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Abstract—The present work is focused on the synthesis and
the analysis of robust control techniques for rear electric traction
control in 4X4 hybrid-converted CVs (Conventional Vehicles) at
urban speed limits (lower than 60 Km/h). This set represents
a practicable alternative for the automotive industry, improving
vehicular performance and reducing considerably fossil fuel air
pollution. Our goal is to design an electromechanical controlled
system that can replace the conventional rear wheels in touring
cars with a pair of electric wheels with a minimal level of adapta-
tion, preserving the original combustion engine. We consider the
synthesis of an H∞ robust controller and also the neurofuzzy
approach. An optimized PID controller was also designed for
the final analysis and evaluation. Based on Ackerman Geometry
and the reading of the steering front angles, it was possible
to estimate the maneuver radius from turning center. Thus, all
three proposed control approaches must adjust the rear wheel’s
individual angular speeds by means of the current control of the
two electrical motors linked to them, so that the car presents
an appropriate behavior during all possible maneuvers. Finally,
computation models were run in order to compare the three
controllers.

I. INTRODUCTION

The hybrid vehicle concept fills a huge demand for new
transportation facilities which could significantly reduce emis-
sions from motor vehicles. For example, over their entire full
cycle, PHEVs (Plug-in Hybrid Electric Vehicles) emits less
CO2 than CVs (Conventional Vehicles) and HEVs (Hybrid
Electric Vehicles) [1]. The hybridization of the drive trains in
public transportation associated with the use of supercapacitors
as an ESS (Energy Storage System) could recover up to 40%
of the energy when they break [2]. Many previous works
often treat the design of electrical/hybrid vehicles focused on
unpublished or inedited conceptions, which are often built
up entirely from a “blank desk”. Our goal is to design a
full controlled electromechanical device that can be perfectly
adapted to preexisting touring cars, without great structural
adaptations. In order to have an wide overview of the control
possibilities, we consider the use of three approaches. The first
one refers to an optimized PID controller, whose recurrence
equations have been drastically modified to improve perfor-
mance [3]. The second one considers the synthesis of an H∞
robust controller based in the general robust control theory
[4], [5]. Although there are many practicable modern solutions
for this dynamic problem, control complexity increases as
the contour conditions and project requirements raise, which

implies a very significant process cost growth [6]. Thus,
we consider, as third approach, the design of an artificial
intelligence-based controller, which is supported by the idea
of combining fuzzy logic ease in abstracting knowledge and
the low process cost that the neural networks demand, gen-
erating neurofuzzy systems [7] that combine the advantages
of those two paradigms [8]. A FLC (Fuzzy Logic Controller)
was designed [9] prior to the design of the neural network
[10]. The four-layered feedforward neural network analysis is
strongly followed [11]. A simplified dynamic model of the
vehicle is presented [12] and some relations were developed
based on Ackerman Geometry, from which individual rear
wheels angular speeds are determined, so that all maneuver
stability levels could be accomplished [13]. Traction system
considers the identification of two 5HP electrical DC motors,
in their respective space state representation, modeled based
on experimental techniques [14].

II. ELECTRIC WHEELS CONTROL PROBLEM
FORMULATION

The vehicle modeled in this work consists of a conventional
touring car, driven by a conventional combustion engine for
the frontal traction. Once our electromechanical device can
properly replace both conventional rear wheels, we can treat
the original car as an hybrid vehicle indeed. In our case, only
the rear electric wheels shall operate at general urban speed
limits (lower than 60 Km/h), so that the combustion engine
must be inoperative. Above of this speed, the conventional
combustion engine assumes the traction system and the electric
rear device is then decoupled. Figure 1 shows the hybrid
vehicle architecture. The steering angles and the vehicle speed
are available from the CAN bus network (A). These data are
sent to our boarding computer which calculates the correct
reference values (B). The two electric wheels are then con-
trolled by means of electrical current control (C), so that the
measured angular speeds of the wheels are in compliance to
the reference values, thus stability in maneuvers is guaranteed.

A. Vehicle Modeling

We based the vehicle’s dynamic model on a simplified
2D version [12]. It considers all geometric relations intrinsic
to a four wheel touring car, with front steering system, as
it can be observed in Fig. 2. We have δ1,2 as the steering
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angles, β1,2 are the angles between movement and rolling
directions. The wheelbase is given by L, while l1 and l2
are, respectively, the distance between center of gravity and
front and rear tracks. The distance between C.G. and turn
center is given by Rcg , while R is the distance between turn
center and rear track mean length. The track length is denoted
by b. Variables R1 and R2 are the distances between turn
center and left and right wheels, respectively. Forward and
angular velocities are respectively denoted by Vcg and ωz , both
with respect to C.G. Variables U1..4 represent the longitudinal
forces along the steering angle direction. Transversal forces
along the four wheels are given by S1..4. The power that
the combustion engine transmits to both front left and right
wheels are represented by P1(t) and P2(t), respectively. The
power that the electric motors transmit to the left and right
rear wheels are given by P3(t) and P4(t), espectively.

Fig. 1: Control architecture of the hybrid-converted vehicle.

Sketching the free body diagram referent to Fig. 2, we
achieve the following equations, which describe the dynamics
of the vehicle:

(1)V̇x =
1

m
(U3 + U4 − S1cosβ1 − S2cosβ2) + Vyωz

(2)V̇y =
1

m
(S3 + S4 + S1sinβ1 + S2sinβ2)− Vxωz

Fig. 2: Steering kinematics through which Ackerman Geome-
try is achieved.

(3)

ω̇z =
1

Iz

[
b

2
(U3 − U4)− l2 (S3 + S4) +

l1 (S1sinβ1 − S2sinβ2) +

b

2
(S2cosβ2 − S1cosβ1)

]

Where Iz is the moment of inertia over z axis and m is the
mass of the vehicle. The longitudinal forces that act over the
wheels are:

U1 = U2 = −µmgl2
2L

(4)

(5)U3 =
P3(t)

(Vx +
b
2ωz)

− µmgl1
2L

(6)U4 =
P4(t)

(Vx − b
2ωz)

− µmgl1
2L

Where µ and g are, respectively, the coefficient of friction
and the gravitational acceleration. As in our case study only
P3(t) and P4(t) are considered, the resultant forces U1,2 are
the opposite forces due to friction. Transversal forces are given
by:

(7)S1 = CψF

(
δ1 −

Vy + l1ωz

Vx +
b
2ωz

)

(8)S2 = CψF

(
δ2 −

Vy + l1ωz

Vx − b
2ωz

)



(9)S3 = −CψT

(
Vy − l2ωz
Vx +

b
2ωz

)

(10)S4 = −CψT

(
Vy − l2ωz
Vx − b

2ωz

)
Where Cψ is the slip coefficient, and the subindices T and

F stand for rear and front wheels, respectively. According to
[13], aiming the appropriated behavior in turns, front wheel
angles must follow the Ackerman Geometry, given by:

δ1 = arctg

(
L

Rcg +
b
2

)
≈

(
L

Rcg +
b
2

)
(11)

δ2 = arctg

(
L

Rcg − b
2

)
≈

(
L

Rcg − b
2

)
(12)

Once we know the vehicle’s speed and the steering angles,
considering the vehicle as a rigid body and performing several
geometric relations, we achieve the following equations, which
safely represent, the rear angular speeds of the right and left
wheels, which must be correctly adjusted by the controller:

ω1 =
Vcg
rRcg

[√
R2
cg − l22 +

b

2

]
(13)

ω2 =
Vcg
rRcg

[√
R2
cg − l22 −

b

2

]
(14)

Where r is the radius of the pneumatic.

B. DC Motor Modeling

We considered the characterization of two 5 HP DC motor
for the vehicle’s rear traction system. This process was based
on experimental procedures which allow us to obtain all elec-
tromechanical parameters for obtaining the transfer function
for the analysis. In order to ease computation and expedite
calculation involving transfer matrices, we consider the DC
motor model representation in the packed form [5], using all
parameters previously determined in our experiments, which
is given by:

G(s) =

 −120 −700 1
1 0 0
1 50 0

 (15)

III. CONTROL DESIGN

A. PID Controller Recurrence Equations

The digital PID controller consists on the modified recur-
rence equations proposed in [3]. It considers the positional
form with backward difference approximation to the integra-
tive term (I) and Tustin approximation to derivative term (D),
whose control laws can be respectively represented by:

P (k) = Kp[βr(k)− y(k)]; (16)

I(k) = I(k − 1) +
KpT

Ti
e(k − 1) (17)

D(k) =
2Td − TN
2Td + TN

D(k− 1) +
2KpTdN

2Td + TN
(y(k)− y(k− 1))

(18)
T is the sample rate of data acquisition, N is the opti-

mization parameter for derivative action. β is the fine tuning
parameter for proportional action, acting over the output signal
[3]. Controller fine tunning followed 2nd Ziegler-Nichols
method until the best value for proportional, derivative and
integrative gains were reached.

B. Synthesis of the H∞ Robust Control

The H∞ controller designed was based on the work of [4]
and [5]. The controlled process is a feedback SISO system,
where the plant G is now represented by its augmented plant
Gap, seen from Fig. 3, where w is the input and z1 and z2
are the outputs. The goal is to find a H∞ controller K whose
closed-loop transfer matrix norm, between Tzw and z1...2, can
be given by:

Twz =

∥∥∥∥ W1S
W2KS

∥∥∥∥
∞

=

∥∥∥∥ W1S
W2R

∥∥∥∥
∞
< 1 (19)

Fig. 3: Linear fractional transformation of the augmented plant
matrix.

Where W1,2 represent controller weighting functions.
Mixed sensitivity problem was considered, which is one of

the H∞ focus. In this context, S is sensitivity function while
R is input sensitivity function, given by:

S = (I + L)
−1 (20)

R = K(I + L)
−1 (21)

Where L is the system open-loop transfer function written
as:

L = GK (22)

Both sensitivity and input sensitivity functions denote sys-
tem robustness relative to disturbances rejection. It is necessary
that the gains of R are low at high frequencies so that



noises/disturbances rejection can be guaranteed. On the other
hand, S gains must be low at low frequencies to achieve
the same rejection. Singular values analysis also are a good
indicative of the robustness of the system against noises and
disturbances in general.

It is essential to select the weight matrices properly for
Wi, so that Eq. (19) can provide the system with robust
control actions, satisfying project demands related to the
electric wheels angular speed control, which are: 1) stability
against model parametric variations, 2) stationary error → 0,
3) robustness even with open-loop uncertainties and variations,
4) robustness against noises which are inserted into the plant.

1) Weighting Functions We and Wu Estimation Process:
H∞ weighting functions estimation is a quite complex process
that not rarely demands iterative algorithms and does not exist
a direct and specific formulation to achieve this goal. From the
classic control theory, speed response is proportional to natural
frequency ωn and overshoot is determined by damping ratio ξ.
As the desired performance is directly related to the sensitivity
function, we consider ωn and ξ directly related to sensitivity
functions [5], given by:

S =
s(s+ 2ξωn)

s2 + 2ξωns+ ω2
n

(23)

Although it is possible, from time domain, to calculate
their corresponding parameters in frequency domain in therms
of bandwidth ωb and peak sensibility Ms, we analyze only
the steady-state error with respect to a step input signal
whose value is given by ε and that allows the choice of
We function which satisfies the condition |We(0)| ≥ 1/ε,
so that ‖WeS‖∞ ≤ 1 [5]. Maximum gain Mu of KS can
assume high values while high frequencies gain is limited by
bandwidth ωb and sensor frequencies, for instance. In order to
attenuate those frequencies, it is desired to reach values beyond
the desired control band. In other words, it is necessary to
find the singular values of |S(jω)| (We) and |KS(jω)| (Wu)
functions for the H∞ controller. Both weighting functions
obtained are given by Eqs. (24) and (25) as follows:

We(s) =
0.00625s+ 50

s+ 0.05
(24)

Wu(s) =
s+ 1

0.1s+ 9 · 108
(25)

From Eqs. (24) and (25) and all previous described
procedures, the following controller K is achieved:

K(s) =

7.104(s+ 9 · 109)(s+ 113.8)(s+ 6.192)

(s+ 2018)(s+ 0.05)(s2 + 1515s+ 3.061 · 106)
(26)

K controller frequency response can be seen through Fig.
4. Bode diagram turns it possible to analyze stability, which
guarantees that the system is stable for a wide range of
frequencies (and, then, conditions), considering the presence
of noises/disturbances.

Fig. 4: Bode diagram of the H∞ robust controller.

C. Neurofuzzy Approach

1) Fuzzy Controller Set Up: A fuzzy controller was de-
signed inspired in [9], considering two inputs and one output.
The input is represented by the two wheels angular speeds
tracking errors E and their derivatives dE. In the other hand,
output variable is given by the control action dU . Both E and
dE utilize the following linguistic variables: Z set indicates
that E and dE are at an acceptable zone. PL and NL
respectively indicate that E and dE are positive and negative,
with large margin of error. PM and NM respectively indicate
that E and dE are positive and negative, with medium margin
of error. Finally, PS and NS respectively indicate that E and
dE are positive and negative, with small margin of error. As
for the output, control action dU can be either an increase
(PS, PM and PL) or a decrease (NS, NM and NL) in control
signal. The FLC was provided with 49 rules, as can be seen
from the look-up table in Fig. 5.

Fig. 5: Fuzzy rules look-up table.

2) Feedforward Neural Network Design: A feedforward
neural network was designed in order to replace fuzzy con-
troller previously set up. A four-layered feedforward neural
network with (N/2) + 3 hidden units was initially designed,
once this set up is superior to a three-layered feedforward
network in terms of the number of parameters needed for the
training data [11]. The complete four-layered neural network
architecture is shown in Fig. 6 [10].



Fig. 6: Four-layered feedforward neural network architecture.

In our case, the neural network consists of a pair of inputs
x = (x

(k)
1 , x

(k)
2 ), which are the fuzzy controller input variables

E and dE, respectively. Network single output consists of
y = y

(k)
1 which refers to the fuzzy output variable given

by dU . The idea is to provide the four-layered feedforward
network with the vector containing E and dE as well as
the desired output control signal dU . A Levenberg-Marquard
algorithm was run and the training performance complied with
MSE (Mean Square Error). Finally, the network evaluation
process consist of the fuzzy control surface reconstruction
process. The just designed neural network shall reconstruct the
control surface, generated as the result of the fuzzy inference
procedure. Figure 7 shows, at the left hand (A), the surface
generated after the fuzzy inference process. At the right hand
(B), the neural network reconstructs the fuzzy surface. This is
the prove that ensures that the feedforward neural network is
perfectly capable to provide the same control actions dU just
as the fuzzy controller would do.

Fig. 7: FLC control surface obtained through the fuzzy rules
(A) and the same control surface reconstructed by the the
feedforward neural network (B).

IV. RESULTS AND PERFORMANCE EVALUATION

Both H∞ and neurofuzzy controllers were subject of tests
of changes in angular speed demands. Gaussian noise was
also incorporated to the plant in order to evaluate the ability
of controller related to noise/disturbances rejection.

Figure 8 illustrates the responses of all controllers while the
vehicle is traveling, liable to maneuvers. It is noted that H∞
controller presents a high ability to reject noises/disturbances.
Although neurofuzzy ability to reject noises can’t be compared
to the H∞ approach, the neurofuzzy controller presents an
acceptable tracking error at the first second and then sustains
the requested reference inputs.
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Fig. 8: Control responses during maneuvers, while vehicle is
susceptible to changes in wheel speed reference values.

Figure 9 shows the controller responses to abrupt variations
in speed amplitude, in order to evaluate some important
characteristics of the vehicle performance, just as rising time,
overshoot percent and steady state response. As for these
three items, H∞ has responded with minimum rising time,
acceptable overshoot level and excellent steady state response.
Neurofuzzy controller behavior is also efficient as for the
rising time, and steady state response can also be considered
acceptable. For this essay, PID controller performance is
considered inefficient for brusque change in operation con-
ditions. Actually, PID controller can’t ensure robustness in all
operation conditions. Figure 10 shows the breaking test results.
Once again PID steady state error can’t be neglected. In the
other hand, H∞ and neurofuzzy controllers have successfully
accomplished this essay.
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Fig. 9: Control responses for abrupt variations in reference
speed amplitude.

Control effort is also a strong indicative for controller
robustness. In this case, H∞ (Fig. 11) and neural (Fig. 12)
controllers efforts are highly varying, as soon as the speed of
reference is provided, whereas the PID controller settles with
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Fig. 10: Control responses for a breaking scenario.

steady error (13). Figure 14 also illustrates an abrupt change
in speed demand, where the vehicle is initially parked. Again,
the efforts of both H∞ and neurofuzzy controllers are notable.
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Fig. 11: Control effort with H∞ controller.
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Fig. 12: Control effort with neurofuzzy controller.
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Fig. 13: Control effort with PID optimized controller.

V. CONCLUSIONS AND FUTURE WORKS

Both H∞ and neurofuzzy controllers have produced good
results at different simulation conditions. Thus, we could
prove that modern control techniques, when well-designed,
can provide excellent control responses so that the electric
wheel speed control problem can be satisfactorily solved. In
the other hand, we also proved that the neurofuzzy approach
also provides excellent control actions for the problem. In
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Fig. 14: Control effort for an abrupt change in reference speed
amplitude with disturbances applied to the plant.

other words, both approaches advantages make the hardware
control architecture conception very flexible. In spite of the
optimization process of the PID controller, it was definitely
proved that the classic approach is not sufficiently versatile to
such problem in comparison to the two previous controllers.

A reduced scale vehicle is being assembled at São Carlos
School of Engineering/USP, in which the H∞ and the neuro-
fuzzy controllers will be properly embedded at the end of the
first half of 2010.
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