
Diagnosis of a hydrogen/air fuel cell by a statistical model-based method 
 

A. Zeller1,2, O. Rallières1,2, J. Régnier1,2, C. Turpin1,2 

1
Université de Toulouse; INP, UPS; LAPLACE (Laboratoire Plasma et Conversion d'Energie); 

ENSEEIHT, 2 rue Charles Camichel, BP 7122, F-31071 Toulouse cedex 7, France. 
2
CNRS; LAPLACE; F-31071 Toulouse, France. LAPLACE 

 

Abstract: This paper proposes a diagnosis method of a 

hydrogen/air fuel cell using a quasi-static model coupled to 

a parameter identification method that are both described. 

An original statistical approach is proposed in an effort to 

obtain a certain guaranty on the validity of the identified 

parameters and raise in this way the associated 

“confidence index”. The analysis of the degradation of a 

fuel cell is afterwards achieved by comparing parameters 

identified before and after the degradation. A diagnosis is 

then presented based on the analysis of the different losses 

occurring within the fuel cell in an effort to monitor and 

control on-board systems. 
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I. INTRODUCTION 
 

We find ourselves at the edge of an energetic mutation. 

Indeed, we are getting closer to the exhaustion of fossil 

fuel resources coupled to environmental problems such 

as the greenhouse effect or nuclear wastes handling. 

We must find different energy sources and it seems 

that there are no perfect solutions but rather a large 

number of alternatives. 

Hydrogen (H2) has probably a role to play in the future 

energy context. However, as it does not exist in nature, 

hydrogen has to be synthesized, ideally from 

renewable energy sources (solar panels, wind 

turbines…). These technologies produce energy 

randomly (dependent on the weather) but production 

could be smooth out by a hydrogen storage system. 

Thus, electrolysers and fuel cells (FC) appear to be an 

interesting alternative. 

A fuel cell is composed of several monocells where 

each monocell undergo a redox reaction. Using 

platinum as a catalyst, hydrogen and oxygen react to 

produce water, electricity and heat according to the 

following global reaction: 
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Figure 1 introduces the schematic of a Proton 

Exchange Membrane Fuel Cell or PEMFC. 

 
Figure 1: PEMFC schematic 

The LAPLACE laboratory has mainly focused its 

research on low temperature PEM fuel cells, a 

technology that is close to commercialization. Parts of 

previous researches achieved at the LAPLACE on 

H2/O2 FC [1] [2] have been applied to H2/Air FC for 

this study to establish a diagnosis of the state of health 

of a fuel cell.  

Today, fuel cell technology is not sufficiently 

developed to provide energy at competitive costs and 

additional studies are needed to optimize its 

performance. In addition, monitoring approaches are 

also investigated to improve the reliability and life 

time of an embedded system. For example in electrical 

vehicle, the FC is submitted to strong constrain such as 

vibrations, temperature variations, humidity, transient 

regimes… These constrains have a strong impact on 

the FC performances, therefore, it is necessary to have 

feedback on the FC state of health to adapt the control 

and prevent damaging operation conditions.  

In order to fulfill these goals, friendly representative 

fuel cells models are developed (circuit-based) that 

provide an easy approach and a quick understanding of 

involved physicochemical phenomenon and offer a 

diagnosis [1] [2] [3]. 

A circuit based model represents, by analogy, and 

through the association of electrical components, the 

different physical phenomena occurring inside the fuel 

cell, namely the different losses [2]. It has been 

decided that a similar circuit based model approach 

will be used to identify the different losses peculiar to 

the PEMFC (activation, diffusion, membrane 

resistance) in an effort to establish a diagnosis 

throughout physical parameters analysis. 

In this article, we will first introduce our model and the 

parameters identification approach. The statistical 

method is then presented and described to move on to 

the application of these methods on healthy and 

degraded PEMFC data in a diagnosis effort. 
 

II. Model and parameters identification 
method 

A. Quasi-static model 

The quasi-static circuit-based model is as following: 

Erev ηact ηdiff Relec·I

UFC

I

 
Figure 2: Quasi-static circuit-based model 

 

We have Erev: Nernst voltage 

  act: Activation losses 

  diff: Diffusion losses 

  Relec: Ohmic losses 
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The theoretical voltage is represented by a voltage 

source as well as activation and diffusion losses 

(activation and diffusion losses become voltage-driven 

current sources in a dynamic model [6]). Ohmic losses 

are modeled by a resistance as it was measured to be a 

constant value (resistance monitoring for every point 

of the quasi-static curve). Therefore, we can deduce 

from figure 2 the overall equation of the quasi-static 

model (2): 

UFC = Erev - act - diff - RelecI  (2) 
 

Equation (2) can be rewritten as following (3): 
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Where:         : Activation coefficient 

I0: Activation current (A/cm²) 

Rdiff: Diffusion pseudo-resistor (Ω) 

Relec: Ohmic losses (Ω) 

R: Perfect gas constant (8.314 J.K
-1

.mol
-1

) 

T: Temperature (K) 

n = 2 (mol) 

F: Faraday constant (96485 C.mol
-1

) 
 

Equation (3) is only true if I>>I0 and if I<<Ilim with Ilim 

the limit current for gas diffusion. This last condition 

allowed us to linearise the diffusion losses: 
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Where  is a coefficient that takes into account every 

loss liked to diffusion. If I = 0 we should theoretically 

obtain UFC = Erev. This result cannot be obtained with 

equation (3). We then have a validity problem of the 

UFC(I) law on the [0;"I>>I0"] interval. In addition, in 

the real world, the zero-current voltage is different 

from Erev due to parasitic reactions mainly caused by 

hydrogen crossover throughout the membrane [4] [5].  

For both previous reasons, an additional parameter In, a 

leakage current, is introduced into the overall equation 

(3):  
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This equation governing the quasi-static behavior of a 

fuel cell holds four unknown parameters: , I0, In and 

Rdiff that we need to determine for a diagnosis purpose. 

To do so, a parameters identification method is used 

(for the determination of Relec see [2]). 

B. Parameters identification method 

In order to obtain the values of the four unknown 

parameters, a parameters extraction algorithm is used. 

This algorithm, described in the flowchart in Figure 3, 

needs experimental data to proceed. Data acquisition is 

done using a current sweep method [6] where v(t) and 

i(t) are recorded and filtered before optimization. 

Random initial values are fed to the algorithm along 

with the membrane resistance value for optimization. 

 
 

Figure 3: Flowchart of the parameters extraction algorithm 
 

The algorithm is an optimization MATLAB function 

called lsqnonlin using the Levenberg-Marquardt 

algorithm. This iterative algorithm solves non-linear 

optimization problems by the least square method 

(parameters being non-linear with respect to the 

model). It is used here for the finding of a vector of 

parameters θ which minimize the quadratic difference 

between experimental data (v(i) curve) and a 

mathematical model supposed to fit to these data. 

Thus, the criterion to minimize is expressed by: 
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Where:     Vexp: Experimental voltage (V) 

      Vmodel: Voltage calculated by the model (V) 

 

The Levenberg-Marquardt algorithm evolves 

following equation (7): 
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With:  θi: the parameter to optimize 

  I: the diagonal unit matrix 

  J’: the Jacobi 

  J’’: the Hessian 

µi: a strictly positive coefficient that 

orientates the research of the minimum 

value of J 
 

The Levenberg-Marquardt was used here over other 

optimization algorithms (Newton-Gauss, Gradient 

descent and other gradient based algorithms) because 

its convergence rate is better when being away or close 

to the solution and due to its robustness [7]. 

C. Healthy and degraded fuel cell data comparison 

The fuel cell used is composed of three cells associated 

in series also called a stack. It is a ZSW fuel cell, 

presented in figure 4 that has an active area of 100 cm² 

and a current density of 1A/cm². 
 

 
Figure 4: ZSW stack 



This FC, during an ageing procedure, underwent a 

serious degradation due to the improper activation of a 

security system. Fortunately, data acquisition has been 

made before the incident which gave us healthy and 

degraded data to compare and analyze (data acquisition 

has been made at a temperature of 54°C). This is a 

perfect case for the test of our algorithm and from a 

diagnosis point of view.  

 

III. Statistical approach 

A. Initial parameters and number of optimization 
 

To begin with, as we can see in figure 3, random initial 

values are fed to the optimization algorithm. 

Parameters are initially set to experimentally known 

values. In an effort to test the robustness of the 

algorithm, a random set of parameters a 100% away 

from initial values is imposed to the algorithm.  

The statistical approach is based on a large number of 

optimizations. Indeed, a 100 optimizations are 

launched which give us a 100 vectors of optimized 

parameters (for each optimization a new set of initial 

parameters is selected by chance). These 100 vectors 

of parameters need to be analyzed and a final set need 

to be kept as the set of parameter describing the most 

accurately the fuel cell behavior.  

 

B. Set of Parameters selection 
 

Two approaches are used for the analysis of the 

obtained vectors of parameters. The first one, called 

the “minimum error method” consists in keeping the 

set of parameters having the lowest point-to-point error 

compared to experimental data (8): 
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This method of parameters selection is the method 

usually used in the literature but the confidence index 

is quite low as only one set of parameters over a 100 is 

chosen. We can imagine that the algorithm stopped on 

a singularity or that several set of parameters led to the 

same model behavior. An additional method of 

selection is then developed based on the analysis of the 

100 sets of parameters. 

 

This method, that we will call the “occurrence number 

method”, extracts the value of each parameter that is 

the most occurring over the 100 optimizations. Each 

parameter value for each optimization is inserted into a 

bar graph, the interval containing the most occurring 

value is extracted and a vector of parameter is built. 

 

This method, despite the fact that it is, in theory, less 

accurate than the previous one, gives us interesting 

information regarding the validity of the set of 

parameters found by the minimum error method. 

Indeed, once coupled, these two methods give us a 

guaranty regarding the relevance of the results and 

increase the confidence we have in our findings. 

We will now apply the presented material to healthy 

and degraded fuel cell data. 

 

IV. Application to a healthy fuel cell 
 

The quasi-static curve presented in figure 5 is the result 

of the parameters identification algorithm using the 

minimum error method. Results are brought back to 

the Equivalent Mean Cell (EMC). Let us note that the 

healthy stack membrane resistance value is 

Relec_healthy=0.0012Ω determined, once again, as 

described in [2]. 

 

 
Figure 5: Quasi-static graph (EMC) – Healthy fuel cell 

 

The table 1 presents the parameter identification results 

for the four unknown parameters of the quasi-static 

model. The two selection methods are used and we can 

see that either of the two methods gives the same 

result.  

 
In I0 Rdiff 

Min error 0.3392 0.5713 0.001907 0.001209 

Max occ. 0.3392 0.5713 0.001907 0.001209 
Table 1: Quasi-static identification - Healthy fuel cell 

 

 

Figure 6, 7, 8 and 9 present respectively the 

distribution, over the 100 optimizations, of the , I0, In 

and Rdiff parameters. The parameter value is extracted 

by taking the median value of the x interval 

containing the largest number of values. Thus this 

extraction method induces an error as the exact value 

itself is not taken. 

 

Despite the fact that an error is introduced we can see 

that, for the four parameters, the algorithm find the 

same value for 95% of the achieved optimizations. 

Results being identical, regardless of the parameter 

selection method used, allow us to be confident in our 

findings. The coupling of the two different methods 

raises the confidence index regarding parameters 

identification. 

 



 
Figure 6: Occurrence number – Healthy alpha 

 

 

Figure 7: Occurrence number – Healthy I0 

 

 
Figure 8: Occurrence number – Healthy In 

 

 
Figure 9: Occurrence number – Healthy Rdiff 

 

 

 

 

V. Application to a degraded fuel cell 
 
Figure 10 presents the graphic of the degraded fuel cell 

quasi-static identification using the minimum error 

method and brought back to an EMC. The membrane 

resistance was measured to be Relec_degraded= 0.00155Ω. 

We can see that the value of the membrane resistance 

increased compared to the healthy value. The 

degradation affected the membrane which became 

more resistant. In addition, we can notice that a voltage 

drop occurred compared to the healthy case. Indeed, 

for I=0A, we dropped from Uhealthy=0.95V to 

Udegraded=0.90 and this drop is amplified as we increase 

in current (at I=50A, Uhealthy=0.64V and Udegraded=0.41). 
 

 

 
Figure 10: Quasi-static graph (EMC) – Degraded fuel cell 

 

 

Table 2 presents the parameter identification results for 

the four unknown parameters of the quasi-static model. 

Again, the two selection methods are used and either 

of the two methods gives the same result. On the other 

hand, every parameter changed when compared to 

table 1; we will discuss about these changes in more 

details in the next part.  
 

 

 

 
In I0 Rdiff 

Min error 0.1803 1.1767 0.03893 0.002807 

Max occ. 0.1803 1.1767 0.03893 0.002807 
Table 2: Quasi-static identification (EMC) - Degraded fuel cell 

 

 

 

Figure 11, 12, 13 and 14 present respectively the 

distribution, over the 100 optimizations, of the , I0, In 

and Rdiff parameters. Again, for 95% of the achieved 

optimizations, the algorithm finds the same parameter 

value even though parameters are different from the 

healthy case. 



 
Figure 11: Occurrence number – Degraded alpha 

 

 
Figure 12: Occurrence number – Degraded I0 

 
 

 
Figure 13: Occurrence number – Degraded In 

 
 

 
Figure 14: Occurrence number – Degraded Rdiff 

Parameters identification is now performed and thanks 

to the statistical method we are confident in our 

findings. Now, we will analyze the different losses 

occurring inside the fuel cell as well as their 

distribution (activation, diffusion, electrical). A 

diagnosis will be proposed based on the findings. 

 

VI. Comparison and interpretation 
 

The different losses, in our quasi-static model can be 

distributed among three categories. Equation 9, 10 and 

11 present respectively the formula of the activation 

losses, the diffusion losses and the Ohmic losses: 
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In order to establish a diagnosis, healthy and degraded 

losses are studied. Figure 15 below presents a 

summary of these losses for the healthy and degraded 

FC. Parameters from the healthy and degraded 

identification are used in order to differentiate the 

losses (ie. 
healthyhealthydiffhealthydiff

IR
__

). 

 

We can observe that activation losses are predominant 

for both cases (healthy and degraded) and that every 

category of losses increased after degradation. For 

example, we can notice an increase of around 0.15V 

(0.42V to 0.57V) of the activation losses between the 

two states. 

 

 
Figure 15: Comparison of healthy and degraded fuel cell losses 

- Voltage drop 

 

Figure 16 presents the losses brought back to a 

percentage loss of Erev. This representation allow us to 

observe that for example, at 50A, activation losses 

represents around 47% of the Erev for the degraded 

model for around 36% for the healthy one.
  



 
Figure 16: Comparison of healthy and degraded fuel cell losses 

– Percentage of Erev 

 

Finally, figure 17 introduces new information, the 

deterioration with respect to the healthy state and 

equation 10 presents the relation used to produce this 

graphic. 

100*(%)
Healthy

DegradedHealthy
ionDeteriorat    (10) 

 

This last figure allows us to determine which quantity 

has been the most damaged. We can observe that, even 

though activation losses represent half of the losses, 

the most important degradation is taking place at the 

diffusion level. Indeed, we can see in figure 17 that the 

diffusion deterioration with respect to the healthy state 

is around 60%. The degradation for the activation and 

Ohmic resistance is lower as we have respectively a 

32% and 26% drop in performance. 
 

 
Figure 17: Deterioration with respect to the healthy state in 

percentage 
 

VII. Conclusion 
 

In this paper, physicochemical parameters 

identification has been performed on a quasi-static 

circuit–based model. This method could be useful for 

transportation applications. Indeed, the identified 

parameters allow the estimation of the different losses 

occurring within the FC. From these estimations we 

can extract relevant information regarding the fuel cell 

state of health in order to favor predictive maintenance 

operations and decide on the fuel cell optimal control 

for the improvement of the fuel cell life time.  

The identification process shows that final solutions 

differ depending on the algorithm starting point. The 

statistical parameters repartition underlines recurrent 

parameter values. The solution with the most recurrent 

parameter values correspond to the solution extracted 

using the minimum error method. For future tests, the 

minimum error method will be kept as it is easier to 

implement and it provides more accurate results with a 

good confidence index. 

Today, all these approaches are also applied to 

parameters identification of dynamic models of a PEM 

fuel cell and PEM electrolyzer.  

 

References 
 

[1] R. Saïsset, G. Fontes, C. Turpin, S. Astier, “Bond 

Graph Model of a PEM fuel cell”, Journal of Power 

Sources, 156(1), pp. 100-107, May 2006. 
 

[2] G. Fontes, C. Turpin, S. Astier, T. Meynard, 

“Interactions between fuel cells and power converters: 

influence of current harmonics on a fuel cell stack”, 

IEEE Transactions on Power Electronics, Vol. 

22, Issue 2, pp.670 – 678, March 2007. 
 

[3] A. Hernandez, D. Hissel, Senior member, IEEE, 

and R. Outbib, “Model and Fault Diagnosis of a 

PolymerElectrolyte Fuel Cell using Electrical 

Equivalent Analysis,” IEEE Trans. Energy Convers., 

vol 25, no. 1, pp 148-160, March 2010. 
 

[4] J. Zhang, Y. Tang, C. Song, J. Zhang, H. Wang, 

“PEM fuel cell open circuit voltage (OCV) in the 

temperature range of 23°C to 120 °C”,  J. Power 

Sources 163 (2006) 532-537. 
 

[5] X. Cheng, J. Zhang, Y. Tang, C. SONG, J. Shen, 

D. Song, J. Zhang, “Hydrogen crossover in high-

temperature PEM fuel cells”, J. Power Sources 167 

(2007) 25-31.  

 

[6] G. Fontes, C. Turpin, S. Astier, “A large signal 

dynamic circuit model of a H2/O2 PEM fuel cell:  

description, parameter identification and exploitation”,  

Special issue on Fuel Cells of IEEE Transactions on 

Industrial Electronics, to be published. 

 

[7] Jianchao & Tien Chern, “Comparison of Newton-

Gauss with Levenberg-Marquardt algorithm for space 

resection”, 22
nd

 Asian Conference on Remote Sensing, 

Singapore, 5 – 9 November 2001. 




