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Abstract— Battery charging of Electric Vehicles (EVs) will 
increase the power demand in distribution networks. It is 

anticipated that this will cause voltage drops, thermal overloads 

and an increase in losses. These impacts will be affected by the 

behaviour of the owners of EVs. A typical 3-phase LV residential 

distribution network model is used to evaluate the effects of EV 

battery charging on distribution networks with Distributed 

Generation (DG). The uncertainties associated with the 

ownership of EVs, the rating of charging equipment, the 

occurrence and the duration of charging, together with the 

spatial distribution uncertainties of DG installation, were 

addressed with a probabilistic approach. A case study was 

performed for the year 2030, considering three EV and two DG 

penetration levels. A control function which reschedules EV 

battery charging was defined based on customer preferences and 

distribution network constraints. Thermal overloads, voltage 

drops, and losses associated with each case were reported. The 

effects of the coordinated EV battery charging on these impacts 

were analysed. 
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I. INTRODUCTION  

Concerns over increased emissions from road transport are 

driving the transition of the transportation sector towards 

electrification. Electric Vehicles (EVs) will be connected to the 

power network via public or private chargers and consequently 

will rely on distribution network connections to obtain 

electricity for their battery charging. Large deployment of EVs 

may overburden the components in existing distribution 

networks and is anticipated to modify the voltage profile of 

distribution feeders [1]. 

A number of studies investigating the impact of dispersed 

EV battery charging on distribution networks have been 

completed. Some considered uniform EV allocation among LV 

feeders [2, 3] while others utilised probabilistic approaches to 

tackle the uncertainty of spatial EV battery charging [4, 5].  

Managing EV battery charging may defer infrastructural 

update investments and reduce the impact of EV charging on 

distribution networks. Smart charging of EVs, was defined in 

[2], as the coordination of charging EVs in order to avoid 

voltage limits violations and power line overloading. In [3], 

smart charging control was considered to charge EV batteries 

in a way that enables uniform distribution transformer loading 

to be attained during a day. The authors of [4] used 

optimisation software to match predefined EV charging 

schedules in order to improve feeder voltage profiles and 

minimise power line losses.  

The strategies which can be followed to manage the 

charging and discharging of EVs are studied in [7]. 

This research work considered the following uncertainties 

for studying the network impacts arising from EV battery 

charging: (i) Type of residential load, (ii) EV location, (iii) 

Rating of EV charger, (iv) EV charging occurrence and (v) EV 

charging duration. These uncertainties are treated separately for 

each customer. A Java-based tool was built [6] to create 

different network configurations by varying the 

aforementioned variables. This tool is extended to include 

Distributed Generation (DG) from renewable sources, 

considering that the type and location of each DG installation 

are uncertain.  

The extended tool was used to create different network 

configurations according to the variables mentioned above. For 

each generated case, synthetic data were used as inputs for the 

residential load and the DG profiles. The impacts on 

distribution transformer and cable loading, steady-state voltage 

and losses were recorded.  

A smart charging function was added to the tool for 

controlling EV battery charging in order to minimise the 

impact on these constraints. The function simulates a type of 

centralised control where EV battery charging is coordinated, 

taking into consideration distribution network constraints and 

preferences of EV owners.   

 

TABLE I: OPERATIONAL STATE RANGES FOR  LV STUDIED PARAMETERS 

 

Parameter 

 

Nominal Rating 

Operational State Range (p.u.)  

References 
Normal Alert Emergency 

Transformer loading         

    summer season 

 

500 KVA 
 

0-1 
 

1-1.2 
 

More than 1.2 
 

     [11,12] 

Transformer loading  

      winter season 

 

500 KVA 
 

0-1.2 
 

1.2-1.4 
 

More than 1.4 

 

185mm2 cable loading 
 

347 A 
 

0-1 
 

1-1.45 for less than 4 

hours 

 

1-1.45 for more than 4 hours or 

more than 1.45 

      

       [13] 

 

Voltage 

 

230V (1 phase) 

 

   0.95-1.09 

 

0.94-0.95 and 1.09-1 

 

Less than 0.94 and more than 1.1 

       

                                                                  [8] 
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II.      TECHNICAL CONSTRAINTS 

    LV networks in the UK have a nominal line to neutral 

voltage of 230V. The actual voltage should be within +10% 

and -6% from this value [8]. The operational limits of each 

studied constraint are categorized into normal, alert and 

emergency states, following the theory provided in [9]. Table I 

shows the range of each state for the different constraints. 

More details on the assumed values for each constraint are 

provided in [6]. The constraints studied in this research are 

steady state voltage, distribution transformer and cable thermal 

loadings. The 185mm2 cable which connects the substation 

busbar with the 96 customer detailed feeder (marked with red 

in Fig. 1), was identified as the most vulnerable cable.  

    In the UK, system losses are typically 5% of the distributed 

energy [10]. This paper reports the line losses and the ratio of 

losses/energy delivered in the area serving 96 customers (see 

Fig. 1). 

III. UK GENERIC DISTRIBUTION NETWORK 

   The radial LV network used in this paper was assessed by a 

number of Distribution Network Operators (DNOs) and 

considered as representative of urban UK distribution 

networks. Fig. 1 shows the schematic of the generic network. 

Details of the network parameters can be found in [14]. 

  

Fig. 1.    UK Generic LV Distribution Network  

IV. SYNTHETIC DATA 

When an average daily profile is available, synthetic data 

can be generated by means of adding randomness [15]. This is 

done using a specific predefined pattern so that the resulting 

data seem realistic. Based on the available profiles, daily 

variations are applied as a random perturbation factor which is 

uniform for the whole day. Similarly, an hourly perturbation 

factor is applied. These factors are essentially noise which is 

added to the profiles. They are incorporated into the data by 

multiplying each half-hourly value of the profile with R:  

 

    Eq. (1) 

where  

Sd is the daily perturbation factor and  

Sh is the hourly perturbation factor. 

 

    Synthetic data generation was used to create a residential 

load and a micro-generation profile for each customer. Each 

profile was multiplied by a factor R, resulting from uniformly 

distributed random assignments of perturbation factors, with 

their maximum being 20% (daily) and 15% (hourly) according 

to [15].   

V. TOOL INPUTS AND COMPUTATIONAL PROCEDURE  

A. Tool Inputs and 2030 Case Study Data 

    The data used as inputs to the tool are (i) penetration levels 

for micro-generation and EVs, and (ii) load/micro-generation 

profiles for domestic residences. Projected EV and micro-

generation penetration levels are utilised for 2030 based on 

previous studies [16]. The number of EVs and the micro-

generation installations per 3,072 customers in the year 2030 

is presented in Table II. Three penetration levels are used for 

EVs and two for micro-generation. The Microturbines, Fuel 

Cells and Stirling Engines are considered to be micro-CHP 

units, capable of producing heat at a Heat to Power Ratio 

(HPR) of 2.6; 1.4 and 5.0 respectively [17, 18].  

TABLE II 

 PROJECTED MICRO-GENERATION AND EV PENETRATION LEVELS PER 3072 

CUSTOMERS IN 2030 

Component 

Unit 

Power 

(kW) 

Penetration (Units) 

Low High 

Wind Turbines 2.5 32 88 

Photovoltaics 1.5 16 48 

Fuel Cell (Natural Gas) 3 24 81 

Micro-turbine (Biogas) 3 16 32 

Stirling Engine      

(Wood Pellets) 
1.2 104 304 

Total - 192 (6.25%) 544 (17.7%) 

Type of EV Low Medium High 

BEV  128 256 640 

PHEV 256 768 1536 

Total 
384 

(12%) 

1024 

(33%) 

2176 

(70%) 

 

Residential load profiles: Data from [19] were scaled to the 

values of the specific model (from 0.16kVA to 1.3kVA per 

customer), provided by the Electricity Association. An annual 

increase of 1% from the publication year of the model was 

considered, according to UK DNO’s estimations [20].  

    The amount of residential customers engaged with 

Economy 7 tariff was assumed to double among EV owners in 

2030. 

 

Micro-generation Profiles: Generation profiles for wind 

turbines and photovoltaics were drawn from [21], for average 

winter and summer days, in half-hour intervals. The micro-

CHPs were assumed to be following the heat load, since heat 

storage was not considered. Daily heat load profiles for typical 

summer and winter days were drawn from [22].  

 

EV Charging Regimes: In this research study the EVs were 

considered as loads. In order to create EV battery charging 

profiles, the EV charger rating as well as the occurrence and 

duration of each charging session were taken into account. 

11kV/0.433kV 

Source 

500 
MVA 

  33/11.5kV 
   

  

~ 
   

   96 customers 

   384 customers 

   3072 customers 

hd SSR ++= 1



    European Standards on EV conductive chargers (IEC 

62196) are to be defined by the end of 2011 [23]. The present 

study assumed that (i) 10% of the BEV owners would use 32A 

three phase chargers, (ii) 20% would use 32A single phase 

chargers and (iii) the rest would use 13A single phase 

chargers. PHEV owners were assumed to use 13A single 

phase chargers. 

    Two charging modes were considered to simulate the 

charging behaviour; dumb and smart charging.  

    a) Dumb charging is distinguished into economy and 

uncontrolled charging. Economy charging was assumed to 

occur between 11 p.m. and 6 a.m., following a typical UK 

Economy 7 schedule. Uncontrolled charging denotes the case 

where customers plug-in their EVs in an uncontrolled manner. 

The starting time of uncontrolled charging is determined by 

the time when residential peak load occurs, presumably when 

commuters return home. The uncertainty of each customer’s 

EV battery State of Charge (SOC) prior to the charging, was 

addressed by creating random charging duration for each EV 

owner. 

    The procedure of creating random charging regimes for 

each EV owner, as well as the EV battery and charger 

efficiencies, is given in [6] and [24].  The usable battery 

capacities are considered to be 28 kWh for BEVs and 7.2kWh 

for PHEVs [24]. 

    b) In the smart charging mode it is assumed that the 

commuters will be able to choose the desired final SOC and 

the ending time of the charging session. This mode would 

allow the utility to control the charging of each battery 

according to localised constraints and commuter’s preferences. 

Thus, it simulates a type of centralised control, for which an 

additional incentive would be given to the EV owner.  

    Each commuter who is being assigned this charging mode is 

given a random charging session start time, like in the 

uncontrolled mode. The starting time for the charging sessions 

of both charging modes was modelled as a normal distribution 

with its mean being the peak load time. A standard deviation 

of two hours was used. Based on the charger rating assigned to 

each commuter, a random charging duration and a SOC at the 

end of the session are produced. These two values were 

modelled to follow a uniform distribution.   

     

B. Computational Procedure 

Main Method: The tool allocates residential load and micro-

generation profiles randomly to customers according to the 

penetration level. EVs are allocated to customers and the smart 

charging function is assigned to a pre-defined fraction of EVs. 

The charging profiles are created and the final profiles for 

each bus are computed. A Newton-Raphson load flow 

algorithm runs for each half-hourly time step and the results 

are recorded. The convergence criterion is tested [6] and the 

algorithm restarts or halts accordingly. The computational 

procedure is shown in Figure 2. 

 

Fig. 2.  The computational procedure  

Centralised EV Charging Rescheduling: Several policies 

could be followed by a central controller with respect to the 

rescheduling of the EV charging. The central controller’s 

priorities for rescheduling the charging of EVs will depend on: 

(i) the control structure, (ii) business model and (iii) level of 

intelligence of each control system asset.  

    Control strategies that could be followed include centralised 

and decentralised control. In a decentralised control strategy, 

the procedure for delaying or coordinating EV charging, could 

involve ageing of EV battery or electricity market price 

signals. In a more centralised control system, the central 

controller could prioritise the EVs whose services would be 

utilised, according to their network location or the frequency 

of use of their services.  

    In this research study, EV re-scheduling was prioritised 

according to the EV charger rating in a descending order. This 

means that the EVs utilising the charger with the highest 
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power rating were rescheduled first. The criterion for this 

choice was the computational efficiency of the algorithm. The 

procedure of the smart charging rescheduling is explained as 

follows. 

    At the end of the load flow for the first time-step, a routine 

checks the results for voltages, transformer and cable thermal 

limits of the detailed microgrid (dotted area with 384 

customers in Fig. 1). This is done according to the limits 

presented in Table I. If any constraint is found to be in alert or 

emergency state for the specific time-step, then an EV in smart 

charging mode is rescheduled according to the preferences of 

the user. The aim of the procedure is to check whether the 

desired SOC of the chosen EV may still be achieved, even by 

avoiding to charge at the specific time-step. If this is the case, 

the power flow re-runs for the same time-step and the 

checking routine is repeated. If the specific EV cannot be 

rescheduled, the next EV is checked. If there are no more EVs 

available for rescheduling or no constraints violated in the 

system after the inspection, the algorithm moves to the next 

time-step. 

VI. SIMULATION RESULTS AND DISCUSSION 

    The simulation results of 96 cases were recorded. These 

cases were created by varying the penetration levels of EVs 

and DG according to Table II. These levels were considered to 

reflect 2030 scenarios based on previous studies [16]. Smart 

charging levels were varied from 0% to 100% at 25% steps. 

    The results show that EV battery charging proves onerous 

for the system steady-state voltage. Fig. 3 shows the 

distribution of states for the voltage of the most remote busbar 

during a winter season. The increase of micro-generation 

sources and the control of EV charging via the smart charging 

function can reduce the voltage violations. For the case of low 

EV penetration, the wide application of smart charging among 

EV owners may prevent any voltage violation from taking 

place. 

    The 185mm2 cable which connects the substation busbar to 

the 96 customers’ feeder was found to be in emergency state 

for almost all 2030 winter season cases. The penetration of 

DG and the application of the smart charging for EVs showed 

only a slight improvement in the cable loading. However, the 

majority of operational states resulted in emergency and this 

could imply immediate consideration needs for the DNOs. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Fig. 4. Distribution transformer operational states (Low EV penetration). 

 

    The distribution transformer would be in alert operational 

state in 2030 for both projected DG penetration levels. EV 

battery charging would further increase the transformer 

loading, leading to emergency operational state. The wide 

application of smart charging for EVs (i.e. 100% smart 

charging) would reduce the probability of emergency state 

operation to approximately 30% for zero DG penetration and 

10% for high DG penetration. Fig. 4 shows the transformer 

loading operational states for low EV penetration during a 

winter season. 

    Network losses would increase with EV battery charging 

since the energy required from the grid to charge the batteries 

would be greater. The simulation results show that electrical 

line losses were decreased by approximately 0.5% and 1% for 

low and high DG penetration levels respectively, compared to 

zero DG penetration.  

     The application of smart charging would further decrease 

power line losses by 1%.  Fig. 5 shows the average daily 

power losses for all DG and EV penetration levels that 

occurred within the area of 96 customers. A column was 

added to the graph to illustrate the effect of 100% smart 

charging on losses for the high EV penetration scenario. The 

lines refer to the secondary vertical axis. This axis denotes the 

percentage of power line losses, relative to the grid imported 

energy to cover the respective load, in the 96 customers’ area.  
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Fig. 3. Operational states for the steady-state voltage of the most remote customer 
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    Fig. 5. Daily average power line losses in 96 customers area 
 

VII. CONCLUSIONS AND FUTURE WORK 

    Future distribution networks are anticipated to incorporate 

Electric Vehicles and Distributed Generation. The integration 

of these new assets requires transformer and cable thermal 

loadings and steady-state voltage studies. A three-phase 

generic UK LV distribution network was used to conduct 

simulation studies based on sequential load flows. The inputs 

are (i) bus half-hourly profiles consisting of residential load, 

(ii) micro-generation and (iii) EV charging profiles. The 

uncertainties of residential loads and micro-generation power 

outputs were addressed by synthetic data generation. The 

uncertainties associated with EV battery charging were treated 

with a probabilistic approach. A control function based on a 

heuristic algorithm was created to simulate smart EV 

charging.  

    A case study for the year 2030 was built based on demand 

increase and forecasted EV and micro-generation penetration 

levels from the literature. The results showed that EV battery 

charging would prove onerous for the constraints studied. DG 

penetration would be able to provide support for EV battery 

charging but EV battery charging management would be 

necessary to minimise the impact in order to reach high levels 

of EV penetration. Future research will focus on the 

functionalities of such control to define a system structure and 

the level of intelligence of each system element.  
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