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Abstract—In this paper, a model-based fault diagnosis method-
ology for PEM fuel cell systems is presented. The methodology
is based on computing residuals using an LPV observer. Sensor
fault detection faces the problem of robustness using adaptive
thresholds generated with interval observer. Fault isolation is
performed using the Euclidean distance between the observed
relative residuals and theoretical relative sensitivities. To illustrate
the results, a commercial fuel cell Ballard Nexa c© is used
in simulation where a set of typical fault scenarios have been
considered. Finally, the diagnosis results corresponding to those
fault scenarios are presented. It is remarkable that with this
methodology it is possible to diagnose all the considered faults
in contrast with other well known methodologies which use the
classic binary signature matrix approach.

Index Terms—Fault Detection; Fault Isolation, Fault Isolation,
PEM Fuel Cell

I. INTRODUCTION

The energy generation systems based on fuel cells are com-
plex since they involve thermal, fluidic and electrochemical
phenomena. Moreover, they need a set of auxiliary elements
(valves, compressor, sensors, regulators, etc.) to make the fuel
cell working at the pre-established optimal operating point.
For these reasons, they are vulnerable to faults that can cause
a emergency shut down or a permanent damage of the fuel
cell. To guarantee a safe operation of the fuel cell systems,
it is necessary to use systematic techniques, like the recent
methods of Fault Tolerant Control (FTC) in [1], which allow
increasing the fault tolerance of this technology. The first task
to achieve active tolerant control is based on the inclusion of
a fault diagnosis system operating in real-time. The diagnosis
system should not only allow the fault detection and isolation
but also the fault magnitude estimation.

In this paper, a model based fault diagnosis approach is
proposed as a way to diagnose faults in fuel cell systems. The
model-based fault diagnosis is based on comparing on-line
the real behavior of the monitored system obtained by means
of sensors with a predicted behavior obtained using a Linear
Parameter Varying (LPV) dynamic model with an Luenberger
observer scheme [2]. In case of a significant discrepancy
(residual) is detected between the observer outputs and the

measurements obtained by the sensors, the existence of a fault
is assumed. Fault isolation is based on generating a set of
residuals with the available sensors thanks to they present
different directional sensitivity to the set of possible faults.

The contributions of this paper are: first, the use of a LPV
observer for fault detection and the second and the most
important is the fact that dealing with fault relative sensitivity
approach methodology for fault isolation is presented for the
kind of faults that otherwise would not be separable using a
classic fault isolation approach.

II. FOUNDATIONS OF THE FAULT DIAGNOSIS
METHODOLOGY

The proposed methodology of fault diagnosis for fuel cell
systems which is used in this paper is mainly based on classic
FDI theory of model-based diagnosis described in [3], [4] and
[5].

The task of fault diagnosis consists of determining the type
of fault with as much details as possible (fault location, time
and size). Thus, two subtasks can be considered: fault detec-
tion and fault isolation. The principle of model-based fault
detection is based on checking the consistency of measured
(yk) and predicted behaviors (ŷk) by computing residuals rk.
Those residuals are obtained from the discrepancy of measured
input (uk) and outputs (yk) using the set of sensors installed
and the analytical relations obtained by system modeling:

rk = ψ (yk,uk) (1)

where ψ is the residual generator function that depends on the
type of detection strategy used (parity equation [3] or observer
[6]. At each time instance, k, the residual is compared with
a threshold value that should be determined taking into noise
and modelling uncertainty.

Considering the whole set of residuals available, a set of
fault indicators, φk = [φ1k, φ2k . . . , φnφ

] are obtained as
follows:

φik =

{
0 if |ri| ≤ τi
1 if |ri| > τi

(2)
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where τi is the threshold associated to the residual ri(k).
Fault isolation consists of identifying the fault that affects
the system. It is carried out by using the fault indicators, φ
(generated by the detection module) and its relation with all the
considered faults, fk = {f1k, f1k, . . . , fnk}. The method most
often applied is based on the relation defined on the Cartesian
product of the set of faults FSM ⊂ φ× f , where FSM, known,
the theoretical fault signature matrix [3]. An element FSM ij

of this matrix will be one, if a fault fjk is affected by the
residual rik . In this case, the value of the fault indicator φi(k)
must be equal to one when the fault appears in the monitored
system. Otherwise, the element FSMij will be zero. Fault
signature matrix can be obtained from the structural analysis
of analytical relations coming from the model and the set of
available sensors [1].

Sensitivity analysis is the key point in the evaluation of fault
symptoms in order to obtain a final diagnosis, identification
of significant and problematic components plays an important
role. That sensitivity analysis require understanding the system
structure and component relationships. According to [3], the
sensitivity of the residual to a fault is given by

Sf =
∂r

∂f
(3)

which is a transfer function that describes the effect on the
residual (r) of a given fault (f ). Sensitivity provides quantita-
tive information about the effect of the fault on the residual
and qualitative information in their sense of variation (sign).
The use of this information at the stage of diagnosis allows to
separate faults that although show the same theoretical binary
fault signature, they present different sensitivity values.

III. FAULT DETECTION

Many model-based fault detection techniques, are mostly
based on linear models. However, fuel cells are inherently
non-linear [7]. An attractive alternative to represent non-linear
systems is to use techniques based on LPV models. The LPV
approach is particularly appealing whenever non-linear plants
can be modeled as a linear time-varying systems with on-line
measurable state depending parameters as is the case of PEM
fuel cells.

A. Linear Parameter Varying Model

A LPV system in discrete-time state space form with input
and output sensor faults can be expressed as

xk+1 = A(ϑk)xk +B(ϑk)uk + Fa(ϑk)fak +wk (4)

yk = C(ϑk)xk +D(ϑk)uk + Fy(ϑk)fyk + vk

where xk ∈ �nx , uk ∈ �nu and yk ∈ �ny are, respectively,
the state, input, and output vectors, A, B, C, D are the
parameter model at ϑk, fy(k) ∈ �ny and fa(k) ∈ �nu

represent faults in the system output sensors and actuators
respectively being Fy(ϑ̃) ∈ �ny×ny and Fa(ϑ̃) ∈ �ny×nu

their associated matrices, in faultless mode the fa and fy are
zeros. The process and measurement noises are wk ∈ �nx

and vk ∈ �nv . ϑk ∈ �nθ is the system vector of time-varying
parameters that change with the operating point scheduled by
some measured system variables pk (pk :=p(k)) that can be
estimated using some known function:

ϑk = f(pk) (5)

The type of LPV systems considered in this paper assumes
an affine dependence within the parameter vector Θ space:

Θ =
{
ϑk ∈ �nθ |ϑk ≤ ϑk ≤ ϑk

}
There exists different ways to obtain a LPV model for a

non-linear system. Some methods use directly the non-linear
equations of the system to derive the LPV model (using for
example a state transformation or the Jacobian linearization)
[8]. Another kind of methods uses multi-model identification
that consists basically in two different steps. First part, a
set of LTI model is identified at different equilibrium points
by classical methods (on-line or off-line). As second part
of this methodology a multi-model is obtained by using an
interpolation law that commutes the local LTI model according
to the operating point[9].

B. Linear Parameter Varying Observer

A LPV observer with Luenberger structure for the state
estimation of the system described in Eq. (4) is given by

x̂k+1 = A(ϑk)x̂k +B(ϑk)uk + (6)

L(ϑk)(yk − ŷk) + Fa(ϑk)fak

ŷk = C(ϑk)x̂k +D(ϑk)uk + Fy(ϑk)fyk

x̂k+1 = A(ϑk)x̂k +B(ϑk)uk + (7)

L(ϑk)(yk − ŷk) + Fa(ϑk)fak

ŷk = C(ϑk)x̂k +D(ϑk)uk + Fy(ϑk)fyk

where L is the observer gain to be designed to guarantee
stability for ϑk ∈ Θ. This gain is computed at operating point
ϑk using LMI formulation for Pole-Placement within a wide
class of pole clustering regions that is founded in an extended
Lyapunov Theorem (see [10]). The motivation for seeking pole
clustering in specific regions inside the unitary circle is to
obtain a fast observer dynamics for all considered operating
points.

C. LPV interval observer

Definition 1. Consider the state estimator given by Eq. (4)
in faultless mode, an initial compact set X0 and a sequence
of measured inputs (uj)

k−1
0 and outputs (yj)

k
0 . The exact

uncertain estimated state set at time k is expressed by

Xk = {x̂k : (x̂j = A(ϑj−1)x̂j−1 +B(ϑj−1)uj−1

+wj−1 + L(yj−1 − ŷj−1))
k
j=1,

(ŷj−1 = Cx̂j−1 + vj−1)
k
j=1| x0, x̂0 ∈ X0,

(ϑj−1 ∈ Θ,wj−1 ∈Wj−1,vj−1 ∈ Vj−1)
k
j=1

}
(8)



The uncertain state set described in Definition 1 at time
k can be computed as approximation of uncertain state set at
time k−1. A exhaustive computing process could be presented
if the exact set of estimated states is required. In order to
reduce complexity a bounded set could be used such as a box
(interval hull) or other geometric regions easy to compute.
Before introducing such algorithm, an additional definition
should be introduced.

Definition 2. Consider the state estimator given by Eq.
(4), the set of uncertain states at time k-1, Xk−1 and the
input/ouput values (uk−1,yk−1,yk). Then, the approximated
set of estimated states at time k based on the measurements
up to time k-1 is defined as

X
e
k = {x̂k : A(ϑk−1)x̂k−1 +B(ϑk−1)uk−1 +wk−1

+L(yk−1 − ŷk−1), ŷk−1 = Cx̂k−1 + vk−1

| x̂k−1 ∈ Xk−1, ϑk−1 ∈ Θ, w̄k−1 ∈Wk−1,vk−1 ∈ Vk−1}
(9)

Analogously, considering a measurement equation in (4) the
approximated set of estimated outputs Y

e
k can be determined.

Using previous definition, the set of estimated states (or
outputs) introduced in Definition 1 will be approximated
iteratively using zonotopes. From these zonotopes, an interval
for each state variable can also be obtained by computing the
interval hull of the zonotope. The sequence of interval hulls
�X

e
k with k ∈ [0, N ] will be called the interval observer

estimation of the system given by Eq. (4). Analogously, the
sequence of interval hulls �Y

e
k can be obtained. Following

previous idea, Algorithm 1 is proposed to determine an ap-
proximation of set of uncertain estimated states.

Algorithm 1 Fault Detection using Interval observer
1: fault← FALSE
2: k ← 0
3: X

e
k ⇐ X0

4: while fault = FALSE do
5: Obtain input-output data {uk,yk}
6: Compute the approximated set of estimated states, Xe

k

7: Compute the approximated set of estimated outputs, Ye
k

8: Compute the interval hull of the approximated set of
estimated states, �X

e
k = [xk,xk]

9: Compute the interval hull of the approximated set of
estimated outputs, �Y

e
k =

[
y
k
,yk

]
10: if [yk] ∩ Y

e
k = ∅ then

11: fault← TRUE
12: end if
13: k ← k + 1
14: end while

D. Residual Generation

The application of interval observers to fault detection
involves in testing whether the measured output is consistent
with the one given by the observer using a faultless model

and parameter uncertainty. If an inconsistency is detected, the
existence of a fault is proved. The consistency match is based
on generating a residual by comparing the measurements of
physical variables yk of the process with their estimation ŷk

provided by the observer:

rk = yk − ŷk (10)

where rk ∈ �ny is the residual set. Then, the fault detection
test consists in checking the satisfaction of:

|rik| ≤ τik (11)

where τik is the threshold associated to the residual rik . In case
that this condition is not satisfied a fault can be indicated.

IV. FAULT ISOLATION

A. Fault Sensitivity Analysis

The isolation approach presented in Section II uses a set
of binary detection (Boolean) tests to compose the observed
fault signature. However, the use of binary codification of the
residual produces a lack of information that can lead to wrong
diagnosis when applied to dynamic systems. This derives in
some faults that are not isolable because they present the
same theoretical binary fault signature [11]. To avoid this
problem is possible to use additional information associated
with the relationship between the residuals and faults, such as
sign, sensitivity, and order or activation time, to improve the
isolation results [11].

B. Proposed methodology

In this work, a new method for fault diagnosis system design
is proposed that exploits the information provided by the
sensitivity in the case where the fault magnitude is unknown.

1) Sensitivity of the residual to an output sensor fault:
Considering computational form of the residual generator
using Eq. (11) and input-output format of plant model with
q−shift expressed in terms of the effects caused by faults

r(k) = ro(k) + (I−H(q−1, ϑ))(Gfa (q
−1, ϑ̃)fa(k)

+Gfy (q
−1, ϑ̃)fy(k))−Gfu(q

−1, ϑ̃)fu(k) (12)

where

ro(k) = −G(q−1, ϑ)uo(k) + (I−H(q−1, ϑ))yo(k) (13)

Considering the residual internal form given by Eq. (12) and
considering the fault residual sensitivity definition given by Eq.
(3), it is possible to compute the sensitivity for the case of an
output sensor fault, fy, which is given in q−transfer form by
a transfer function matrix Sfy with size of ny×ny, expressed
as:

Sfy(q
−1, ϑ) =

(
I+Cy(ϑ) (qI−Ay(ϑ))

−1
)
By(ϑ)

Dy(ϑ)

=
(
I+Hy

r(q
−1, ϑ)

)−1
Fy(ϑ) (14)



where Ay(ϑ) = A(ϑ) − L(ϑ)C(ϑ), By = Fy(ϑ)fy ,
Cy(ϑ) = C(ϑ), Dy(ϑ) = D(ϑ) and Hy

r(q
−1, ϑ) =

Cy (qI−Ay(ϑ))By(ϑ) +Dy(ϑ).
2) Sensitivity of the residual to an input sensor fault: The

residual sensitivity to an input sensor fault, fu, is given by the
transfer function matrix Sfu which dimation is ny× nu. The
dynamic residual sensitivity is computed as:

Sfu(q
−1, ϑ) =

(
I+Cu(ϑ) (qI−Au(ϑ))

−1
)
Bu(ϑ)

=
(
I +Hu

r (q
−1, ϑ)

)−1
Fu(ϑ) (15)

where Au(ϑ) = A(ϑ) − L(ϑ)C(ϑ), Bu = B(ϑ) −
L(ϑ)D(ϑ),Cu(ϑ) = C(ϑ), Du(ϑ) = D(ϑ) and
Hu

r (q
−1, ϑ) = Cu (qI−Au(ϑ))Bu(ϑ) +Du(ϑ).

In order to perform diagnosis, the algorithm uses a theo-
retical fault sensitivity matrix (FSMsensit), see Table I. Each
value of this matrix, denoted as Srifj , contains the sensitivity
of the residual ri to the fault fj . Each value of this matrix,
denoted as Srifj , contains the sensitivity of the residual ri to
the fault fj .

ri/fj f1 f2 · · · fm

r1 S11 S12 · · · S1m

r2 S21 S22 · · · S2m

...
...

...
...

...
rn Sn1 Sn2 · · · Snm

TABLE I
THEORETICAL FAULT SENSITIVITY SIGNATURE MATRIX

Although sensitivity depends on time in case of a dynamic
system, here the steady-state value after a fault occurrence is
considered as it is also suggested by [3].

In order to perform real time diagnosis, the observed sensi-
tivity So

rifj
should be computed using the current value of the

residual ri(k) when a fault f(k) is detected. But, this requires
the knowledge of the fault magnitude or an estimation of it. To
solve this problem, this paper attempts to design the diagnosis
using the concept of relative sensitivity rather than absolute
sensitivity given by (3). The observed relative fault sensitivity
is defined as

Srel,o
ri,rl,fj

=
Srifj

Srlfj

=
ri(k)fj(k)

rl(k)fj(k)
=
ri(k)

rl(k)
(16)

where
ril = max

i=1,...,m
(|Srifm |) (17)

The residual (rl) for each fj to be used as relative factor in
Eq. (16), that guarantees the best isolation performance it is
based on theoretical sensitivity value from one fault to another,
see Eq. (17). Using the concept of relative sensitivity, the
theoretical relative fault signature matrix FSM rel

sensit presented
in Table II is introduced.

f1 f2 · · · fm

r2/rl Srel,t
r2rl,f1

Srel,t
r2rl,f2

· · · Srel,t
r2rl,fm

r3/rl Srel,t
r3rl,f1

Srel,t
r3rl,f2

· · · Srel,t
r3rl,fm· · · · · · · · · · · · · · ·

rm/rl Srel,t
rmrl,f1

Srel,t
rnrl,f2

· · · Srel,t
rnrl,fm

TABLE II
THEORETICAL FAULT SIGNATURE MATRIX USING RELATIVE SENSITIVITY

RESPECT TO rl

The diagnostic Algorithm 2 computes in real-time the ob-
served relative sensitivities (16) as a ratio of residuals provid-
ing a point vector in the relative sensitivities space. The vector
generated will be compared with vectors of theoretical fault
places stored into the relative sensitivity matrix FSM rel

sensit.
The theoretical fault signature vector with a minimum distance
with respect to the fault observed vector is postulated as the
possible fault as:

min
{
dsf1(k), . . . , d

s
fn

}
(18)

where the distance is calculated using the Euclidean distance
between vectors

dsfn (k) = sqrt

⎛
⎜⎝

(
Srel,o
r2r1,f1

(ϑk)− Srel,t
r2r1,f1

(ϑk)
)2

+ ...

+
(
Srel,o
rmr1,fn

(ϑk)− Srel,t
rmr1,fn

(ϑk)
)2

⎞
⎟⎠

(19)
Algorithm 2 summarizes the fault isolation procedure.

Algorithm 2 Fault Isolation
1: fault← TRUE
2: k ← k + 1
3: while fault = TRUE do
4: Obtain input-output data {uk,yk}
5: Compute the approximated set of estimated outputs,

using Algorithm 1 step: 6 to 9.
6: Compute the Theoretical Sensitivity Dynamic for pro-

cess output yn at fj , St
rlfj

(ϑk)
7: Compute the Observed Sensitivity Dynamic for process

output yn at fj , So
rlfj

(ϑk)
8: Compute the Euclidean distance between

Theoretical and Observed Sensitivity, dsfn(k) ={
St
rlfn

(ϑk), S
o
rlfn

(ϑk)
}

9: Fault isolation → f
10: end while

V. CASE STUDY

A. Introduction

In this paper, a PEM FC model developed by [12] is used as
case study for fault diagnosis. This model has been modified
in a calibration procedure for a comertial fuel cell, (Ballar
Nexa c©) using lqs non linear data fitting from lab data. The
overall FC system could be partitioned as: fuel cell stack



and auxiliary components. The auxiliary components are com-
pressor, supply and return manifold, cooling and humidifier.
Stack voltage, anode and cathode flow, membrane hydration
models belong to fuel cell stack subsystem. Figure 1 presents
a conceptual diagram of the FC system.

Fig. 1. PEM FC Process Block diagram

B. PEM FC Dynamic Model

The non-linear parameter model depends on state variables,
which infers a high level of non-linear model, for that reason
an observer approach is proposed. This model has the follow-
ing:

Characteristics:
• The law of mass conservation is used for mass balance

estimate.
• Physics laws and some empirical equations are used.
• The properties are based on electrochemical, thermody-

namic and zero-dimensional fluid mechanics principles.
Assumptions:
• Cathode and Anode volume are taken as single volume.
• Perfect temperature control at cooling system.
• Stack temperature is constant.
• The electrochemical reaction at membrane is performed

instantaneously.
The resulting dynamic model equation is described by

ω̇cp =
1

Jcpωcp
(Pcm − Pcp)

Ṗom =
RairTom
Vom

(Wca,o −Wom,o)

ṁom =Wca −Wom,o

Ṗim =
γRa

Vim
(WcpTcp −Wim,oTim)

ṁim =Wcp −Wsm,o

ṁH2 =WH2,i −WH2,o −WH2,r

ṁw,an =Wvan,i −Wvan,o −Wvmbr

ṁN2 =WN2,i −WN2,o

ṁO2 =WO2,i −WO2,o −WO2,r

mstCstṪst = Ḣreac − Pelec − Q̇rad − Q̇conv

where the subindex i,o, represents inlet and outlet flow re-
spectably and subindex an, rm, mbr, sm, cp means anode,
return manifold, membrane, supply manifold and compressor,
respectively.

This non-linear model can be transformed into a LPV model
in state space form by considering the following definition for

• states: x = [ωcp Pom mom Pim mim mH2 mw,an mN2

mO2 Tst]
T .

• inputs: u = [Ist vcm]T where the scheduling variable is
Ist.

• outputs: y = [ωcp rO2 vst Psm] and
• perturbations: z = [Tamb].

The units of all these variables are in compatible magnitudes
(kRPM, gr, volt bar, amp).

C. LPV Model Analysis
Since the model is a highly non-linear model, it is difficult

to obtain a explicit dynamic model with independence of the
parameter with the operating point, Ist. To face this problem
the problem an LPV model is an alternative way to solve this
problem. The structure of the model in LPV form has the
following structure

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 a14 0 0 0 0 0 0
0 a22 a23 a24 a25 0 0 a28 a29 a210
0 a32 0 a34 a35 0 0 a38 a39 a310

a41 0 0 a44 a45 0 0 a48 a49 a410
a51 0 0 a54 0 0 0 a58 a59 a510
0 0 0 a64 0 a66 a67 0 0 a610
0 0 0 a74 0 a76 a77 0 0 a710
0 a82 0 a84 a85 0 0 a88 a89 a810
0 a92 0 a94 a95 0 0 a98 a99 a910
0 0 0 0 0 a106 a107 0 a109 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

C =

⎡
⎢⎢⎣

c11 0 0 0 0 0 0 0 0 0
0 0 0 c24 0 0 0 0 0 0
0 0 0 c34 c35 0 0 c38 c39 c310
0 0 0 0 0 c46 c47 c48 c49 c410

⎤
⎥⎥⎦ ;

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12
0 0
0 0
0 0
0 0

b71 0
b81 0
0 0

b91 0
b101 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;D =

⎡
⎢⎢⎣

0 0
0 0

d31 0
d41 0

⎤
⎥⎥⎦

subsectionFaulty PEM FC scenarios implementation
In order to test the proposed methodology in the PEM FC

system, a set of commons possible fault in the sensors was
selected and implemented in simulation as a Fault Generator
Block. Through this block it is possible to select and simulate
the effects that cause each of the proposed faults over the
Nexa c© fuel cell. Each fault acts over a specific output sensor
as additive fault. Note that interaction could appear in fuel
cell dynamic when the fault acts over the system because since
fault changes the process dynamics making the fault diagnosis
process a non simple issue. The Table III describe the set of
faults which were considered as additive and abrupt faults.

D. Results

Using Eq. (14) and evaluating it in steady state, then

Sfy(∞) = lim
q→1

Sfy(q
−1, ϑ) (20)

=
(
I +C(ϑ) (I −A(ϑ))−1 L(ϑ)

)−1

Fy(ϑ)

From Eq. (20) Table IV is computed



ID Fault Description

f1 The speed sensor (ωcp) presents suddenly
an offset value. step of 6 units(kRPM).

f2 The supply manifold pressure (Psm) measurement
suffers a suddenly offset. Step of 0.01(bar)

f3 Suddenly change in the Oxygen
ratio measurement because of a sensor degradation.
Ramp with slop of 0.5

f4 The stack ltage (vst) measurement suffers
a suddenly an offset . step of 4 (V olts)

TABLE III
DESCRIPTION OF THE ADDITIVE FAULT SCENARIOS IMPLEMENTED IN

FGB.

f1 f2 f3 f4

r1 7.939483 5.76E − 05 6.65E − 05 0.002366
r2 −2.83E − 05 0.009996 −6.42E − 06 −0.00019
r3 −0.03957 0.009236 0.510927 0.373165
r4 0.265891 −0.07013 −0.08645 1.115084

TABLE IV
THEORETICAL FAULT SENSITIVITY SIGNATURE MATRIX

Based on the values computed in Table IV, its more clear
if the range of study for fault sensitivity is [−1, 1]. For that
reason a scaling operation is introduced as Eq. (21), then Table
V is obtained.

rsi =
ri√
n∑

i=1

r2i

(21)

f1 f2 f3 f4

rs1 0.999 0.0008 0.000128 0.00201
rs2 −3.6E − 6 0.1399 −1.2E − 5 −0.00016
rs3 −0.005 0.12928 0.9859 0.3173
rs4 0.0334 −0.98169 −0.16682 0.9483

TABLE V
THEORETICAL FAULT SENSITIVITY SIGNATURE MATRIX SCALED VALUES

Using the values from Table V and selecting the ratio factor,
rl, for each fj fault using the criteria introduced in Eq. (17).

rjl = [r1, r4, r3, r4]

With the last information it is possible to compute the theo-
retical relative sensitivity matrix, which will be stored in the
memory of the isolation algorithm.

f1 f2 f3 f4

r2/r1 −3.6E − 06 r1/r4 −0.00082 r1/r3 0.00013 r1/r4 0.002122
r3/r1 −0.00498 r2/r4 −0.14253 r2/r3 −1.3E − 05 r2/r4 −0.00017
r2/r1 0.03349 r3/r4 −0.13169 r4/r3 −0.16919 r3/r4 0.334651

TABLE VI
THEORETICAL RELATIVE FAULT SENSITIVITY SIGNATURE MATRIX.

In order to test the proposed methodology, an output sensor
fault, f1 is simulated. Using Eq. (14) and Table VI it is posible
to know the Euclidian distance at each k from Eq. (19) for
each fault in its space of residual ratios.
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Fig. 2. Real and estimated output variable

Figure 2 shows the scheduling variables, process outputs,
estimated model output and the associated residual and thresh-
olds. The plant suffers the fault f1 at k = 80. Fault detection
process in performed online. At time k = 82 the plant output,
ωcp,cross one of the threshold, then the process isolation is per-
formed. Figure 3 shows the Euclidean distance from observed
relative residuals to relative sensitivity matrix already stored in
the memory of the isolation algorithm. Note that computing of
the dynamic theoretical relative sensitivity, improves the fault
isolation process. Here the fault with the minimum distance is
the fault presented in the ωcp sensor, f1.
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Fig. 3. Dynamic Euclidian Distance

VI. CONCLUSION

In this paper, a new LPV model-based fault diagnosis
methodology based on the relative fault sensitivity has been
presented and tested. An advantage of this new methodology is
twofold: first, the variation of the dynamics with the operating
point is considered by using an LPV observer when generating
residuals. Second, a fault isolation algorithm based on the
relative fault sensitivity concept is proposed. This method
allows isolating faults that are not isolable considering only
a binary (or a sign) fault signature matrix. To prove this
methodology, a PEM fuel cell case study well-known in the
literature has been used. The case study was modified to
include a set of possible fault scenarios that try to reflect the
most common faults. All the considered faults have been tested
with the new diagnosis methodology, which has diagnosed
correctly all of them.
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