic switching

devices, continuous elements, different sampling and switch-

ing times and several independent dedicated control-hardware

instances [2]–[4]. On the other hand all continuous elements

have to be modelled in detail - e.g. busbars, power cables,

generators and motor drives.

In this paper the focus is laid on the torque calculation

for complex motor drives. In contrast to standard drive ap-

plications – in which a simplified one-phase ECD fulfils the

accuracy requirements – in ship technologies more complex

induction machines are used, e.g. induction machines with

5- or 7- phase or double-star stator windings. Furthermore,

to raise availability, machines with more than three phases

can be reconfigured to be operated with faults in one of the

phases. To simulate such error scenarios the chosen set of

differential equations has to model the physical behaviour of

asymmetric machines which is not featured by any simplified

single-phase ECD. Based on the chosen simulation concept,

the total system reaction – including the transient behaviour

of the machine torque – upon an occurring failure in a power-

electronic switching device can be analysed in detail.

A simulation concept fulfilling the mentioned requirements

is introduced briefly. Afterwards, a method of modelling com-

plex induction machines featuring asymmetric characteristics

of all stator and rotor parameters is described. Based on the

chosen modelling approach, the torque is derivated in an

arbitrary way. Simulation results of a five-phase induction

machine emulating an occurring inverter error in one phase

are shown, outlining the excellent usability of the presented

modelling approach.

II. STRUCTURE OF THE SIMULATION

Even to model the simple system of a machine inverter

attached to an induction machine (IM) withm stator windings,

the simulation has to deal with continuous elements (for

example voltage sources, inductivities and capacitors) as well

as with discrete parts, like switching power semiconductors.

The state-space notation is used to model the continuous part.

The set of i first-order differential equations is solved by the

Bulirsch-Stoer implementation of the Richardson Extrapola-

tion [5], [6], supported by an adaptive step-size algorithm.

For the discrete part (e.g. the converter phase legs) Petri Nets

are used. Each phase leg is described by its own Petri Net

leading to a total of 5 · m different states. With a classical

’state machine’ 5m different states would be necessary to

describe the IM with attached inverter. Furthermore, the Petri

Net modulation based on the net-array description is easier to

compute with modern personal computers.

This simulation framework – programmed in ’C++’ lan-

guage – allows very fast and accurate simulation of the

overall system. A special advantage of the simulator allows

the control algorithm to be used identically in simulation and

in real-time control. This is possible because the simulator

enables the use of C-code and emulates the whole control-

hardware structure, thus minimizing development time-losses
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Fig. 1. Example with m = 5 stator and n = 3 rotor windings

by program portation.

III. SYSTEM UNDER ANALYSIS

The main aspect of the chosen approach is to model IM

by concentrated elements known of the standard IM-ECD

and leakage inductance voltage drops. In contrast to common

modelling approaches, the influence of each single component

in stator and rotor is taken into account. In consequence,

asymmetric IM can be modelled.

Because of the different time scales, the frequency of

rotation ω and the angular rotor position χ are not included in

the derived state-space equations, leading to linear and time-

invariant characteristics. Instead they are taken into account

by additional differential equations.

To achieve a model which is very close to physical reality

the flux distribution of the IM has to be computed based on

functions of the current linkage of each single winding [7].

In high-power induction-machine applications this distribution

can be assumed to have sinusoidal shape. Another assumption,

also leading to a negligible error, is to set the permeability of

the iron core to infinity and to ignore the parasitic interaction

between the different winding systems.

Using these assumptions induction machines can be mod-

elled using the leakage induction voltage drops in rotor and

stator. These voltage drops result from the differences between

the terminal voltages and the sum of the induced voltages and

the winding resistance (cp. Fig. 1).

Lσ

diσ
dt

= ut − (Rσ · iσ + uind) (1)

The terminal voltages ut are input signals. The induced

voltages uind have to be calculated for each single winding.

Thus, the change of the flux linkage in each winding has to

be identified which can be realised using the superposition

principle.

In detail the flux created by the particular examined winding

system l is superposed by the fluxex of each winding (stator

and rotor) effective at this position. The relevant quantities are

the actual magnitude of the flux ψ̂l,k(t) created by the winding
system k and the angle θl,k(t) between the winding systems

l and k (with l, k ∈ [s1, . . . , sm, r1, . . . rn]).

ψl,k(θl,k, t) = ψ̂l,k(t) · cos(θl,k(t)) (2)

= Lk · ik(t) · cos(θl,k(t)) (3)

Here Lk includes the number of turns. The angle θl,k(t)
consists of a constant angle θgeom,k due to the geometry of

the IM and a time variant angle χ(t) =
∫
ωdt which is caused

by the rotation ω of the IM rotor. The overall flux effective in

winding system l can be calculated to

ψΣ,l(t) =

sm∑

k=s1

ψl,k(t) +

rn∑

k=r1

ψl,k(t) (4)

To reduce the complexity of the derived equations the

arithmetic constraint of Kirchhoff’s current law
∑
i = 0 will

be used at the end of the derivation.

Using the model of an IM with m = 5 stator and n = 3
rotor windings (cp. Fig. 2) the structure of the derivation is

shown by explaining the influence of the rotor winding r3
upon the stator winding s1.

ψs1,r3(θ, t) = L3 · ir3(t) cos(θ(t)) (5)

with θ = χ(t) +
k − 1

n
· 2π = χ(t) +

2

3
· 2π (6)

This analysis can be done in an analogue manner for the

remaining winding systems. Expanding this approach to m
stator and n rotor windings leads to the state-space model:

R
dx

dt
= Ax+ Bu (7)

with R =

(
RSS RSR

RRS RRR

)

(8)

The input vector u of the state space consists of the IM

terminal voltages supplied at stator usi and rotor uri (for

squirrel-cage IM the rotor voltages will be chosen to zero).

u = (ut,s1, · · ·ut,sm, ut,r1, · · ·ut,rn)
T

(9)

Fig. 2. Example with m = 5 stator and n = 3 rotor windings



The state vector x of the state space contains stator isi and
rotor currents iri of the IM.

x = (is1, · · · ism, ir1, · · · irn)
T

(10)

To simplify the state-space representation differences in the

inductances relevant for the induced voltages are neglected.

RSS = LSS + Ls ·Mrot,SS (11)

RSR = Lr ·NSR ·Mrot,SR (12)

RRS = Ls ·NRS ·Mrot,RS = RT
SR

RRR = LRS + Lr ·Mrot,RR (13)

LSS =








Lss1 0 · · · 0
0 Lss2 · · · 0
...

...
. . .

...

0 0 · · · Lssm








(14)

LRS =








Lrs1 0 · · · 0
0 Lrs2 · · · 0
...

...
. . .

...

0 0 · · · Lrsn








(15)

A =

(
ASS ASR

ARS ARR

)

(16)

ASS =








−Rs1 0 · · · 0
0 −Rs2 · · · 0
...

...
. . .

...

0 0 · · · −Rsm








(17)

ASR = −d
RSR

dχ
= ω · Lr ·NSR ·Mrot,SR,sin (18)

ARS = −d
RRS

dχ
= ω · Ls ·NRS ·Mrot,RS,sin (19)

ARR =








−Rr1 0 · · · 0
0 −Rr2 · · · 0
...

...
. . .

...

0 0 · · · −Rrn








(20)

The terms ASR and ARS occur because χ is time-dependent

and the derivative of this angle dχ
dt

= ω has to be considered

(product rule).

The dimensions of the matrices depend upon the number of

stator (m) and rotor (n) windings.

dim(RSS) = dim(ASS) = (m,m) (21)

dim(RSR) = dim(ASR) = (m,n) (22)

dim(RRS) = dim(ARS) = (n,m) (23)

dim(RRR) = dim(ARR) = (n, n) (24)

Finally the constraint of Kirchhoff’s current law has to be

considered, leading to a reduction of the m+n state quantities

to m− 1 + n− 1.

IV. SIMULATION RESULTS

In this simulation a five-phase squirrel-cage induction ma-

chine (IM) is fed by a five-phase inverter. A PWM is applied

transforming the sinusoidal reference voltages into five switch-

ing functions which are forwarded to the inverter phase legs.

The operating point is set to Ud = 700V, ULL = 520V, fs =
50Hz, n = 3000min−1, fmech. = 45Hz, fz = 1kHz with

3300-V IGBT devices.

Figure 3 shows two of the stator currents (is1, is2) in stator-
fixed reference system, two of the rotor currents (ir1, ir2) in
rotor-fixed reference system and the negative torque −T of

the machine.

Before t = 5 s, the quantities are in steady-state, according

to the specified operating point. The amplitude of the stator

currents can be identified to 160 A, the rotor currents show

an amplitude of 150 A.

At t = 5 s, the stator resistance of the first leg is set to

10000 Ohms to emulate a fault in one inverter phase leg.

The simulation shows the dynamic behaviour of the induction

machine currents and the torque due to this failure: It takes the

system about 30 ms to reach the new steady-state. Here, the

stator current is1 becomes nearly zero, the rotor currents show
an oscillation of about fr = 95Hz, while the torque oscillates
with about fT = 90Hz (cp. Fig.3).

V. TORQUE OF A MULTI-PHASE MACHINE

To evaluate the torque of a machine, first the co-energy

[8] of the whole system has to be calculated. In every linear

system, like the system described in this paper, the co-energy

is equal to the energy. So the torque is equal to the derivative

of the energy with respect to the angle χ [9].

In the case of an induction machine, the energy is a function

of all currents and all inductances.

W
′

=
1

2
L11i

2

1
+

1

2
L22i

2

2
+ · · ·+

1

2
Lννi

2

ν

+ L12i1i2 + L13i1i3 + · · ·+ L1νi1iν

+ L23i2i3 + L24i2i4 + · · ·+ L2νi2iν

+ · · · (26)

The torque can be calculated by:

T =
∂W

′

(iν , Li,j)

∂ (χ)

∣
∣
∣
∣
∣
iv=constant

=
1

2

dL11

dχ
i2
1
+

1

2

dL22

dχ
i2
2
+ · · ·+

1

2

dLνν

dχ
i2ν

+
dL12

dχ
i1i2 +

dL13

dχ
i1i3 + · · ·+

dL1ν

dχ
i1iν

+ · · · (27)

The machine currents do not depend on the angle χ, while
the inductances depend on the it. To derivative the inductances

three cases have to be considered.

1) The self-inductances of the windings do not depend on

the position of the rotor (dL/dχ = 0), because the ASM
presented in this paper has a cylindrical rotor.



Mrot,SS =










cos
(

0

m
· 2π

)
cos

(
1

m
· 2π

)
cos

(
2

m
· 2π

)
· · · cos

(
m−1

m
· 2π

)

cos
(
m−1

m
· 2π

)
cos

(
0

m
· 2π

)
cos

(
1

m
· 2π

)
· · · cos

(
m−2

m
· 2π

)

cos
(
m−2

m
· 2π

)
cos

(
m−1

m
· 2π

)
cos

(
0

m
· 2π

)
· · · cos

(
m−3

m
· 2π

)

...
...

...
. . .

...

cos
(

1

m
· 2π

)
cos

(
2

m
· 2π

)
cos

(
3

m
· 2π

)
· · · cos

(
0

m
· 2π

)










Mrot,SR =








cos
(
χ+

(
− 0

m
+ 0

n

)
2π

)
cos

(
χ+

(
− 0

m
+ 1

n

)
2π

)
· · · cos

(
χ+

(
− 0

m
+ n−1

n

)
2π

)

cos
(
χ+

(
− 1

m
+ 0

n

)
2π

)
cos

(
χ+

(
− 1

m
+ 1

n

)
2π

)
· · · cos

(
χ+

(
− 1

m
+ n−1

n

)
2π

)

...
...

. . .
...

cos
(
χ+

(
−m−1

m
+ 0

n

)
2π

)
cos

(
χ+

(
−m−1

m
+ 1

n

)
2π

)
· · · cos

(
χ+

(
−m−1

m
+ n−1

n

)
2π

)








Mrot,RS =








cos
(
χ+

(
− 0

m
+ 0

n

)
2π

)
cos

(
χ+

(
− 1

m
+ 0

n

)
2π

)
· · · cos

(
χ+

(
−m−1

m
+ 0

n

)
2π

)

cos
(
χ+

(
− 0

m
+ 1

n

)
2π

)
cos

(
χ+

(
− 1

m
+ 1

n

)
2π

)
· · · cos

(
χ+

(
−m−1

m
+ 1

n

)
2π

)

...
...

. . .
...

cos
(
χ+

(
− 0

m
+ n−1

n

)
2π

)
cos

(
χ+

(
− 1

m
+ n−1

n

)
2π

)
· · · cos

(
χ+

(
−m−1

m
+ n−1

n

)
2π

)








Mrot,RR =










cos
(
0

n
· 2π

)
cos

(
1

n
· 2π

)
cos

(
2

n
· 2π

)
· · · cos

(
n−1

n
· 2π

)

cos
(
n−1

n
· 2π

)
cos

(
0

n
· 2π

)
cos

(
1

n
· 2π

)
· · · cos

(
n−2

n
· 2π

)

cos
(
n−2

n
· 2π

)
cos

(
n−1

n
· 2π

)
cos

(
0

n
· 2π

)
· · · cos

(
n−3

n
· 2π

)

...
...

...
. . .

...

cos
(
1

n
· 2π

)
cos

(
2

n
· 2π

)
cos

(
3

n
· 2π

)
· · · cos

(
0

n
· 2π

)










Mrot,SR,sin = −








sin
(
χ+

(
− 0

m
+ 0

n

)
2π

)
sin

(
χ+

(
− 0

m
+ 1

n

)
2π

)
· · · sin

(
χ+

(
− 0

m
+ n−1

n

)
2π

)

sin
(
χ+

(
− 1

m
+ 0

n

)
2π

)
sin

(
χ+

(
− 1

m
+ 1

n

)
2π

)
· · · sin

(
χ+

(
− 1

m
+ n−1

n

)
2π

)

...
...

. . .
...

sin
(
χ+

(
−m−1

m
+ 0

n

)
2π

)
sin

(
χ+

(
−m−1

m
+ 1

n

)
2π

)
· · · sin

(
χ+

(
−m−1

m
+ n−1

n

)
2π

)








Mrot,RS,sin = −








sin
(
χ+

(
− 0

m
+ 0

n

)
2π

)
sin

(
χ+

(
− 1

m
+ 0

n

)
2π

)
· · · sin

(
χ+

(
−m−1

m
+ 0

n

)
2π

)

sin
(
χ+

(
− 0

m
+ 1

n

)
2π

)
sin

(
χ+

(
− 1

m
+ 1

n

)
2π

)
· · · sin

(
χ+

(
−m−1

m
+ 1

n

)
2π

)

...
...

. . .
...

sin
(
χ+

(
− 0

m
+ n−1

n

)
2π

)
sin

(
χ+

(
− 1

n
+ 1

n

)
2π

)
· · · sin

(
χ+

(
−m−1

m
+ n−1

n

)
2π

)








(25)

2) The inductances which describe the effect between two

windings, which do not move relative to each other, i.e.

the stator or the rotor windings, are also not a function

of the position of the rotor (dL/dχ = 0).
3) The inductances which describe the effect between two

windings, which have a relative movement to each other,

i.e. a stator winding and a rotor winding (included in the

matrix RSR or RRS), depend on the position of the rotor

(dL/dχ 6= 0) and generate the torque of the machine.

So only the elements of the matrices RSR or RRS have an

effect on the machine torque. The torque of an IM with m
stator windings and n rotor windings can be evaluated as

follows:

T =
(
is1 is2 is3 · · · ism

)

︸ ︷︷ ︸

1×m

·
∂RSR

∂χ
︸ ︷︷ ︸

m×n

·










ir1
ir2
ir3
...

irn










︸ ︷︷ ︸

n×1

(28)

VI. CONCLUSION

A method of modelling complex induction machines with

asymmetric characteristics of all stator and rotor parameters

is presented. Using this method more complex and even

asymmetric machines, e.g. with 5 or 7 phases, with double-

star stator windings or with asymmetric supply faults can be

modelled. Based on this introduced description, the torque can

be calculated using the co-energy approach [8].

Furthermore a simulation structure allowing to simulate

the time behaviour of power electronic systems – e.g. for

naval onboard and harbour-ship power-distribution systems –

is briefly introduced.

The combination of the novel modelling method and the

simulation concept presented in this paper fulfils all require-

ments of modern complex power-electronic topologies. The

new approach enables a fast and accurate simulation featuring

power-electronic power-conditioning systems controlled by

independent controllers using different sampling times and

switching frequencies. For this reason the chosen simulation

approach is an excellent instrument supporting analysis of

onboard grid stability, harbour-grid interaction and design of

control algorithms for all power-conditioning devices.
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Fig. 3. Stator and rotor currents and torque of an induction machine, interruption in one inverter phase leg at t = 5 s.
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