
The Principle of Virtual Power

Slide companion notes

Slide 2 In Modules 2 and 3 we have seen con-
cepts of Statics and Kinematics in a separate way.
In this module we shall see how the static and the
kinematic analyses fit to each other, thanks to the
Principle of Virtual Power, also called “of recipro-
city”. The coupling is so tight that we often speak
of the “kinetostatic” behavior of a mechanism.

Slide 3 We start with a brief reminder of con-
cepts that we have already seen in modules 2 and
3, stressing analogies and providing new insight.

Slide 4 Remember that in Statics we represent
the resultant of a system of forces with a wrench
ŵ, which encodes a force f acting on a line r. The
wrench is formed by a vector f and its moment with
respect to the origin co. Analogously, in Kinematics
we represent the velocity state of a lamina with
a twist t̂ encoding the angular velocity ω and its
action line m. The twist is formed by a vector ω

and its moment vo with respect to the origin. The
twist and the wrench have the same structure. They
are both formed by a vector and its moment w.r.t
the origin O.

Slide 5 It will be useful to see that there are two
possible interpretations of a wrench ŵ = {f ; co}.
We can think that it encodes a force f applied along
the line r defined by the wrench, or that it encodes
a force f applied at the origin, plus a couple co
applied on the lamina. The two force systems are
equivalent. They have the same resultant force, and
the same moment w.r.t the origin (and w.r.t any
point).

Slide 6 A twist t̂ also has two possible interpreta-
tions. So far, we are used to think of t̂ as encoding
the velocity field generated by an angular velocity

ω about a line m, being vo the velocity of the ori-
gin point of the lamina (left figure). But now recall
how we use t̂ to compute the velocity vP of a point
P of the lamina:

vP = ω ×
−−→
OP + vo. (1)

From this equation it becomes clear that we can
equally think of t̂ as encoding the sum of two velo-
city fields (right figure):

A field generated by an angular velocity ω ac-
ting on a line m′ parallel to m, through O.

A constant field of velocity vo.

These double interpretations of the wrench and
the twist will be helpful soon, to easily compute the
power generated by a wrench, under a given twist.

Slide 7 More analogies. Similarly to the static
analysis of the 3-RPR manipulator (in which the
platform wrench is a sum leg wrenches), in the ki-
nematic analysis of the 3R robot the end-effector
twist is a sum of relative link twists. Note that it
remains to perform the kinematic analysis of the
3-RPR manipulator, and the static analysis of the
3R robot. We will perform them soon using the
Principle of Virtual Power.

Slide 8 Finally, note that the static singularities
of the 3-RPR manipulator arise when three lines
are concurrent, whereas the kinematic singularities
of the 3R robot appear when the three joints are
collinear. In Projective Geometry, the concurrence
condition of three lines is dual to the alignment
condition of three points. The Principle of Virtual
Power will also allow us to make the analysis of the
kinematic and static singularities of the 3-RPR and
3R robots, respectively.
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Slide 9 Let’s see this principle. We will formula-
te it first for a particle, then for a rigid body, and
finally for a multibody system, i.e., a mechanism.

Slide 10 Remember that in Mechanics the power
generated by a force f applied at a particle with
velocity v is defined as the product

P = f · v.

P measures the kinetic energy that f transmits to
the particle per unit of time. It is therefore a scalar
quantity with units of power (Nm/s = J/s = W, in
SI). We have:

P > 0 ⇒ the particle accelerates.

P = 0 ⇒ the particle maintains its velocity.

P < 0 ⇒ the particle slows down.

Slide 11 In the case of a unique particle, the prin-
ciple says that the particle will be in equilibrium if,
and only if, the power generated by the external
forces acting on it is null under any possible ve-

locity of the particle.

Proof:

(⇒) Since the particle is in equilibrium, it
must be r =

∑n

i=1
f i = 0, and therefore

it will be

rv = 0, ∀v.

(⇐) If rv = 0 ∀v, in particular it has to
be rv = 0 when ||v|| 6= 0, and this implies
that r = 0. In other words, the particle
has to be in equilibrium.

The power is said to be “virtual” because the-
re is no need for the particle to actually move to
apply the principle. It only needs to be in equili-
brium, either moving, or at rest. The principle of
virtual power, hence, is more regarded as an analy-
tical mathematical tool in itself, useful to compute
forces in equilibrium conditions. We will illustrate
the tool with examples by the end of these slides.

Slide 12 The power of a force f applied to a rigid
body on a line r is defined as the product

P = f · vQ,

where vQ is the velocity of any point Q of r.
The value of P does not depend on the specific

point Q of r we choose. To prove this, we see that
the power obtained at a point Q equals the power
obtained at any other point Q′ 6= Q of r.

If we define:

C as the instantaneous center of rotation of
the body.

rQ = Q− C.

rQ′ = Q′ − C.

s = Q−Q′.

Then:

P = f · vQ = f · (ω × rQ) =

= f · (ω × (rQ′ + s)) =

= f · (ω × rQ′) + f · (ω × s)

= f · vQ′

because ω × s is orthogonal to f :

Q

Q′

C

rQ

rQ′

ω

s

f

Slide 13 As in the case of a particle, P measures
the kinetic energy transmitted by the force to the
body. The example shows different situations where
P is positive, negative, or zero.
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Slide 14 The power of a couple π applied on a
rigid body is defined as the product

P = π · ω,

where ω is the angular velocity of the body.
This definition is consistent with the one given

in Slide 12 for forces. If we see the couple π as the
resultant of a system of two antiparallel forces −f

and f respectively applied at two points A and B

of the body, where r = B − A makes r × f = π,
it is easy to see that the power generated by these
forces has to be P = π · ω. Indeed, if C is the
instantaneous centre of rotation, and rA = A− C,
rB = B − C, r = B −A, we have:

P = −f · vA + f · vB =

= −f · (ω × rA) + f · (ω × rB) =

= f · (ω × (rB − rA))

= f · (ω × r) =

= ω · (r × f) =

= ω · π

Slide 15 Now we have the necessary elements
to compute the power generated by a wrench
ŵ = {f ; co} on a body moving under a twist
t̂ = {ω;vo}. The wrench can be seen as a force
f applied at the origin, plus a couple co orthogo-
nal to the lamina. Since the velocity of the origin is
vo, and the angular velocity of the body is ω, the
power generated by f and co is

P = f · vo + co · ω = ŵT · T̂ ,

where T̂ = {v0;ω}, i.e., it is t̂ written in axis coor-
dinates. Now we see the interest of using ray coordi-
nates for wrenches, and axis coordinates for twists.
They allow to compute P as the product ŵT · T̂ .
When ŵT · T̂ = 0 one says that ŵ and T̂ are reci-

procal. This means that, seen as abstract vectors,
ŵ and T̂ are orthogonal.

Slide 16 Taking into account that

ŵ = fŝ

T̂ = ωŜ

where ŝ and Ŝ are the unit coordinates of the res-
pective lines, and f and ω the corresponding signed

magnitudes, we can write

P = fω · ŝTŜ.

The product ŝTŜ is called the mutual moment of
the mentioned lines and is equal to the signed
distance r between them (see Duffy’s book for a
proof). If s and S are, respectively, the unit vec-
tors corresponding to ŝ and Ŝ, then ŝTŜ is positive

if
−−→
PQ× S points in the same direction than s.

An important conclusion is that P = 0 if, and
only if, the lines of ŵ and T̂ intersect. This fact
will shortly be used in the kinetostatic analyses of
forthcoming robots.

Note that the power P is invariant to changes
in the coordinate system. Independently of the sys-
tem chosen to express ŵ and T̂ , its product P will
always be the same.

Slide 17 We have shown that the Principle of
Virtual Power is true for a particle, but it is also
true for rigid bodies, as these can be seen as aggre-
gates of particles. In the case of a rigid body, ho-
wever, it is only necessary to count in P the power
of all forces and couples applied from the outside
on the body, as the power generated by the interior
forces is globally null.

Indeed, let f be the force that a particle B exerts
on another particle A. This force is the resultant
of the gravitational and electrostatic forces. By the
action-reaction principle, the force that the particle
A will exert on B is −f .

A
B

C

rA

rB

ω

f
−f

ω × (rA − rB)

If rA and rB are the position vectors of A and B

w.r.t the instant center of rotation C, the power of
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the two forces is

P = f · vA − f · vB =

= f · (ω × rA)− f · (ω × rB)

= f · (ω × (rA − rB)) = 0

because ω × (rA − rB) is orthogonal to f :

Slide 18 The principle is also true for a mecha-
nism. The mechanism is in equilibrium if, and only
if, the power generated by all forces and couples
applied from the outside is null, under any velo-
city state of the mechanism compatible with its

joint assembly constraints.

Note that the principle holds for any one of the
bodies separately, and this means that it will hold
for the global set of bodies. When we compute the
total balance of power, however, the contribution
of the connector forces is globally null. This can be
seen clearly in the 4-bar mechanism of the slide,
subject to three forces applied from the outside,
one at each bar (left figure). If we analize the forces
that each body receives separately (right figure) we
see that the global force balance at the joints is
null. The reactions of the ground do not generate
power, because they are applied at points that do
not move. The forces at the mobile joints generate
also a null sum of power, because if f is the force
that bar i exerts on a neighbor bar j, the force that
j will exert on i will be −f . As we only consider
motions compatible with the joints, f and −f are
applied at the same point with a given velocity v.
The contribution of these two forces will therefore
be fv + (−f)v = 0.

Slides 19 and 20 In the remaining slides we shall
illustrate how the principle of virtual power allows
us to determine

The unknown forces in input/output pro-
blems.

The forces that can be structurally supported
by the end-effector of a robotic mechanism.

By a “structurally supportable” force we mean
one that the mechanism can equilibrate without
having to actuate any one of its joints, under the
assumption that the mass of the links is negligible.

The green force acting on the shown robot arm
is structurally supportable, because its moment re-
lative to the joints is null. No torque at the joints
is needed to counteract it. Accordingly, a climber
can withstand its weight with relaitve ease in the
shown position, because his arm is fully extended!

Anticipating such forces is useful, not only be-
cause the robot consumes less power when counte-
racting them, but also because they are associated,
as we shall see soon, with the presence of singula-
rities.

Slide 21 Let us see an example of application of
the principle to the determination of unknown for-
ces in input/output problems. The figure displays
a 3R mechanism with negligible mass, used to com-
press a wooden block (brown) by means of a piston
(grey). The piston maintains a frictionless planar
contact with the ground. Given the force r = −rj

applied at C, we want to know the compression for-
ce applied on the wooden block. The problem boils
down to computing the reaction q = −qi that the
block will exert against the piston:

B

C

r = −rj

q = −qi

θ θ

ll

x

y

Let us now consider this movement

B

which is compatible with the assembly constraints
of the mechanism, and compute the power P ge-
nerated by all of the externally-applied forces. The
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positions of B and C as a function of θ are

(xB , yB) = (2l sin θ, 0),

(xC , yC) = (l sin θ, l cos θ),

so that the velocities of B and C are

vB = (ẋB , ẏB) = (2lθ̇ cos θ, 0),

vC = (ẋC , ẏC) = (lθ̇ cos θ,−lθ̇ sin θ),

and thus

P = q · vB + r · vC =

= rlθ̇ sin θ − 2qlθ̇ cos θ.

Since the mechanism is in equilibrium, P = 0,

rlθ̇ sin θ − 2qlθ̇ cos θ = 0,

and we obtain that the relation between r and q is

q =
r

2
tan θ.

Slide 22 Now, let us derive a condition charac-
terizing the structurally supportable end-effector
wrenches of an arbitrary robotic mechanism. For
concreteness the slide shows a 3R robotic arm, but
the analysis applies to any mechanism. Just subs-
titute the interior of the dashed line for your prefe-
rred one.
Let us apply the Principle of Virtual Power to

the mechanism. We break the connection with the
ground, substituting its action by a wrench ŵg. Sin-
ce we want to compute the structurally supportable
forces, we assume that no joint is actuated, so the
only wrenches acting from the outside are ŵg on
the base link, and ŵe on the end effector. By the
Principle of Virtual Power we have

P = ŵg
T · T̂g + ŵe

T · T̂e = 0

where T̂g is the twist of the base link, and T̂e is the
end-effector twist. The previous equation must hold
for any twist T̂e compatible with the joint assembly
constraints of the robot. These twists are also called
the twists of freedom of the end effector.
Since T̂g = 0,

P = ŵe
T · T̂e = 0

for all twists of freedom T̂e. Therefore, the struc-
turally supportable wrenches ŵe are those that are
reciprocal to all twists of freedom T̂e of the end
effector (recall slide 15 for a definition of the term
“reciprocal”). The structurally supportable wren-
ches are called the wrenches of constraint of the
end-effector.

Slide 23 The space T of twists of freedom, and
the space W of wrenches of constraint are vector
spaces, and they are reciprocal complements from
one another, since

ŵe
T · T̂e = 0, ∀ŵe ∈ W, ∀T̂e ∈ W,

Dim(T) + Dim(W) = 3

That is, seen as abstract vector spaces, T andW are
orthogonal complements from one another. Strictly
speaking, we cannot use the word “orthogonal”, be-
cause the vectors in T and W are of a different phy-
sical nature.

As this figure shows

Space W

Space T

any vector of T is orthogonal to any vector of W,
and the dimensions of T and W have to add up to
the dimension of the whole space R

3:

dim(T) + dim(W) = 3.

Slide 24 This is an exercise for you to practice.
Provide the spaces of twists of freedom and wren-
ches of constraint of the shown robots. I.e., give
a basis of such spaces, in the indicated coordinate
systems.
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