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Objective of this Module

In this module we will introduce a unified representation for the forces and
torques that act on a rigid body. Pure forces and torques will be viewed here
as particular cases of a more general entity, called wrench. The introduction
of wrenches simplifies and makes the static analysis of robotic mechanisms
more compact. By static analysis we mean the determination of the rela-
tionship between the forces and torques at the actuated joints and the forces
and torques that the end effector exerts on the surroundings, while in equi-
librium. We will determine this relationship and observe how it behaves in
regular and singular situations, in the case of a parallel 3RPR manipulator.

2.1 Plücker coordinates of a line in the XY

plane

2.1.1 Line through two points

We are quite used to give the coordinates of points in the plane. For the
points 1 and 2 of Fig. 2.1, for example, we say that they have coordinates
(x1, y1) and (x2, y2), respectively. In what follows we will see that in a very
similar fashion we are able to provide the coordinates of a line in a plane, in
order to identify it unambiguously.

Let r1 and r2 be the position vectors of points 1 and 2, and let’s define
S = r2 − r1, which is a direction vector of the line passing through 1 and 2.
The X and Y components of S are:

L = x2 − x1

M = y2 − y1
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Figure 2.1: A line through points 1 and 2.

Let’s compute the moment of S w.r.t. the origin O:

r1 × S = |r1| · |S| sinφ k =
= |r1| sinφ |S|k =
= p |S|k = Rk

where p = sign · |p| is the signed distance of the line 1-2 to the origin O, that
is, the standard point-line distance affected by a sign which is

• positive, if S “turns” in counterclockwise sense w.r.t. O,

• negative, if S “turns” in clockwise sense w.r.t. O (Fig. 2.2).

We should realize that even if we have computed the moment of S w.r.t.
O assuming that the position of S is given by r1, we would have obtained
exactly the same moment if we had considered the position vector r of any
other point along the line 1-2 instead. In other words, displacing S along the
line 1-2, R remains constant. In what follows we will see that the line 1-2
is the only one where R remains constant at this value. Thus we can state
that the L and M components of S, together with moment R constitute the
components of the line 1-2.

Let’s find the points (x, y) in the plane for which the moment of S w.r.t.
O is equal to r1 × S. We have to solve the vector equation:
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Figure 2.2: Counterclockwise and clockwise turns, positive and negative mo-
ments of S w.r.t. O.
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The i and j components in the equation are identically equal to zero. The k
component is
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We notice that R can also be rewritten (i.e., computed) in the following way:

R =
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∣
∣
∣

x1 y1
x2 − x1 y2 − y1
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∣
∣
=

∣
∣
∣
∣
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∣
∣
∣
∣
= R

We finally obtain the equation of the line:

Ly −Mx+R = 0,

which is the line that goes through 1 and 2, as this equation holds for (x1, y1)
and (x2, y2).

Summarizing, it is clear that L, M and R define one and only one line
and can be viewed as the coordinates that determine this line.
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Observations:

Julius Plücker

1. These coordinates were first used by Julius Plücker (1801 - 1868) and
therefore are usually called “Plücker coordinates”

2. They are called homogeneous coordinates, in the following sense: being
λ a non-null scalar, λL, λM and λR define the same line.

3. We often represent the Plücker coordinates grouped in the following
form:

{L,M ;R}
L, M appear separated from R with a semicolon (;) because the first
two have length units, whereas R has area units.

4. Note that the parameters {L,M ;R} identify uniquely the line Ly −
Mx + R = 0, but they also determine uniquely a vector S = (L,M)
aligned with this line, in an arbitrary position on this line. For this
reason we say that {L,M ;R} defines a line-bound vector on the line
Ly −Mx+R = 0.

5. The line-bound vector {L,M ;R} can be obtained in an elegant way
from (x1, y1) and (x2, y2), using a rule introduced by Hermann Grass-
mann (1809 - 1877), which consists in arranging the points as follows

[
1 x1 y1
1 x2 y2

]

and computing the 2 × 2 determinants that result from deleting the
3rd, 2nd, and 1st columns. That is
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2.1.2 Points and lines at infinity

Hermann Grassmann

Up to now we have defined the coor-
dinates of points and lines in the Eu-
clidean plane. However, for a com-
plete and accurate treatment of the
different situations that may arise
in Statics, we require a base geome-
try whose expressive power allows to
deal with points and lines at infinity
in the same manner as with points
and lines located at finite distances
from the origin (see Sec. 2.3.2). Pro-
jective Geometry meets this require-
ment: if we don’t see the plane as the
Euclidean plane R

2 but as the pro-
jective P

2, then all the points in the
plane, the usual (or proper) points
as well as the points at infinity (or
improper points) are dealt with in a unified frame.

(proper point)

Euclidean plane

Point at infinity

(improper point)

in direction                   (a,b)

O

(x, y)

(a, b)

Figure 2.3: A proper point on the plane and an improper point at infinity
given by direction (a, b).

In order to make it possible we assume that the Euclidean plane is the
plane z = 1 of R3, and we consider the bundle of lines in R

3 passing through
the origin. Each one of these lines represents a point of the Euclidean plane:
the one resulting from the intersection of the line with the plane z = 1.
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represents a proper point

represents an improper point

O

X

Y

Z

z = 1

(a, b, c)

(d, e, 0)

Figure 2.4: Correspondence between points in the Euclidean plane and lines
in R

3.

A line of the form λ(a, b, c) with c 6= 0 represents a proper point P with
coordinates (a

c
, b
c
, 1). A line of the form λ(d, e, 0) represents a point at infinity

located in the direction (d, e) of plane z = 0.
In sum, the coordinates of a projective point have the form (x, y, z), with

z 6= 0 if the point is proper and z = 0 if the point is improper. They are
called homogeneuos coordinates because, if multiplied by a scalar λ 6= 0,
they are always representing the same point.

Note that the Grassmann rule can be used to compute the coordinates
of a line that goes through two projective points, be they proper or not. For
example, the line in Fig. 2.1, which we have assumed to be defined by the
proper projective points

(x1, y1, 1)
(x2, y2, 1),

can also be defined by the points

(x1, y1, 1) (proper, the same as above)
(L,M, 0) (improper).

In the second case, applying Grassmann’s rule, we should extract the 2×2
determinants of [

1 x1 y1
0 x2 − x1 y2 − y1

]
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which will be identical to the ones extracted from
[
1 x1 y1
1 x2 y2

]

as if a row is added to another row, the value of the determinant does not
change.

Projective Geometry does also allow to deal with the line at infinity as
any other line. The line at infinity is the one containing all the improper
points in the plane, which can be considered aligned.

This leads us to wonder which would be the coordinates {L,M ;R} of the
line at infinity. To this end, we should mention first that in the same way
that the points of the plane are respresented by lines through the origin in
R

3, in Projective Geometry the lines in the plane are represented by planes
passing through (or containing) the origin (Fig. 2.5).

O

X

Y

Z plane Ly −Mx+Rz = 0

normal vector (−M,L,R)

line Ly −Mx+R = 0

Figure 2.5: Correspondence between lines in the Euclidean plane and planes
in R

3.

The plane Ly − Mx + Rz = 0 represents the line resulting from the
intersection of this plane with the plane z = 1, i.e., the line Ly −Mx+R =
0. Thus, we can see now another intepretation of the parameters L,M,R:
they provide the components of the normal vector to the plane of R3 that
represents the line Ly −Mx+R = 0.

The line through infinity is represented by the plane z = 0, whose direc-
tion vector takes the form (0, 0, R). Thus, the line at infinity will have the
coordinates
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{0, 0;R} .
In Sec. 2.3.2, as well as in Module 3, we will see that the points and the

lines at infinity have very useful physical meanings in statics and kinematics.

2.1.3 Interpretation of R when the line is proper

The area of a triangle defined by three points (x1, y1), (x2, y2) and (x3, y3) is
given by
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∣
∣
∣
∣
∣
∣

In fact, this is an oriented area, which is positive if points 1, 2 and 3 are
traversed in counter-clockwise order, or negative otherwise. Thus, the area
of triangle O12 of Figure 2.1 is
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1

2
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∣
∣
∣
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1 x1 y1
1 x2 y2

∣
∣
∣
∣
∣
∣

=
1

2

∣
∣
∣
∣

x1 y1
x2 y2

∣
∣
∣
∣

=
1

2
R,

i.e., R is twice the area of triangle O12. On the other hand, from Figure 2.1,

∆ =
1

2
|S| p =

1

2
p
√
L2 +M2,

and comparing these two equations we obtain

p =
R√

L2 +M2
(2.1)

2.1.4 Normalized coordinates of a line

When |S| = 1, we have, from Figure 2.1

L = cos θ

M = sin θ

and from Eq. (2.1)
R = p

With the abbreviations c = cos θ and s = sin θ we have the following Plücker
coordinates

{c, s; p}
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when |S| = 1. These are the normalized or unit coordinates of the line,
and the equation of the line takes the form

cy − sx+ p = 0 (2.2)

It is easy to obtain the normalized Plücker coordinates of a line passing
through point (xQ, yQ) forming an angle θ w.r.t. the abscissae (Fig. 2.6), since

c = cos θ

s = sin θ

and p can be computed by substituting (xQ, yQ) in Eq. (2.2).:

p = sxQ − cyQ

2.2 Point of the intersection of two lines

Let $1 and $2 be any two lines in the plane, with coordinates {L1,M1;R1}
and {L2,M2;R2}. Depending on the relative position of these lines, they can
intersect at a proper or at an improper point P (Fig. 2.7):

In either case it is possible, using Projective Geometry, to find the coor-
dinates of P . We just consider the planes representing $1 and $2

L1y −M1x+R1z = 0 ( plane α1)
L2y −M2x+R2z = 0 ( plane α2)

O
X

Y

θ

(xQ, yQ)

Figure 2.6: Computing the normalized coordinates of a line through (xQ, yQ).
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$1$1
$2
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proper

improper

Crossing Parallel

Figure 2.7: Skew and parallel lines intersect at a proper and improper point
respectively.

O (origin of R3)

α1 α2

a1

a2

r = a1 × a2

Figure 2.8: Line that represents the intersection point P of $1 and $2.

and intersect them. Their intersection line represents P (Fig. 2.8). This line
goes through the origin, and its direction vector is r = a1 × a2, where a1

and a2 are the normal vectors to the two planes:
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a1 = [−M1, L1, R1]
T

a2 = [−M2, L2, R2]
T

Therefore,

r =

∣
∣
∣
∣
∣
∣

i j k

−M1 L1 R1

−M2 L2 R2

∣
∣
∣
∣
∣
∣

,

and expanding the determinant as follows

r =

∣
∣
∣
∣

L1 R1

L2 R2

∣
∣
∣
∣

︸ ︷︷ ︸

rx

i+

∣
∣
∣
∣

M1 R1

M2 R2

∣
∣
∣
∣

︸ ︷︷ ︸

ry

j +

∣
∣
∣
∣

L1 M1

L2 M2

∣
∣
∣
∣

︸ ︷︷ ︸

rz

k,

we obtain
r = rxi+ ryj + rzk,

so that P has the projective coordinates

(rx, ry, rz)

If rz 6= 0, then P is a proper point, with Euclidean coordinates

(
rx

rz
,
ry

rz
)

otherwise it is the improper point of the Euclidean plane located in direction
(rx, ry).

The coordinates ry, rx, and rz (note the order in the subindices) can be
obtained as the 2× 2 determinants that result from eliminating the 1st, 2nd
and 3rd columns, respectively, of the matrix

[
L1 M1 R1

L2 M2 R2

]

(2.3)

This rule was also given by Grassmann.

2.3 Statics of rigid planar systems

2.3.1 The wrench of a force

As stated earlier, the coordinates {L,M ;R} define a line-bound vector (L,M)
on the line Ly −Mx + R = 0. Therefore, we can use these coordinates to
represent a force vector (L,M) together with its line of application, which
acts on a lamina (planar rigid body).
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O

R

f = (L,M)

line with coordinates {L,M ;R}

Figure 2.9: Force acting on a lamina.

Geometric entity Physical interpretation

(L,M) Force vector
{L,M ;R} Line of application√
L2 +M2 Force intensity

R Force moment w.r.t. origin O

Thus, a force f as the one in Fig. 2.9 will be represented by a vector

ŵ =





L

M

R





called wrench, which encodes both the force and its action line.
From the laws of Statics we know that if we have two forces f

1
= (L1,M1)

and f
2
= (L2,M2) acting on a lamina, with moments R1 and R2 w.r.t. the

origin, then they can be replaced by one force called resultant, whose vector
is f = f

1
+ f

2
, acting on a line such that the moment of f w.r.t. the origin

is R1 + R2. Clearly, if ŵ1 = [L1,M1, R1]
T and ŵ2 = [L2,M2, R2]

T are the
wrenches of f

1
and f

2
, the wrench of f will be ŵ = ŵ1 + ŵ2. In general, if

we have n forces of wrenches ŵi = [Li,Mi, Ri]
T , with i = 1, . . . , n acting on

a lamina, the resultant force will have a wrench

ŵ =





L

M

R



 =





L1+ . . . +Ln

M1+ . . . +Mn

R1+ . . . +Rn



 ,
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and thus we will quickly obtain the action line of the resultant. It will be
Ly −Mx+R = 0 (if R 6= 0).

2.3.2 The wrench of a couple

A couple is a system of two forces with equal norm but opposite direction,
which act on parallel application lines on a lamina, tending to make the
lamina to rotate. An intuitive example is the couple of forces applied to a
steering wheel when we drive (Fig. 2.10).

f1

f2 = −f1

Figure 2.10: Couple of forces acting on a steering wheel.

The wrenches of these forces are ŵ1 = [L1,M1, R1]
T and ŵ2 = [−L1,−M1, R2]

T ,
with R1 6= −R2. The resultant wrench will be

[0, 0, R1 +R2]
T

which corresponds to the vector of the line at infinity. Therefore, a couple
of forces can also be viewed as a particular case of force. We say that it is a
force of infinitesimal magnitude acting on the line at infinity.

It may be difficult to understand that a force whose magnitude tends to
zero, infinitely far away from the origin, can provide a finite couple R1 +R2.
But it is certainly so, as we can see in the following example.

Example.- On a lamina two antiparallel forces, of magnitude 2 N and
m N respectively, act as shown in Fig. 2.11.

Be aware of the units of the wrench components:

ŵ1 =





0
−2
−2



 ŵ2 =





0
m

2m





←− Newton
←− Newton
←− Newton ·meter

14



O X

Y
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2 m

Figure 2.11: Antiparallel forces acting on a lamina.

The resulting wrench, as a function of m, is

ŵ = ŵ1 + ŵ2 =





0
m− 2
2m− 2





←− L(m)
←−M(m)
←− R(m)

which comes out to be a vertical force of magnitude

M(m) = m− 2

applied on a line which is at a distance of (applying Eq. 2.1)

p(m) =
2m− 2

m− 2

from the origin.
Assume that at the beginning m = 3. Then, the resultant

ŵ =





0
1
4





is a vertical force of 1 N, applied at x = 4 m. If we now make m tend to 2,
we have:

lim
m→2+

M(m) = lim
m→2+

m− 2 = 0

(i.e., the magnitude of ŵ tends to zero)

lim
m→2+

p(m) = lim
m→2+

2m− 2

m− 2
= +∞
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(i.e., the distance tends to +∞), but the product M(m) · p(m), i.e., the
moment, tends to a finite value:

lim
m→2+

M(m) · p(m) = lim
m→2+

2m− 2 = 2Nm

End of the example.

2.4 Translation and rotation of

coordinate systems

In what follows we will see how to determine L, M , and R in a coordinate
system, when they are given in a different system. The process is valid
independently of whether L, M , and R are the coordinates of a line or a
wrench.

2.4.1 Pure translation

Consider the line through points 1 and 2 in Fig. 2.12, with coordinates

(x1, y1)

(x2, y2)

}

in the coordinate system OXY

(x′

1
, y′

1
)

(x′

2
, y′

2
)

}

in the coordinate system O′X ′Y ′

The coordinates of line 1-2 in the systems OXY and O′X ′Y ′ are, respectively,

L = x2 − x1 M = y2 − y1 R = x1y2 − x2y1 (2.4)

L′ = x′

2
− x′

1
M ′ = y′

2
− y′

1
R′ = x′

1
y′
2
− x′

2
y′
1

(2.5)

To find the transformation that expresses the coordinates L, M , and R

in terms of the L′, M ′, and R′, we write

x1 = x′

1
+ a y1 = y′

1
+ b

x2 = x′

2
+ a y2 = y′

2
+ b

Replacing these relations in Eq. (2.5) and considering also Eq. (2.4) we obtain

L = L′ M = M ′ R = R′ − L′b+M ′a

or, in matrix form,
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1

2
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Y

O′
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Y ′

a

b

Figure 2.12: Translation of the coordinate system.





L

M

R



 =





1 0 0
0 1 0
−b a 1









L′

M ′

R′





which expresses the transformation we were looking for.

2.4.2 Pure rotation

Consider the situation shown in Fig. 2.13, where the line 1-2 can be expressed
in the O′X ′Y ′ or O′′X ′′Y ′′ coordinate systems. The two systems have a
common origin, that is, O′ = O′′, and O′′X ′′Y ′′ has been rotated an angle φ

w.r.t. O′X ′Y ′, as shown.
Let the coordinates of point i be

(x′

i, y
′

i) in the O′X ′Y ′coordinate system
(x′′

i , y
′′

i ) in the O′′X ′′Y ′′coordinate system

It is well-known that the relation between (x′

i, y
′

i) and (x′′

i , y
′′

i ) is given by

[
x′

i

y′i

]

=

[
cosφ − sinφ
sinφ cosφ

] [
x′′

i

y′′i

]

(2.6)
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1

2

X ′

Y ′

O′ = O′′

X ′′

Y ′′

φ

Figure 2.13: Rotation of the coordinate system.

We do also know that the coordinates of the line 1-2 in the coordinate systems
O′X ′Y ′ and O′′X ′′Y ′′ are, respectively,

L′ = x′

2
− x′

1
M ′ = y′

2
− y′

1
R′ = x′

1
y′
2
− x′

2
y′
1

(2.7)

L′′ = x′′

2
− x′′

1
M ′′ = y′′

2
− y′′

1
R′′ = x′′

1
y′′
2
− x′′

2
y′′
1

(2.8)

Replacing Eq. (2.6) in Eq. (2.7) and taking Eq. (2.8) into account we obtain




L′

M ′

R′



 =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1









L′′

M ′′

R′′



 ,

which provides the coordinate transformation between the two systems.

2.4.3 Translation and rotation

Consider now two arbitrary coordinate systems, which we will call OXY and
O′′X ′′Y ′′. The origin O′′ of the second system lies in the position (a, b) of
OXY , and the axes X ′′Y ′′ have been rotated an angle φ w.r.t. the axes
XY (Fig. 2.14). Consider also a third coordinate system O′X ′Y ′ parallel to
OXY , with O′ = O′′.

Now assume that we have the coordinates {L′′,M ′′;R′′} of line 1-2 in
the system O′′X ′′Y ′′ and we want to express them in the system OXY . We
make the conversion in two steps: first obtaining the coordinates in system
O′X ′Y ′ and then converting these to OXY . Clearly, the sequence of the two
steps corresponds to the following matrix composition, where c = cosφ and
s = sinφ:
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1

2

O X

Y

X ′

Y ′

O′ = O′′

X ′′

Y ′′

φ

a

b

Figure 2.14: Translation and rotation of the coordinate systems.





L

M

R



 =





1 0 0
0 1 0
−b a 1









c −s 0
s c 0
0 0 1









L′′

M ′′

R′′





Or, in condensed form,





L

M

R



 =





c −s 0
s c 0

as− bc ac+ bs 1









L′′

M ′′

R′′



 = [e]





L′′

M ′′

R′′





which is the relationship we were seeking.

2.5 Symbolic representation of a wrench

We have seen that a wrench takes the form

ŵ =





L

M

R



 (2.9)
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where (L,M) are the components of the associated force, and R is the mo-
ment of this force w.r.t. the origin. The notation in Eq. 2.9 uses brackets to
display the vector ŵ and is preferred when these vectors are to be operated
with matrices. However, it is convenient to introduce another notation for
ŵ, which will be useful in more abstract expressions and reflects better the
nature of a wrench. We will write the wrench as follows

ŵ = {f ; co}
where

• f = Li+Mj is the force vector,

• co = Rk is the moment of this force w.r.t. the origin of the coordinate
system.

This notation reflects the fact that a wrench is formed by two vectors, f
and co, whose nature and units are different (N and Nm, respectively, in the
International System).

Let S be a vector in R
2 with the same direction as f , but with |S| = 1.

Consider also So = r×S, the moment of S w.r.t. the origin, where r is the
position vector of any point of the application line $ of ŵ (Fig. 2.15).

1

O
r S

$

So = r × S

Figure 2.15: Meaning of the symbolic components of ŵ.

If f = |f | (magnitude of f), then we can write

f = fS

co = f(r × S) = fSo

and also

ŵ = {f ; co} = {fS; fSo} = f {S;So}
︸ ︷︷ ︸

ŝ

= f ŝ.
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Note that ŝ contains all the normalized coordinates of line $. Therefore,
we have expressed the wrench ŵ as a multiple of the normalized coordinates
of the action line, where the multiplying factor is the magnitude f of force
f . This perspective corresponds to the fact that the wrench is a geometric
entity (the line-bound vector S on the line $) with a physical meaning (by
multiplying it by the magnitude f of the force).

2.6 Statics of parallel manipulators

We next use the preceding concepts to perform the static analysis of parallel
3RPR manipulators, i.e., the computation of the relationship between the
joint forces and the wrench that the platform applies to the environment, in
situations of static equilibrium.

Consider the manipulator of Fig. 2.16, formed by a base that is fixed to the
ground, and a mobile platform, joined by three RPR legs, aka connectors. We
assume that the configuration of the manipulator is known (for example, it
could have been computed resolving the direct kinematics of the manipulator,
with a positional analysis method, as explained in Module 1).

The action lines of the connectors are displayed as $1, $2, and $3 in the
figure, being at distances pi w.r.t. the origin, and forming angles θi w.r.t.
axis X. The prismatic joints P of each leg are actuated.

2.6.1 Forward static problem

Assume that the actuators apply forces f
1
, f

2
, and f

3
at the legs. The

platform will experience a resultant force f applied on a line $. If ŵi stands
for the wrench of force f i and ŵ for the wrench of force f , that is,

ŵi =

[
f i

ci

]

ŵ =

[
f

co

]

then
ŵ = ŵ1 + ŵ2 + ŵ3

which we can write as

ŵ =

[
f

co

]

=

[
f

1

c1

]

+

[
f

2

c2

]

+

[
f

3

c3

]

If we express each wrench ŵi as

ŵi = fiŝi
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O

f

f1 f2

f3

P

R

R

$

$1 $2

$3

θ1 θ2 θ3

p1

p2

p3

Figure 2.16: Static analysis in a parallel manipulator.

where fi is the signed magnitude of the force at leg i, and ŝi are the normal-
ized coordinates of $i, then

ŵ =

[
f

co

]

= f1ŝ1 + f2ŝ2 + f3ŝ3

If we take into account that the normalized coordinates ŝi are

ŝi =





ci
si
pi





with
ci = cos θi
si = sin θi
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then we can write

ŵ =





c1 c2 c3
s1 s2 s3
p1 p2 p3





︸ ︷︷ ︸

j





f1
f2
f3





︸ ︷︷ ︸

λ

= jλ,

where j is called the force Jacobian of the manipulator.
The expression ŵ = jλ provides the solution to the forward static

problem: from the signed magnitudes of the joint forces applied at the
joints (vector λ) we obtain the resultant wrench ŵ applied by the legs to
the end effector (i.e., the platform). If the platform is in equilibrium with
the environment, the environment will apply a force equal to f in norm but
in the opposite direction on the same line $. This force, called equilibrant,
will have a wrench (Fig. 2.17):

ŵeq = −ŵ

ŵ

ŵeq = −ŵ
f1

f2

f3

Figure 2.17: The wrench ŵ is the resultant of the forces of magnitude f1, f2,
and f3 applied by the legs to the platform.

Application.- A possible application of ŵ = jλ appears when we want
to use the 3RPR manipulator as a force sensor. If we install load cells at the
legs, these cells provide the f1, f2, f3 values of λ, and we are able to determine
the wrench ŵ, and thus the equilibrant wrench ŵeq that the environment
exerts on the platform. Notice that the three components L, M , and R of
ŵeq will give the equation of line $, and thus we will know where this force is
applied. Miniaturized 3D versions of this type of sensor exist nowadays, to
be integrated in robotic fingers for example.
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2.6.2 Inverse static problem

Inversely, when we have a wrench ŵap on the end effector (i.e., applied by
the environment on the end effector), we often want to know which are the
resultant forces

λres =





f1
f2
f3





that this wrench will cause on the legs, in order to know the forces that the
actuators will have to exert to equilibrate them. This corresponds to solving
the inverse static problem. Since we can write

ŵap = jλres,

this problem corresponds to solving the previous linear system of equations,
with known ŵap and j.

Often the nature of ŵap and λres is understood from their context, and
the subindices “ap” and “res” can be omitted

ŵ = jλ (2.10)

implying that ŵ is the wrench applied by the environment to the end effector,

and λ = [f1, f2, f3]
T the vector of resultant joint forces (applied by the end

effector on the legs). If det j 6= 0, then j is invertible, and the solution to

the inverse static problem is

λ = j−1ŵ (2.11)

The vector of equilibrant forces that the actuators will have to perform in

order to counteract f1, f2, and f3 will be (Fig. 2.18)

λeq = −λ

If j is invertible we have, thus, a one-to-one relationship between the
wrench ŵ and vector λ. For every ŵ there is one, and only one, λ satisfying
Eq. (2.10). If j is not invertible, the inverse static problem cannot be solved
by applying Eq. (2.11), and, in fact, the one-to-oneness gets lost (as explained
more thoroughly in Sec. 2.8).
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ŵ

f1

f2

f3

−f1
−f2

−f3

Figure 2.18: Forces on the platform: external force, resultant and equilibrant
joint forces.

2.7 Geometrical meaning of j−1

The inverse of

j =





c1 c2 c3
s1 s2 s3
p1 p2 p3





can be expressed as

j−1 =
j′

T

det j

where j′
T is the transposed adjoint matrix of j (i.e., j′ is the matrix of

cofactors of matrix j) and det j is the determinant of j. We obtain the
following expression:

j′
T =





(s2p3 − s3p2) −(c2p3 − c3p2) (c2s3 − c3s2)
(s3p1 − s1p3) −(c3p1 − c1p3) (c3s1 − c1s3)
(s1p2 − s2p1) −(c1p2 − c2p1) (c1s2 − c2s1)





Now we will test that each row of j′T provides the projective coordinates of
the intersection point of two of the action lines $1, $2, $3 of the connectors
(Fig. 2.19):

• Row 1 → $2 ∩ $3 = $23
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• Row 2 → $3 ∩ $1 = $31

• Row 3 → $1 ∩ $2 = $12

$1
$2

$3

$12

$23

$31

Figure 2.19: Intersections of the action lines of the connectors.

Indeed, applying Grassmann’s rule for $2 and $3, the projective coordi-
nates of the point of intersection of these two lines are (remember Eq. (2.3))

[
c2 s2 p2
c3 s3 p3

]

→ ry =

[
s2 p2
s3 p3

]

rx =

[
c2 p2
c3 p3

]

rz =

[
c2 s2
c3 s3

]

and it is straightforward to see that ry, −rx and rz are exactly the elements
of the first row of j′T . The second and third rows can be tested for in a
similar fashion.

2.8 Singular configurations

Note that Eq. (2.10) is in fact a system of three linear equations. If matrix
j has rank 3 then it is invertible and we can express the solution to the
inverse static problem as λ = j−1ŵ, so that there is a one-to-one relationship
between the wrenches on the end effector and joint forces. But, what happens
if rank j < 3?
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n1 = [c1, s1, p1]
Tn2 = [c2, s2, p2]

T

O

r

Figure 2.20: Intersection of the planes representing lines $1 and $2 in R
3.

2.8.1 Concurrence condition

When the rank of j is less than 3 the manipulator is in a so-called singular

configuration. In order to see which are these configurations, realize that

det





c1 c2 c3
s1 s2 s3
p1 p2 p3



 = 0

if, and only if, the three lines $1, $2, $3 intersect in a common point (proper
or improper). A visual way to verify so is to be aware that ŵi = [ci, si, pi]

T

is, besides the coordinate vector of line $i, the normal vector of the plane of
R

3 that represents this line.
Consider the planes representing $1 and $2 (Fig. 2.20). If we watch them

“from above”, in the direction of their intersection line r, we will have the
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n1n2

n3

O

Figure 2.21: Linear dependence of n3 on n1 and n2.

situation depicted in Fig. 2.21. As det j = 0, n3 has to be linearly dependent
of n1 and n2, and therefore the plane relative to n3, which necessarily has
to pass through O, has to contain the line r. By cutting the three planes by
z = 1 we obtain three lines intersecting at a point, which can be proper (as
in the case depicted in the previous figures), or improper.

2.8.2 Concurrence at a proper point

As explained, the manipulator finds itself at a singular configuration when the
three action lines of the connectors $1, $2, and $3 are concurrent (Fig. 2.22).
In this situation there are end-effector wrenches that cannot be equilibrated
by the joint forces. To visualize so, write Eq. (2.10), ŵ = jλ assuming that
the origin O of the coordinate system is in the intersection point Q of $1, $2,
and $3: 



L

M

R



 =





c1 c2 c3
s1 s2 s3
0 0 0









f1
f2
f3



 (2.12)

Clearly, if the externally-applied wrench ŵap = [L,M,R]T has R 6= 0, this
system has no solution, implying that no combination of joint forces can equi-
librate wrenches with R 6= 0. The system in Eq. (2.12) is in fact incompatible
if, and only if, R 6= 0.
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$1 $2 $3

Q

Figure 2.22: A singular configuration of a parallel 3RPR manipulator.

Proof.- Compatible ⇔ rank(j) = rank(j, ŵap). Now, on the one hand:

rank





c1 c2 c3
s1 s2 s3
0 0 0



 = 2

as ∣
∣
∣
∣

c1 c2
s1 s2

∣
∣
∣
∣
= c1s2 − s1c2 = sin(θ2 − θ1) 6= 0

Analogously, the other 2× 2 minors are also different from 0.
On the other hand,

rank





c1 c2 c3 L

s1 s2 s3 M

0 0 0 R



 = 3⇔ R 6= 0
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O

X

Y

$1 $2 $3

θ1 θ2 θ3

Figure 2.23: Another singular configuration of a parallel 3RPR manipulator.

as if R = 0 then this rank would be 2. �
Note that if the wrench applied on the end effector has the form ŵap =

[L,M, 0]T , then the system of equations Eq. (2.12) is compatible but inde-
terminate, as it has now two equations with three unknowns. This means
that there are infinite combinations of joint forces that can equilibrate the
wrench [L,M, 0]T . Thus, in a singularity it is sometimes possible to solve the
inverse static problem, but when this happens there are infinite solutions.

2.8.3 Concurrence at an improper point

The manipulator of Fig. 2.23 is also in a singularity when the three lines
$1, $2, $3 intersect at a point in infinity, or, in other words, when they are
parallel. Since θ1 = θ2 = θ3 = θ, we will have

s1

c1
=

s2

c2
=

s3

c3
= tan θ

which means that the first and second rows of j are linearly dependent, and
rank j < 3.

To see which end-effector wrenches won’t be equilibrable, we write Eq. (2.10)
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ŵ = jλ in the coordinate system OXY shown in Fig. 2.23:





L

M

R



 =





1 1 1
0 0 0
p1 p2 p3









f1
f2
f3



 (2.13)

It is easy to see that this system has no solution if M 6= 0. Therefore, any
wrench with non-null component M cannot be equilibrated by the manipu-
lator in this configuration. One can check that only these wrenches cannot
be equilibrated, since if M = 0, then the system in Eq. (2.13) has infinitely-
many solutions.

2.8.4 Joint forces that tend to infinity

Accordingly on what has been stated in Sec. 2.7, equation λ = j−1ŵ can be
expressed as

λ =
j′

T

det j
ŵ

Clearly, when we approach a singularity, det j tends to zero, and therefore
the values f1, f2 and f3 of λ will tend to infinity. A similar phenomenon takes
place in reality. The legs will support increasing forces and eventually may
break. Therefore, from the point of view of material resistance, the approach
of a parallel robot to a singularity has to be avoided. The phenomenon is
analogous to the one shown in Table 1 below, for a 2RPR robot under the
action of a vertical force.
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f

f1 f2
Far from the singularity,
the actuators have to exert
small forces f

1
and f

2
to

equilibrate f .

f
f1 f2

Close to the singularity, the
actuators have to exert very
large forces f

1
and f

2
in or-

der to generate enough ver-
tical component of equili-
brant force.

Table 1: 2RPR robot in a non-singular and a close-to-singular configuration.
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