
Mini-project 1

Position Analysis of wing mechanisms

and quadrotor formations

In this mini-project you’ll put into practice the position analysis methods ex-
plained in the course. You’ll begin by simulating the motion of Smartbird’s wing
mechanism, which is constructible, and hence can be analyzed using Geogebra.
You will next attempt the localization of a robot formation using range mea-
surements. The problem is equivalent to solving the forward kinematics of a
parallel 3-RPR robot, which is known to have no constructible solution. Thus,
it is an ideal setting of application for the methods in the CUIK suite.

Simulation of Smartbird’s wing (3/10 points)

Figure 1 shows the mechanical structure of Smartbird’s wing. Every small circle
represents a revolute joint.

A

B

C

D

E

F

G
H

I

J

X

Y

Figure 1: Mechanical structure of Smartbird’s wing.

Points A and B are connected to the bird’s body, which we consider as the
“ground” link. Bars EG and GH are separately drawn, but form a single rigid
body. The wing is moved by actuating the revolute joint in A. There is only
one input coordinate: the angle θ of bar AC relative to the X axis.

1. (0.5 points) Show that once θ is fixed, the configuration of the wing is geo-
metrically constructible by means of a sequence of bilaterations. Describe
the sequence in human language (i.e., do not use Geogebra commands).

2. (2 points) Use Geogebra to construct the configuration shown, assuming
that

A = (0, 0) B = (1.596, 2.638)

1

http://www.geogebra.org
http://www.iri.upc.edu/cuik/
http://youtu.be/nnR8fDW3Ilo


and the following point-to-point distances:

lAC = 0.898 lBD = 2.640 lGH = 0.755 lGH = 0.755
lCD = 2.368 lDF = 10.415 lEH = 11.158 lHI = 0.639
lCE = 1.546 lBF = 7.821 lFG = 0.792 lIJ = 8.472
lDE = 0.843 lEG = 10.403 lFI = 0.893 lHJ = 8.360

Activate the animation of point C following the drawn circle. See how the
wing moves. A motion similar to the one in http://youtu.be/N9b45bRSlG8
should arise. Provide the ggb file you obtained, with all auxiliary objects
hidden.

3. (0.5 points) Activate the tracing of points F , H, and J and provide a
snapshot of the resulting paths with one wing configuration overlaid.

Quadrotor localization (7/10 points)

Figure 2 shows a terrain with three range sensors placed at points 1, 2, and 3.
At the shown instant, three quadrotors are hovering at points 4, 5, and 6. We
wish to localize the sensors and quadrotors in the XY reference frame, assuming
that all sensor-sensor distances are known, and that the distances indicated as
dashed segments are measured. The problem does not admit a geometrically
constructible solution so that we inevitably need to solve it numerically using
CUIK. We denote by (xi, yi) the coordinates of point i, and by di,j the distance
between points i and j. The sensor in point 1 can also measure the angle θ

indicated, with some error. I.e., it provides an additional constraint of the form
θ ∈ [θmin, θmax].

4

5

6

1
2

3

X

Y

θ

Figure 2: A localization problem on a quadrotor formation.

2

http://youtu.be/N9b45bRSlG8


1. (0.5 points) Using constraints of the form (xi − xj)
2 + (yi − yj)

2 = d2i,j ,
formulate a system of equations to determine the (xi, yi) positions of all
points1. Indicate which are the constants and variables of the system.

2. (0.5 points) Since CUIK is a solver of polynomial equations, it cannot
work directly with angles. Then, how can we enforce the constraint
θ ∈ [θmin, θmax] using CUIK?

3. (0.5 points) Consider the system formed by the constraints in 1 and 2.
Determine the number of variables and equations, and the expected di-
mension of its solution set?

4. (0.5 points) Provide a box bounding the solutions of this system. Justify
your choice.

5. (2 points) Using CUIK, solve the system obtained in 1 and 2 using the
box in 4, in each of the three situations indicated in the following table.
Use σ = 0.05 and assume that all sensor-to-sensor distances are ds, while
all quadrotor-to-quadrotor ones are dq.

Situation ds dq d1,4 d2,5 d3,6 θmin θmax

A 3 1 2 2 2 −3◦ 3◦

B 3 1 2 2 2 0◦ 360◦

C 3 3 4 4 4 0◦ 360◦

Provide the *.cuik and *.param file of Situation A, and a table with the
quadrotor positions in situations A and B.

Note 1: The constraint (xi − xj)
2 + (yi − yj)

2 = d2i,j should be written as
follows in CUIK:

xi^2+xj^2-2*xi*xj+yi^2+yj^2-2*yi*yj = dij^2;

Note 2: In situations B and C there was a failure of the angle sensor;
that’s why θ is left unconstrained in them.

6. (2 points) For each situation, draw the solution configurations. I.e., obtain
a drawing similar to the one in Fig. 2 for each solution returned by CUIK.
To this end, use the command

~/CuikSuite/bin/cuiksols2samples file.sol,

which generates a *.links file with the center points of all solution boxes,
and then feed this file into the MATLAB program of Appendix A or a
similar one.

7. (1 point) For each situation, also plot the (y4, x5) coordinates of the so-
lution points using the plot2D function in Appendix B. Note that case C
has a solution space formed by isolated points and a closed curve. Why
does the closed curve of solutions arise? What do the isolated points
correspond to?

1The problem can also be formulated using loop-closure constraints, but we here prefer

distance constraints to simplify the problem, and to work out alternative formulations.

3



Appendix A

The following Matlab code can be used to plot the quadrotor configurations,
assuming that the (xi, yi) variables in your CUIK file are x4, y4, x5, y5, x6, y6,
and appear declared in this order.

function plotQuadrotor(filename)

% Intersensor distance

ds = 3;

% Sensor coords

x1 = 0; y1 = 0;

x2 = ds; y2 = 0;

x3 = ds/2; y3 = ds*sin(pi/3);

% Get the (x,y) coords of the solution configurations

M = dlmread(filename);

% Bounding box of the solution (x,y) coords

Xs = [M(:)’ x1 x2 x3];

Ys = [M(:)’ y1 y2 y3];

Xmin = min(Xs); Ymin = min(Ys);

Xmax = max(Xs); Ymax = max(Ys);

% Open figure

figure(); hold on; axis equal;

% Plot sensors

plot([x1,x2,x3],[y1,y2,y3],’ko’,’markersize’,8,’markerfacecolor’,’k’);

% Plot quadrotor configurations

Msize = size(M,1);

for i=1:40:Msize

% Get quadrotor locations

x4 = M(i,1); y4 = M(i,2);

x5 = M(i,3); y5 = M(i,4);

x6 = M(i,5); y6 = M(i,6);

% Plot quadrotors

patch([x4 x5 x6],[y4 y5 y6],’k’,’linewidth’,1,’facealpha’,0.1);

% Plot sensor-quadrotor lines

plot([x1 x4],[y1 y4],’--k’);

plot([x2 x5],[y2 y5],’--k’);

plot([x3 x6],[y3 y6],’--k’);

end

% Set axes ranges

eps = Xmax/10; axis([Xmin-eps Xmax+eps Ymin-eps Ymax+eps]);

4



Appendix B

function plot2D(filename)

% Read file

M = dlmread(filename);

% Get the y4 and x5

X = M(:,2); % y4

Y = M(:,3); % x5

Xmin = min(X); Xmax = max(X);

Ymin = min(Y); Ymax = max(Y);

% Start figure

figure(); hold on;

% Plot points (y4,x5)

plot(X,Y,’.’,’markersize’,20);

% Set axes ranges

eps = 0.2;

axis([Xmin-eps Xmax+eps Ymin-eps Ymax+eps]);

% Equally-scaled boxed axes, with labels y4 and x5

axis equal;

box ON;

xlabel(’y_4’);

ylabel(’x_5’);

5


