Module III

Instantaneous Kinematics

Analogy table

STATICS		
• Line in XY:	ŝ = {L,M;R}	
 Unit coordinates: 	\$ = {c,s;p}	
• Wrench:	$\mathbf{\widehat{w}} = \{\mathbf{f}; \mathbf{c}_{\mathrm{O}}\}$	
Pure couple:	$\boldsymbol{\widehat{w}} = \{\boldsymbol{0}; \boldsymbol{c}_{\text{o}}\}$	
Translation+rotation:	[e]	
 Statics of manipulators 	[j]	

KINEMATICS

The coordinates of a line II to Z $= \{\mathbf{S}; \mathbf{S}_{\circ}\}$ \$ ŝ $\mathbf{S}_{o} = \mathbf{r}_{o} \times \mathbf{S}$ () Xo $\hat{s} = \{N; P, Q\}$ \mathbf{r}_{0} Уo Х $P = y_0 N$ S=Nk $Q = -x_0 N$ LINE in XY plane: $\{L,M,0;0,0,R\}$ $\{L,M,N;P,Q,R\}$ LINE II Z: {0,0,N;P,Q,0} $\hat{s} = \{N; y_0 N, -x_0 N\} = N \{1; y_0, -x_0\}$

Normalized coords of the line

Analogy table

STATICS

- Line in XY: $\hat{s} = \{L,M;R\}$
- Unit coordinates: $\hat{s} = \{c,s;p\}$

• Wrench: $\hat{\mathbf{w}} = \{\mathbf{f}; \mathbf{c}_0\}$

• Pure couple: $\hat{w} = \{0; c_0\}$

- Translation+rotation: [e]
- Statics of [j] manipulators

KINEMATICS

- Line II to Z axis: $\hat{s} = \{N; P, Q\}$
- Unit coordinates:
- $\hat{s} = \{1; y_{o}, -x_{o}\}$

Angular velocities & the instant center

Instant center of rotation (ICR)

Find a compact way to describe the velocity field

Twist = multiple of vertical line

Analogy table

STATICS

- Line in XY: $\hat{s} = \{L,M;R\}$
- Unit coordinates: $\hat{s} = \{c,s;p\}$

• Wrench: $\hat{\mathbf{w}} = \{\mathbf{f}; \mathbf{c}_0\}$

• Pure couple: $\hat{w} = \{0; c_0\}$

- Translation+rotation: [e]
- Statics of [j] manipulators

KINEMATICS

- Line II to Z axis: $\hat{s} = \{N; P, Q\}$
- Unit coordinates:
- $\hat{s} = \{1; y_{o}, -x_{o}\}$

Twist:

- •
- $\mathbf{\hat{t}} = \{\boldsymbol{\omega}; \boldsymbol{v}_{\text{O}}\}$

Pure translation

Analogy table

STATICS

- Line in XY: $\hat{s} = \{L,M;R\}$
- Unit coordinates: $\hat{s} = \{c,s;p\}$

• Wrench: $\mathbf{\hat{w}} = \{\mathbf{f}; \mathbf{c}_0\}$

• Pure couple: $\mathbf{\hat{w}} = \{\mathbf{0}; \mathbf{c}_0\}$

- Translation+rotation: [e]
- Statics of [j] manipulators

KINEMATICS

- Line II to Z axis: $\hat{s} = \{N; P, Q\}$
- Unit coordinates:
- $\hat{s} = \{1; y_0, -x_0\}$
- Twist: $\mathbf{\hat{t}} = \{\boldsymbol{\omega}; \boldsymbol{v}_{O}\}$
- Pure translation: $\hat{\mathbf{t}} = \{\mathbf{0}; \mathbf{v}_0\}$

Ray and axis coordinates

Order	Order name	Preferred for
{vector ; moment}	Ray coords.	Wrenches, lines in XY plane
{moment ; vector}	Axis coords.	Twists, lines 上 XY plane

In a given coordinate system, an observer sees the following twist for the end effector of a robot

T = {10 m/s , -5 m/s ; 5 rad/s}

Which of the following statements are true?

A The instantaneous center of rotation is in point (1,2), and the angular velocity of the end effector is of 5 rad/s counterclockwise.

B The instantaneous center of rotation is in point (5,10), and the angular velocity of the end effector is of 5 rad/s clockwise.

C The velocity of the origin point of the end effector is $\mathbf{v}_{\rm O} = (10,-5)$ m/s.

D The velocity of the end effector point P=(2,1) is $\mathbf{v}_P = (5,5)$ m/s.

Changing the coordinate system of lines and twists

Analogy table

STATICS

- Line in XY: $\hat{s} = \{L,M;R\}$
- Unit coordinates: $\hat{s} = \{c,s;p\}$
- Wrench: $\hat{\mathbf{w}} = \{\mathbf{f}; \mathbf{c}_0\}$
- Pure couple: $\hat{w} = \{0; c_0\}$
- Translation+rotation: [e]
- Statics of [j] manipulators

KINEMATICS

- Line II to Z axis: $\hat{s} = \{N; P, Q\}$
- Unit coordinates: $\hat{s} = \{1; y_0, -x_0\}$
- Twist: $\mathbf{\hat{t}} = \{\boldsymbol{\omega}; \boldsymbol{v}_{O}\}$
- Pure translation: $\mathbf{\hat{t}} = \{\mathbf{0}; \mathbf{v}_0\}$
- Translation+rotation: [E]

Relationship between [e] and [E]

Observational frame

Observational _ An observer and all points fixed to that observer

The velocity field is always **relative** to a chosen observational frame

Coordinate system

Coordinate = A point and three spatial directions attached to an observational frame, used to describe points and velocities seen from that frame

Sentence

Orthodox → Twist of the wheel relative to observational frame A, expressed in coordinate system OXY

Simplified \rightarrow Twist of the wheel relative to coordinate system OXY

Law of composition of velocities

3R serial manipulator

Why does the velocity sum hold?

Apply the law of composition of velocities

The velocity equation

$$\hat{T} = \begin{bmatrix} oldsymbol{v}_{o1} \\ \omega_1 \end{bmatrix} + \begin{bmatrix} oldsymbol{v}_{o2} \\ \omega_2 \end{bmatrix} + \begin{bmatrix} oldsymbol{v}_{o3} \\ \omega_3 \end{bmatrix}$$

3R serial manipulator

$$\det \mathbf{J} = a_{23} \,\hat{s}_{23}^T \,\hat{S}_1 = a_{31} \,\hat{s}_{31}^T \,\hat{S}_2 = a_{12} \,\hat{s}_{12}^T \,\hat{S}_3$$

Analogy table

STATICS

- Line in XY: $\hat{s} = \{L,M;R\}$
- Unit coordinates: $\hat{s} = \{c,s;p\}$
- Wrench: $\hat{\mathbf{w}} = \{\mathbf{f}; \mathbf{c}_0\}$
- Pure couple: $\hat{w} = \{0; c_0\}$
- Translation+rotation: [e]
- Statics of [j] manipulators

KINEMATICS

 $\hat{s} = \{N; P, Q\}$ • Line II to Z axis: $\hat{s} = \{1; y_0, -x_0\}$ • Unit coordinates: $\mathbf{\hat{t}} = {\boldsymbol{\omega}; \mathbf{v}_{\text{O}}}$ • Twist: $\hat{t} = \{0; v_0\}$ • Pure translation: • Translation+rotation: [E] [J] Kinematics of manipulators

Velocity equation in general chains

If i-th joint is prismatic

General form of the velocity equation

Match every manipulator with its Jacobian

Singularities

(in general mechanisms)

Singularities of a serial manipulator

$$\hat{T} = \boldsymbol{J} \cdot \boldsymbol{\gamma}$$

Singularities of a serial manipulator

Unsolvable / undetermined INVERSE inst. kinem. problem

Homework

Find the end-effector twists for which the IIKP has no solution or infinitely-many solutions

Give an explanation of the apparent paradox

Which of these configurations are singular?

In the singular ones:

how are the instant centers of the relative link twists?

Singularities of a closed kinematic chain

Singularities of a closed kinematic chain

Singularities of a closed kinematic chain

FIKP: Given the input velocities \rightarrow compute the whole velocity state **IIKP:** Given the output velocities \rightarrow compute the whole velocity state

Forward singularities

Unsolvable or undetermined FORWARD inst. kinematic problem

Forward singularities

https://youtu.be/_AlbarxcwkA

Inverse singularities

Unsolvable or undetermined **INVERSE** inst. kinematic problem

Almost end of module

An appendix on infinitesimal displacements next week