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Abstract- A new subway traction system has been proposed 

without supply rail. The on-board energy is stored in a 
supercapacitor bank. This energy storage system is charged at 
each station in order to have enough energy to reach the next 
station. In-station supercapacitors are also used to ensure a fast 
charge of the on-board supercapacitors. Before implementation 
of this new supply system, a reduce-scale experimental set-up is 
developed in order to test the different energy flows in real time. 
First experimental results are provided. 
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I. INTRODUCTION 

Energy saving is a critical issue for the next decade. The 
development of new transportation systems takes a part in 
this challenge [1]-[4]. Trains, tramways and subways have 
been developed a long time ago, and they provide efficient 
systems for passenger transportation in urban cities. Classical 
subways are supplied by a specific DC rail. Their efficiency 
is generally very high because their traction is ensured by 
electric drives. Moreover, regenerative braking can be used to 
re-inject electrical current through the DC rail. The energy 
recovery is possible only if other vehicles on the line are able 
to absorb this energy. When it is not the case, all braking 
energy is dissipated in a braking resistor and/or a mechanical 
brake. New storage systems are developed to increase the 
energy recovery, such as new batteries [5], flywheels [6][7], 
supercapacitors [8][9] or hybrid energy storage systems [10]. 

A new subway without supply rail is actually developed to 
propose a more efficient subway traction system and a 
reduction of the infrastructure. This subway uses an on-board 
supercapacitors bank as Energy Storage System and no 
supply rail is used between stations. [11][12]. The on-board 
supercacitor is charged at each station. When the subway 
accelerates the on-board supercacitor is discharged. When the 
subway decelerates, the regenerative braking charges the on-
board supercacitor. In this way, the energy saving can be 
increased. Moreover the operation without supply rail 
between stations reduces significantly the infrastructure. A 
simulation model has been developed to analyze the power 
flows and control schemed of this new traction system [13]. 
Hardware-in-the-loop (HIL) simulation has also been used to 
check the ability of the control to manage energy flows of the 

on-board supercapacitor in real time during traction 
operations [12]. 

In this paper, a new experimental set-up is presented in 
order to test and validate the charge of the ESS at the station 
using an in-station supercapacitor bank and an on-board 
supercapacitor bank. 
 

II. NEW SUBWAY TRACTION SYSTEM  USING 
SUPERCAPACITORS 

A. Principle of the new subway traction system 
The studied subway is a new system without supply rail. 

An on-board supercapacitor bank (SC2) supplies the subway 
between two stations (Fig. 1). This on-board ESS2 is sized to 
provide enough energy to reach the next station in the worst 
case (maximum slope, front wind, etc). The on-board SC2 
must be recharged quickly at each station. An in-station 
supercapacitor bank (SC1) is used to ensure a fast charge of 
the on-board SC2. 
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Fig. 1. Principle of the new subway traction system 

 

B. Supply system in station 
The in-station SC1 is recharged via the electrical grid by a 

PWM rectifier and a chopper (Fig. 2). During the power 
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transfer between the in-station SC1 and the on-board SC2, 
two choppers are used through a DC bus. In this first study, 
the connection system between the subway and the station is 
not taken into account. It will be studied in later steps. 
Different transfer strategies have been studied in simulation 
[13]. But an experimental validation is required before an 
implementation in the real subway traction system. 
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Fig. 2. Supply system in station for the new subway 

 

C. On-board energy management 
During the cycle between both stations, the supply system 

is disconnected. The on-board SC2 ensure alone the traction 
power and the recovery of energy during the deceleration 
phase. Different strategies have also been developed for the 
on-board energy management [13]. This new control 
algorithm has now be tested in real time 

 

D. Inversion-based control 
The whole system has been simulated using Energetic 

Macroscopic Representation (EMR, see appendix), which is a 
graphical description for power flow analysis and control 
design [14]. An inversion-based control has been deduced 
from the EMR of the system (Fig. 3), and simulation results 
have been provided for different cases [13]. This new control 
algorithm has been tested in real time using a single 
supercapacitor bank and HIL simulation [12]. 

 
 

III. HARDWARE-IN-THE-LOOP SIMULATION 

Before an implementation on a real vehicle, different tests 
have to be provided. Hardware-In-the-Loop (HIL) simulation 
is used to organize the different steps [15]. First a reduced-
scale HIL simulation validates the principle of the new 
subway supply in real-time using reduced-power components. 
In a second step, a full-power HIL simulation can be 
developed to test the full-power energy storage system in a 
static way. Finally, this full-power energy storage system will 
be implemented in a prototype vehicle using a specific test 
track. Only the first step is studied in this paper. 

 

A. Principle of HIL simulation 

In HIL simulation, on part the real system is inserted in the 
simulation loop. This method yields preliminary tests of this 
physical device before its implementation in the whole 
system. Signal HIL simulation has been used for a long time 
to test ECU (Electronic Control Unit) in aerospace and 
automotive applications [16]. More recently, power HIL 
simulation has been developed to test power devices such as 
inverters, electrical machines or propulsion subsystems 
[17][15]. 

In some cases, a full power device can not be used for 
preliminary test for safety and cost reasons. Reduced-scale 
HIL simulation is thus used using a reduced-power device. 
Specific adaptation ratios are defined in order to keep the HIL 
simulation close to the real system despite the reduced-power 
devices [15]. 

 

B. HIL simulation of the new energy storage system 
First simulations have been developed to test the 

possibilities of this new subway system and to tune the 
different controllers. A specific control has thus been defined. 

The principle of the supply system using the two 
supercapacitor banks and the energy management must now 
be validated in real time. But, due to the high cost of 
supercapacitors and also the high power during the different 
operations, a reduced HIL simulation has been chosen for 
these preliminary tests. 

In this case, the sub-system to test is composed of the 
supply system in station (including the in-station SC1) and 
the on-board SC2. This subsystem under test must be 
connected to another power device (emulation device), which 
has to reproduce the same behavior of the vehicle traction 
subsystem (Fig. 4). In some cases, a reduced-scale traction 
drive with a load drive can be used [11][15]. In this study, a 
simple chopper is used (Fig. 5) in order to focus on the two 
ESSs. This emulation chopper is controlled to reproduce the 
traction current using a mathematical model of the subway 
traction subsystem. When the subway is at a standstill, no 
current is provided. When the subway accelerates, a positive 
current is generated in function of the required torque. When 
the subway decelerates, a negative current is imposed 
proportionally to the recovery power. 

The full-scale subway mathematical model (traction drive, 
mechanical powertrain, subway environment and control) is 
used. First, this model is derived from the real vehicle and it 
is composed of non linear parts, which are difficult to 
reproduce in a reduced-scale model. Secondly, this full-scale 
model will be used when the full-scale HIL simulation is 
developed. In order to connect the full-scale model to the 
reduced-scale power devices, adaptation coefficients are 
defined as a function of the limitation of the real systems and 
the reduced-power devices (power adaptation in Fig. 4) [15]: 
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Fig. 3. EMR and inversion-based control of the new supply system 
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Fig. 4. HIL simulation principle of the new supply subsystem 

 
 

The capacitor voltage uc is amplified using the kv 
coefficient. This model voltage uc-mod is imposed to the 
subway model, which delivers the equivalent traction current 
itract-mod according to the action and reaction principle. This 
current is then decreased using the ki coefficient in order to 
generate the current itract-ref. This reference is used by the 
control of the emulation chopper in order to impose the 

equivalent traction current in the dc bus as a function of the 
subway operation. 

The power amplification kp depends on the adaptation 
coefficients: 
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IV. REDUCED-SCALE EXPERIMENTAL SET-UP 

The reduced-scale experimental set-up is composed of 
different power devices (green and orange blocks in Fig. 4) 
and of different control parts (blue and purple bocks in Fig. 4).  
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Fig. 5. Reduced-scale experimental set-up for HIL simulation 

 

A. Hardware devices for the HIL simulation 
The experimental set-up is composed of two power test-

benches: one for the in-station ESS (with SC1), and one for 
the on-board ESS (with SC2) and the emulation device (Fig. 
5). 

Two identical supercapacitor banks (BATSCAP M2-
54V130F) are used for SC1 and SC2. Each module is 
composed of 20 supercapacitors of 2 600 F connected in 
series (Fig. 7). Six IGBT voltage source inverter legs are 
available in each test-bench. If only 3 inverter-legs are 
required in the studied HIL simulation, more inverter legs can 
be used for HIL simulation using a real electrical traction 
machine [11]. Four diode rectifiers are available on each test 
bench. Different sensors and safety systems are also 
integrated. Inductors of 100 mH are used to smooth the 
currents in the supercapacitors. 
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Fig. 6. Reduced-scale experimental set-up 
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Fig. 7. BATSCAP M2-54V130F 

 

A dSPACE© 1105 controller board is used to control the 
system in real time. Different interface cards have been 
developed to manage all signals. 

 

B. Software organization for the HIL simulation 
Ussualy two different controller boards can be used in HIL 

simulation: one for the control of the system under test and 
another one for the control of the emulation device and the 
simulation of the subway model in real time. 

In this case, a single controller board is used. It contains all 
control parts (blue bock in Fig. 4) and model parts (purple 
blocks in Fig. 4). 

A first part of the control program is dedicated to the 
measurement, the active limitation and the software Pulse 
Width Modulation. The associated sampling period is set to 
Tsamp1=83µs. The modulation frequency is set to fmod=1.2kHz. 
High values of inductors are then used to smooth current 
ripples in supercapacitors. 

A second part of the control is dedicated to the control of 
the ESSs, the control of the emulation device and the 
simulation of the subway traction system in real time. The 
associated sampling period is set to Tsamp1=830µs. 

 

V. EXPERIMENTAL RESULTS 

A. Experimental set-up validation 
First tests are achieved to validate the safe operations of the 

new experimental set-up. All active limitations are checked 
such as the dc voltage limitation, which is activated for uc 
greater than 300 V (Fig. 8). The charge and discharge of both 
supercapacitors banks are also tested using the current loops 
(Fig. 9). 

B. Power transfer validation 
A first simple experimental result is provided (Fig. 10). A 

constant current reference for SC1 is imposed. The voltage of 
SC1 decreases when the voltage of SC2 increases until the 
maxi-mal value is reached. Because the SC1 voltage 
decreases (discharge of SC1), the power of SC1 decreases 
with a constant value. As the power is transferred from SC1 
to SC2, the power through SC2 evolves inversely from that of 
SC1. Finally, due to the losses in the conversion scheme, the 
SC2 current decreases. 
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Fig. 8. Test of the active limitation of the dc bus voltage 
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Fig. 9. Test of the charge of SC1 

 
 

VI. CONCLUSION 

A new subway traction system has been proposed using 
only supercapacitor to move the vehicles between two 
stations. The operation without supply rail between stations 
can significantly reduce the infrastructure cost and 
management. Moreover, this new topology could enable a 
better energy recovery during braking operations, and reduce 
the energy consumption of the subway. The fast charge of the 
on-board ESS is ensured at each station by supercapacitor 
banks. 

A specific reduced-scale experimental set-up has been 
developed to validate the energy management of this new 
traction system in different operations. It is composed of two 

supercapacitors bank and power electronics. An emulation 
chopper is used to reproduce the traction current using a HIL 
simulation method. A single controller board is used to 
control the reduced scales ESSs, the emulation chopper and to 
simulate in real time the model of the subway traction 
subsystem. First experimental results are provided for the 
power transfer between supercapacitors in station. 
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Fig. 10. Experimental results of the power transfer in station 
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