Module 4

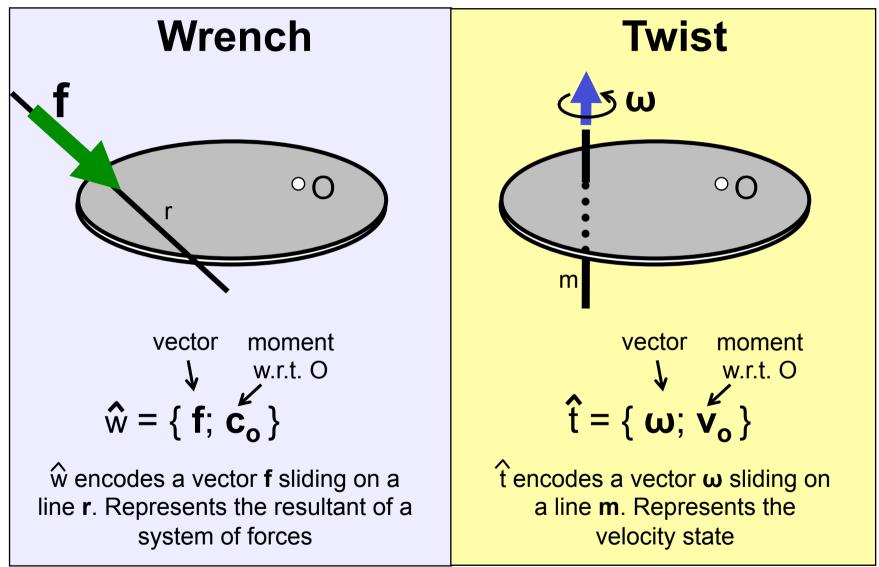
Series-parallel dualities

Kinetostatics = kinematics + statics

Fit thanks to the **principle of reciprocity** (a.k.a. the principle of **virtual power**)

Overview of kinetostatic analogies and new insights

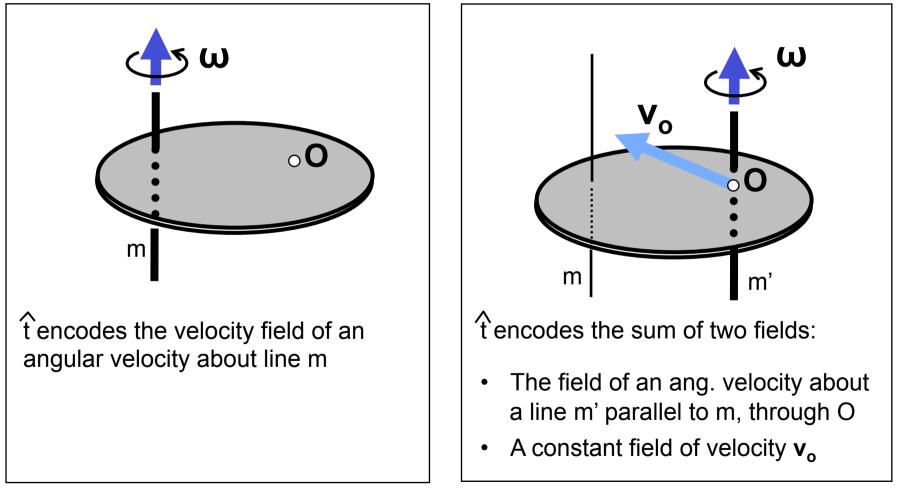
Analogies statics - kinematics



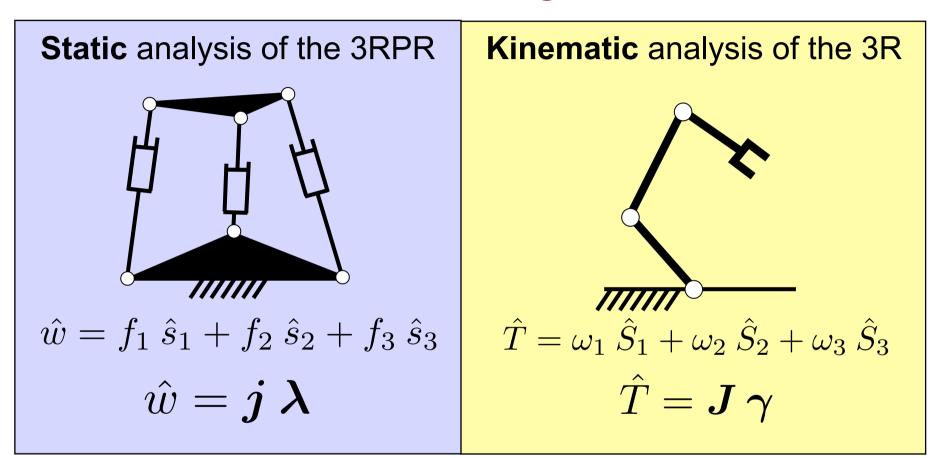
Two interpretations of a wrench $\hat{w} = \{ f; c_o \}$



Two interpretations of a **twist** $\hat{t} = \{ \omega; v_o \}$

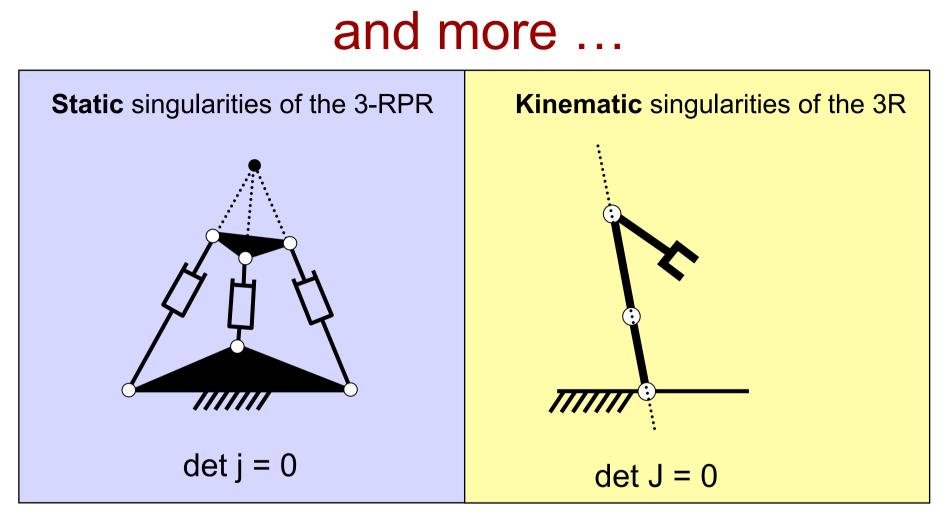


More analogies...



Pending: kinematic analysis Pending: static analysis

With the principle of virtual power



Pending: kinematic singularities

Pending: static singularities

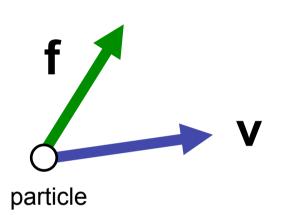
With the principle of virtual power

Principle of virtual power

- Particle
- Rigid body
- Mechanism

Power of a force applied to a particle

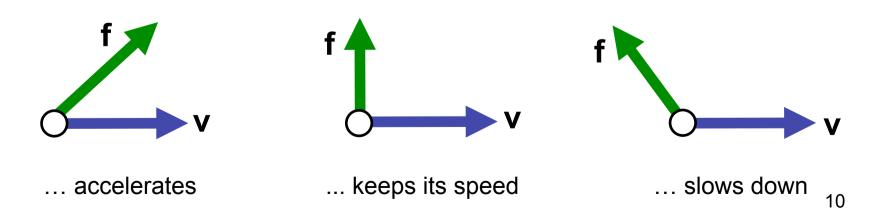
(w.r.t. a velocity)



$P = \mathbf{f} \cdot \mathbf{v}$

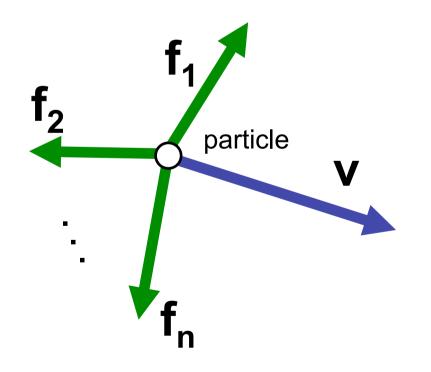
- P is a scalar magnitude
- Units of power: Nm/s = J/s = W
- Measures the kinetic energy transferred to the particle per unit of time
- If **f** orthogonal to **v**, then P = 0

Examples where the particle ...



Principle of virtual power for a particle

"A particle is in equilibrium **if**, **and only if**, the power generated by all external forces applied to it is null, under **any possible velocity** for the particle"



Power generated by a force applied to a rigid body

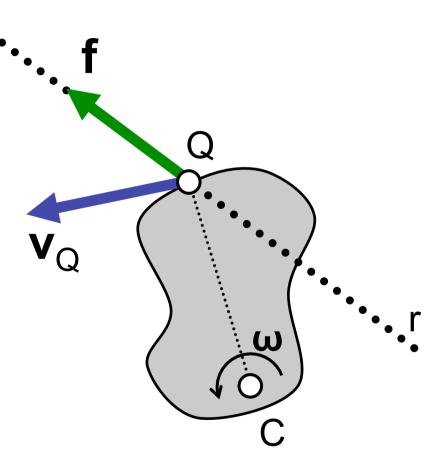
It is defined as

$$P = \mathbf{f} \cdot \mathbf{v}_Q$$

where Q is any point of the action line of **f**

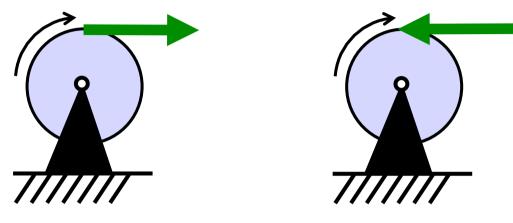
Measures kinetic energy transferred to the body

P is invariant to the chosen point Q

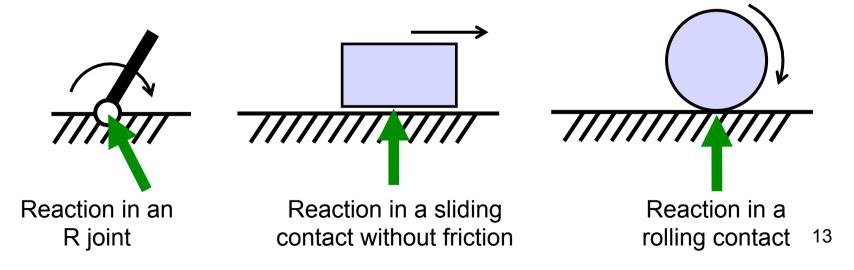


Examples

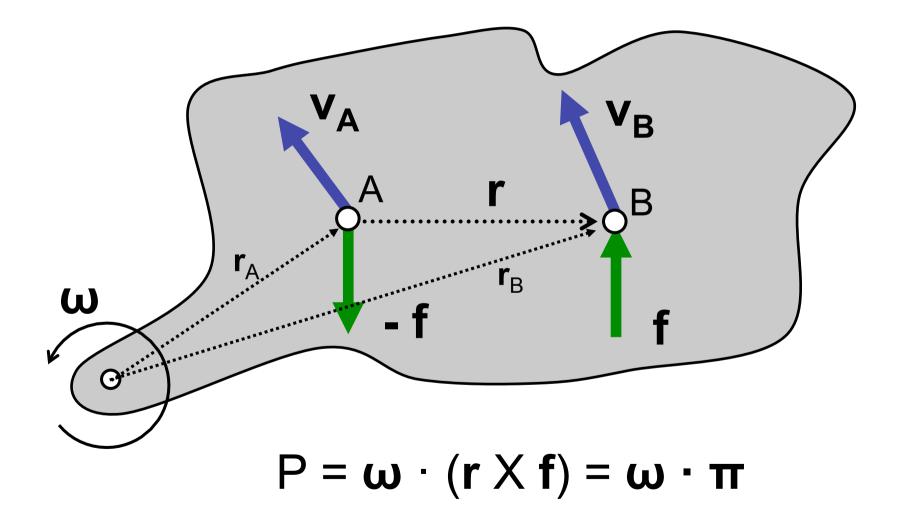
... in which the force accelerates (P>0) or slows down (P<0) the body:



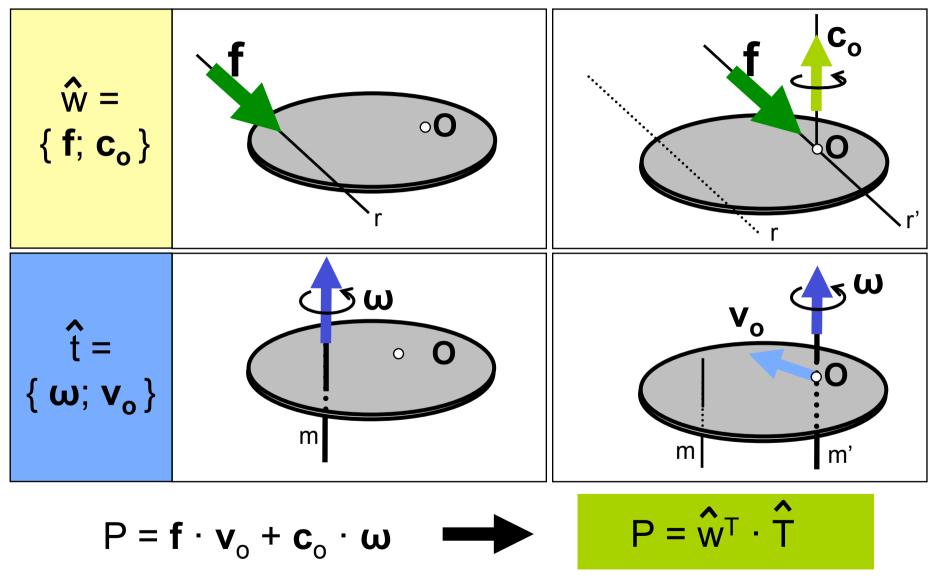
... in which the force can neither accelerate nor slow down the body (P=0):



Power of a couple applied to a rigid body



Power of a wrench under a given twist



Geometric interpretation of the power using the "mutual moment" ŝ $P = \hat{w}^{T} \cdot \hat{T}$ ∧ S S $\mathsf{P} = (\mathsf{f} \, \hat{\mathsf{s}}^{\mathsf{T}}) \cdot (\omega \, \hat{\mathsf{S}})$ S $P = f \omega \hat{s}^{\mathsf{T}} \cdot \hat{S}$ Mutual moment of the two lines signed distance r between the lines (+ if $\overrightarrow{PQ} \times \mathbf{S}$ points in the same direction than **s**) Thus, P = 0 if, and only if, the two lines \hat{s} and S intersect

Principle of virtual power for a rigid body

"A rigid body is in equilibrium **if, and only if,** the power generated by all externally-applied forces and couples is null, **under any feasible velocity for the body**"

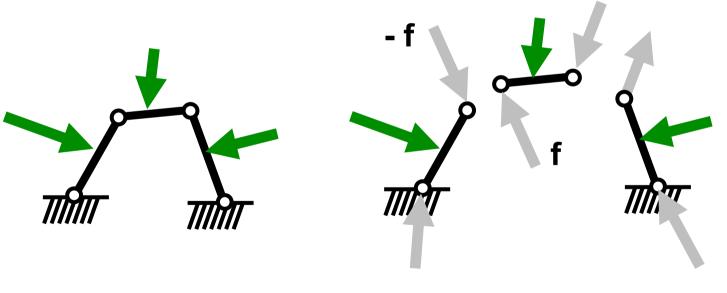
$$P = f_1 v_1 + \dots + f_n v_n + \pi_1 \omega + \dots + \pi_m \omega = 0$$

$$f_1 + \dots + f_n v_n + \pi_1 \omega + \dots + \pi_m \omega = 0$$
Only the power of the externally-applied forces and couples needs to be counted.
$$f_n + \dots + f_n v_n + \pi_1 \omega + \dots + \pi_m \omega = 0$$
Why?

Principle of virtual power for a mechanism

"A mechanism is in equilibrium **if**, **and only if**, the power generated by all <u>externally-applied</u> forces and couples is null, under **any feasible velocity state of the mechanism**"

(feasible = compatible with the joint assembly constraints of the mechanism)



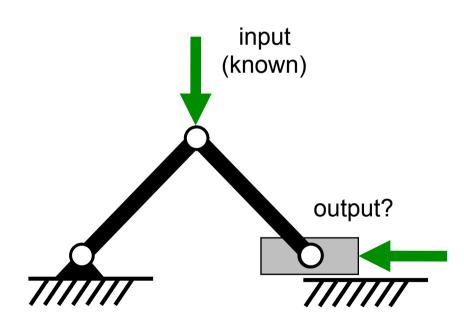
Only the external forces count ...

... because the power of the connector forces is globally null

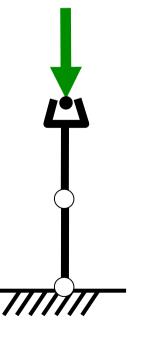
The principle of virtual power

allows us to determine ...

The unknown forces in input/output problems

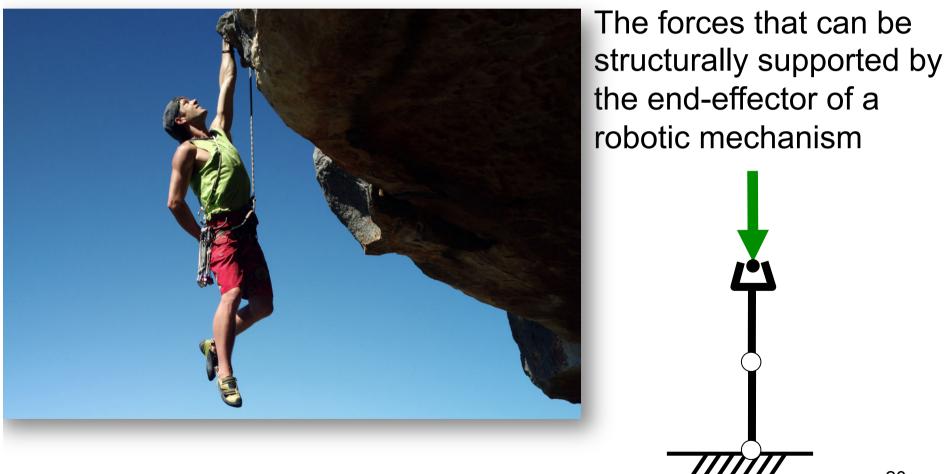


The forces that can be structurally supported by the end-effector of a robotic mechanism

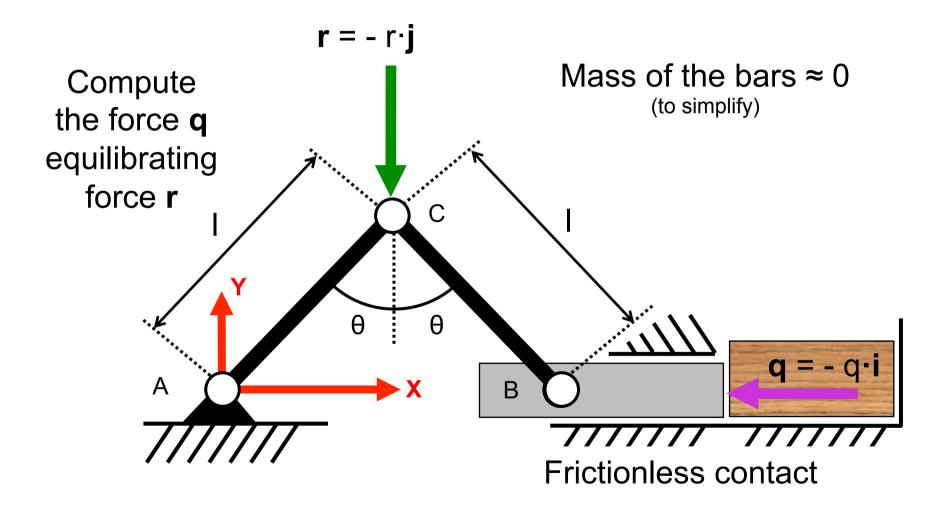


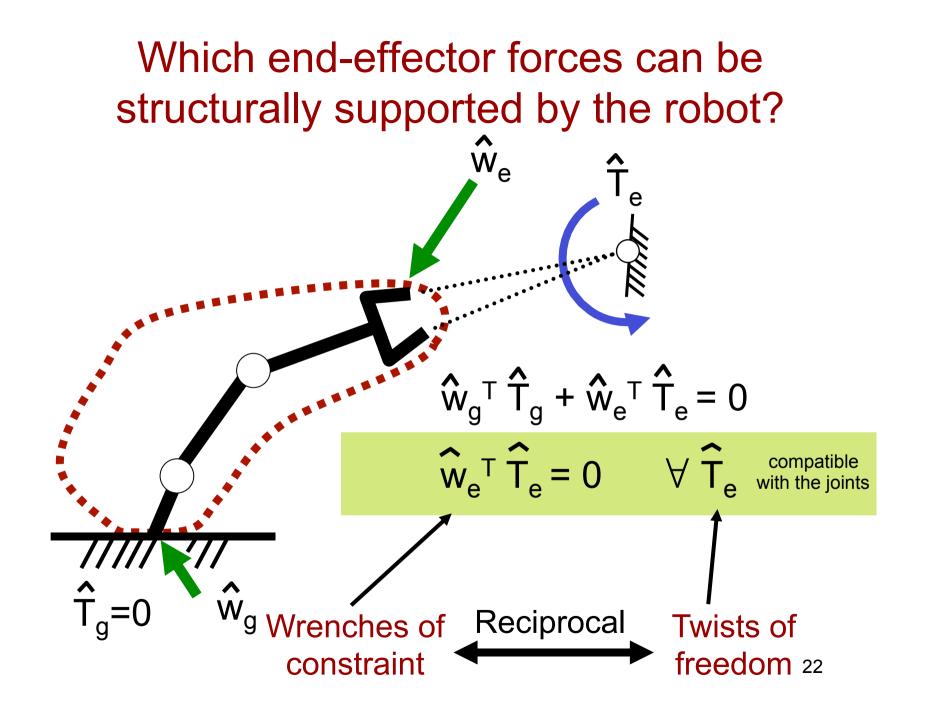
The principle of virtual power

allows us to determine ...



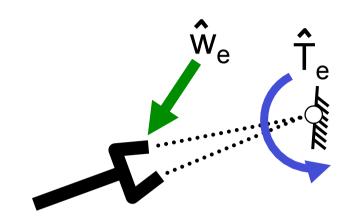
Unknown forces in input/output problems





Twists of freedom and wrenches of constraint

For a given mechanism link (e.g., its end effector) we define:



Its space of "twists of freedom": $\mathbf{T} = \{ \text{ twists } \hat{\mathbf{T}}_e \text{ under which the link can move } \}$

Its space of "wrenches of constraint": $\mathbf{W} = \{ \text{ wrenches } \hat{\mathbf{w}}_e \text{ that the link can structurally support } \}$

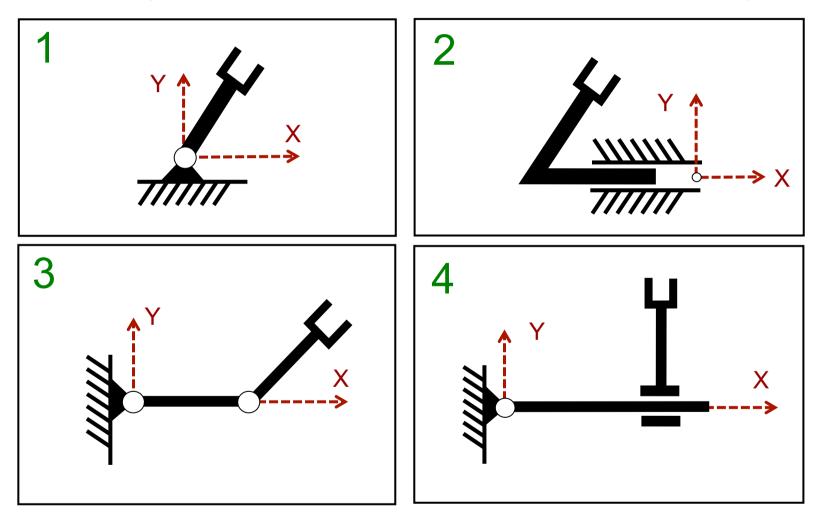
T and **W** are vector spaces. They are reciprocal complements, since:

$$\hat{\mathbf{w}}_{e}^{\mathsf{T}} \hat{\mathbf{T}}_{e} = \hat{\mathbf{0}} \qquad \forall \hat{\mathbf{w}}_{e}, \hat{\mathbf{T}}_{e}$$

Dim T + Dim W = 3

Exercise

Provide the spaces of twists of freedom and wrenches of constraint of these robots. I.e., give a basis of such spaces in the indicated coordinate systems.

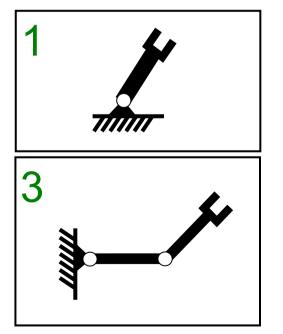


Twist and wrench n-systems

An **n-system of twists** is the space of twists spanned by the linear combinations of n **independent** twists

An **n-system of wrenches** is the space of wrenches spanned by the linear combinations of n **independent** wrenches

Examples:



1-system of twists of freedom2-system of wrenches of constraint

2-system of twists of freedom1-system of wrenches of constraint

Historical note

- Several forms of the principle of virtual power where stated by Johann Bernouilli (1667-1748) and his son Daniel Bernouilli (1700-1782).
- The principle was later on generalised to take dynamic effects into account, giving rise to the so-called D'Alembert principle, which forms the basis of Lagrangian mechanics.

Johann Bernouilli

Daniel Bernouilli