Exercises Module 2
 Statics

Several of these exercises are borrowed from Chapter 2 of Duffy's book "Statics and Kinematics with Applications to Robotics". That is why forces and distances are given in English Engineering units, i.e., inches (in), and pound-forces (lbf), respectively. Note that $1 \mathrm{in}=0.0254 \mathrm{~m}$, and $1 \mathrm{lbf}=4.4482 \mathrm{~N}$.

Problems

Problem 1

1. On separate figures draw the lines that join the pairs of points $(-1,3),(3,2)$; and $(1,1),(-2,-2)$. Also, using Grassmann's rule, determine the Plücker coordinates $\{L, M ; R\}$ of each line. In each figure draw the triangle $O 12$ and determine the signed area of this triangle using the determinant of the three points $O, 1$, and 2 . Compare these values with the corresponding values of R you have obtained. Express each set of Plücker coordinates in the unitized form $\{c, s ; p\}$, and write the corresponding equation for each line. For each line compute its angle θ with the X axis, and its signed distance p from the origin O.
2. Using Grassmann's rule for computing line-line intersections, compute the coordinates of the intersections of the pairs of lines $\{3.03,1.75 ; 3.5\},\{-1.03,2.82 ;-6\}$; and $\{1,1 ; 0\},\{-1,-1 ;-\sqrt{2}\}$. Verify your results by drawing each pair of lines.

Problem 2

1. Write the Plücker coordinates for the X^{\prime} and Y^{\prime} axes in the $O X Y$ coordinate system, and the Plücker coordinates for the X and Y axes in the $O^{\prime} X^{\prime} Y^{\prime}$ coordinate system (Fig. 1a). From such coordinates, construct the matrices $[A]$ and $\left[A^{\prime}\right]$ for the induced force transformations

$$
\left[\begin{array}{c}
L \\
M \\
R
\end{array}\right]=[A]\left[\begin{array}{c}
L^{\prime} \\
M^{\prime} \\
R^{\prime}
\end{array}\right] \quad\left[\begin{array}{c}
L^{\prime} \\
M^{\prime} \\
R^{\prime}
\end{array}\right]=\left[A^{\prime}\right]\left[\begin{array}{c}
L \\
M \\
R
\end{array}\right]
$$

for the pure translation indicated in the figure. Show that $\left[A^{\prime}\right]=[A]^{-1}$
2. Write the Plücker coordinates for the $X^{\prime \prime}$ and $Y^{\prime \prime}$ axes in the $O X^{\prime} Y^{\prime}$ coordinate system, and the Plücker coordinates for the X^{\prime}, Y^{\prime} axes in the $O X^{\prime \prime} Y^{\prime \prime}$ coordinate system (Fig. 1b). Determine the matrices $\left[B^{\prime}\right]$ and $\left[B^{\prime \prime}\right]$ for the induced force transformations

$$
\left[\begin{array}{c}
L^{\prime} \\
M^{\prime} \\
R^{\prime}
\end{array}\right]=\left[B^{\prime}\right]\left[\begin{array}{c}
L^{\prime \prime} \\
M^{\prime \prime} \\
R^{\prime \prime}
\end{array}\right] \quad\left[\begin{array}{c}
L^{\prime \prime} \\
M^{\prime \prime} \\
R^{\prime \prime}
\end{array}\right]=\left[B^{\prime \prime}\right]\left[\begin{array}{c}
L^{\prime} \\
M^{\prime} \\
R^{\prime}
\end{array}\right]
$$

for the pure rotation indicated in the figure. Show that $\left[B^{\prime \prime}\right]=\left[B^{\prime}\right]^{-1}$.
3. Determine $[e]=[A]\left[B^{\prime}\right]$.

Figure 1: Translation (a) and rotation (b) of coordinate systems.

Problem 3

1. For the 3 -RPR manipulator in Fig. 2a:
(a) Determine the unitized coordinates of the lines that join the connectors $B_{1} C_{1}, B_{2} C_{2}$, and $B_{3} C_{3}$ using the indicated coordinate system $X Y$. Thus, determine the matrix j of the mapping $\hat{w}=j \lambda$ for this manipulator.
(b) Suppose that only the vertical force of 10 lbf applied through point C_{1} in Fig. 2a is acting on the upper platform. Compute the equilibrating connector forces f_{1}, f_{2}, and f_{3}, and state whether each connector is in compression or in tension.
(c) Do the same but assuming that only the force of 10 lbf applied through point C_{2}, C_{3} in Fig. 2a is being applied to the platform.
2. For the 3 -RPR manipulator in Fig. 2b:
(a) Determine the unitized coordinates of the lines that join the connectors $B_{1} C_{1}, B_{2} C_{2}$, and $B_{3} C_{3}$ using the indicated coordinate system $X Y$. Thus, determine the matrix j of the mapping $\hat{w}=j \lambda$ for this manipulator.
(b) A vertical force of 5 lbf is applied one inch to the right of point C_{1}. Compute the equilibrating connector forces and state whether each connector is in compression or in tension.
(c) Compute the equilibrating connector forces when the vertical force of 5 lbf is applied at C_{1}, and then at C_{2}.

Figure 2: Two 3RPR manipulators.

Problem 4

This exercise requires using a programming language like Matlab or GNU Octave. Fig. 3 illustrates a 3-RPR manipulator with special geometry, with the moving platform in an initial position for which the coordinates of points 1,2 , and 3 are, respectively $(0,3),(0.4 \sqrt{2}, 2.4526)$, and $(0.95 \sqrt{2}, 1.7)$.

1. Write the unitized coordinates $[c, s, p]^{T}$ of the force \mathbf{f} that passes through point 2 and is parallel to the X axis, as shown in the figure.
2. Give the platform self-parallel displacements in increments of 0.1 inches away from the inital position, in the positive X direction, up to 2.9 inches. For each increment, compute the coordinates of points 1,2 , and 3 .
3. Compute the corresponding connector lengths.
4. Use Grassmann's rule to compute the corresponding sets of unitized line connector coordinates, in order to determine the matrix j for each position, and, correspondingly, compute j^{-1}.
5. Compute the resulting leg forces for each position (i.e., the signed magnitudes of the leg forces) assuming that the magnitude of the force \mathbf{f} is of 1 unit of force.
6. Plot the equilibrating force in each of the three connectors against the horizontal position x. Label each curve and state whether a connector is in tension or compression.

Figure 3: A 3RPR manipulator whose moving platform begins to translate to the right.

Problem 5

Let \hat{w}_{1} and \hat{w}_{2} be two wrenches ("Torsors" in Catalan) and denote by $\$_{1}$ and $\$_{2}$ their respective lines of application, which intersect at some point P. Prove that a linear combination $\hat{w}=\lambda_{1} \hat{w}_{1}+\lambda_{2} \hat{w}_{2}$, where λ_{1} and λ_{2} are scalars, is a wrench whose line of application intersects P. Show that the result holds independently of whether $\$_{1}$ and $\$_{2}$ are skew or parallel.

Short questions

Short question 1

Mark the incorrect statement relative to the 3-RPR robot in the following figure:

1. The robot is in a singular configuration.
2. The robot can equilibrate any vertical force on the line of action m, applied to the platform.
3. It is sufficient to actuate leg 2 in order to equilibrate any vertical force with line bound m.
4. Any vertical force applied on B can be equilibrated by actuating leg 2 exclusively.
5. The robot can equilibrate any horizontal force applied on B.

Short question 2

Mark the correct statement relative to the 3RPR robot in the following figure:

1. The robot is in a singular configuration.
2. In the coordinate system $X Y$ the Jacobian matrix associated with the shown configuration is

$$
\left[\begin{array}{ccc}
0 & \sqrt{2} / 2 & 1 \\
1 & \sqrt{2} / 2 & 0 \\
0 & 0 & d
\end{array}\right] .
$$

3. It sufficies to actuate leg 1 , in order to equilibrate a vertical force applied on A.
4. If legs 1 and 3 respectively apply forces \vec{F}_{1} and \vec{F}_{3} on the platform (and leg 2 does not apply any force), then these forces can only be equilibrated by an external force $-\left(\vec{F}_{1}+\vec{F}_{3}\right)$ applied on B.
5. This robot can never reach a singular configuration.

Short question 3

Which of the following configurations are singular?

1. \mathbf{a} and \mathbf{b}.
2. \mathbf{a}, \mathbf{b} and \mathbf{d}.
3. \mathbf{a} and \mathbf{c}.
4. \mathbf{a}, \mathbf{b} and \mathbf{c}.
5. b and \mathbf{c}.

Short question 4

At the shown configuration, 3 -RPR robot of the figure is in equilibrium, counteracting the external force F and torque Γ indicated, applied to the platform.

Mark the correct statement:

1. Leg 1 is in tension with $5 \sqrt{2} \mathrm{~N}$, and legs 2 and 3 work in compression, both with 5 N .
2. Legs 1 and 2 are in tension with $5 \sqrt{2} \mathrm{~N}$, and leg 3 is in compression with 5 N .
3. Leg 1 is in tension with $5 \sqrt{2} \mathrm{~N}$, leg 2 is unloaded, and leg 3 is in compression with 5 N .
4. All legs are working in tension.
5. A singular configuration can be reached by varying the orientation and magnitude of the extenal applied force.
