
Exercises Module 4

Duality
Problems

In what follows, English Engineering units are assumed throughout.

Problem 1

1. Compute the Plücker coordinates and the mutual moment of the lines $i in the XY -plane and $
perpendicular to the plane passing through point (1, 1) in the following coordinate systems (see
Fig. 1).

(a) The original coordinate system OXY .

(b) A parallel coordinate system where O is located first at (1, 0) and afterwards at (0,−1).

(c) A coordinate system O′X ′Y ′ where the origin is located at (1, 2) and the system of coordinates
has been rotated 60◦ anticlockwise.
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Figure 1: Mutual moments of two lines.

2. Consider a wheel that is rotating about point O, with angular speed ω (Fig. 2):

(a) Suppose first that the wheel is rotating anticlockwise at ω = 10 rad/s, and experiences an
impulsive force of 5 lbf along the line shown in the figure. Compute the instant power gained
by the system. Repeat the calculation for a clockwise rotation of ω = 10 rad/s, and comment
on your results.

(b) The wrenches of constraint of the wheel form a two-dimensional vector space (also known as a
“two-system”) that can be characterized by the base forces with magnitudes f1 and f2 acting
along the X and Y axes, as shown in the figure. Show that the impulsive force cannot be
expressed as a linear combination of the base forces.
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Figure 2: A rotating wheel and forces acting on it.
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Figure 3: A 2R serial manipulator.

3. Compute the twist of the end effector of the 2R manipulator in Fig. 3 when ω1 = 2 rad/s, ω2 =
8 rad/s; ω1 = −2 rad/s, ω2 = −8 rad/s; ω1 = −2 rad/s, ω2 = 8 rad/s; and ω1 = −8 rad/s,
ω2 = 2 rad/s. Show that, in general, the instant center must lie on the X axis and that any force
along this axis is reciprocal to the end-effector twist.

4. Determine bases for the vector spaces of twists of freedom (T) and wrenches of constraint (W) for
each one of the following bodies, relative to the indicated XY coordinate system in each case. Show
that the bases you have chosen satisfy reciprocity.

(a) The end effector of a 3R manipulator that maintains a point contact at P such that it is
constrained to move along the X axis, as illustrated in Fig. 4.

O X

Y

P

Figure 4: A 3R serial manipulator maintaining point contact at P .
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(b) A beam that maintains contact with the X and Y axes at points A and B, as shown in Fig. 5(a).

(c) A beam that maintains contact at points A, B and D, as shown in Fig. 5(b).
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(a) (b)

Figure 5: A beam maintaing (a) two and (b) three contact points.
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Problem 2

1. Fig. 6 illustrates two positions of a 3R manipulator. All lengths are in feet.

(a) A force of 5 lbf acts on the end effector as shown in the figure. Compute the corresponding
resultant torques for the two positions and the equilibrating joint torques.

(b) Assume that the end effector is in contact with some object and is in equilibrium with equili-
brating joint torques τ1 = 2, τ2 = 3, and τ3 = 4 lbf·ft. Compute the external forces that act
upon the end effector for the two positions.

O

X

Y

a12 = 2 ft

a23 = 1.5 ft

a34 = 1.2 ft

θ1

45.58◦

45.58◦

(x2, y2)

(x3, y3)(0, 2.5)

5 lbf 5 lbf

Figure 6: 3R serial manipulator.

2. The end effector of the 3R manipulator is instantaneously rotating about point C (0, 2), as illustrated
in Fig. 7. The velocity of point P is vP = 1 in/s. Determine the twist of the end effector relative to
the XY coordinate system. Compute the corresponding values for the joint speeds ω1, ω2, and ω3

from the twist equation

T̂ = ω1 · Ŝ1 + ω2 · Ŝ2 + ω3 · Ŝ3

by forming reciprocal products with the coordinates of lines $23, $31, and $12, respectively. Compare
your results with part 1 of Problem 1 of Module 3 (Instantaneous kinematics).

3. We require that the end effector of the RPR manipulator in Fig. 8 rotates on an instant center with
coordinates (2, 1) with a clockwise angular speed of 10 rad/s. Compute ω1, v2, and ω3 by forming
in turn reciprocal products of the twist equation with three lines; each line is reciprocal to pairs of
joint lines, as shown in Fig. 8.

4. It has been shown that for a 3R manipulator, det J = a12ŝ
T
12Ŝ3, which is twice the area of the triangle

123 shown in Fig. 9.

(a) Deduce that det J = a12a23 sin θ2.

(b) Deduce that the maximum value for det J is det Jmax = a12a23 and that λ = det J
det Jmax

= sin θ2.

(c) Sketch the graph λ = sin θ2. for 0 ≤ θ2 ≤ 360◦. Draw the configurations of the manipulator for
λ = 0 and λ = ±1.
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Figure 7: A 3R serial manipulator.

O X

Y

$1

$3

$12

$23

$31

ω1
v2

ω3

(2.5, 0)

(2.5, 1.5)

Figure 8: A RPR serial manipulator.
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Figure 9: Triangle of lines of a 3R manipulator.
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(Note: λ is independent of the manipulator dimensions.)

Problem 3

1. Recall the two 3RPR manipulators of Fig. 10, studied in Problem 3 of Module 2 “Statics”. Recall
that in that problem we computed the wrench ŵ associated to each one of the forces indicated
in Fig. 10, together with the unitized coordinates ŝ1, ŝ2, and ŝ3 of the manipulators’ legs. Solve
questions 1b, 1c, 2b, and 2c of that problem, by isolating f1, f2, and f3 from the force equation

ŵ = f1 · ŝ1 + f2 · ŝ2 + f3 · ŝ3

by forming reciprocal products.

(a) (b)

XX

YY

30◦

30◦

10 lbf10 lbf

10′′

5 lbf

f1
f2 f3

60◦

B1, B2B1, B2
B3B3

C1
C1 C2, C3

C2, C3

1′′

4′′

45◦45◦
45◦

Figure 10: Two 3RPR manipulators.

2. The upper platform of the robotic mechanism shown in Fig. 11 is in contact equilibrium with another
body. Anticlockwise joint torques of 1 lbf inch are applied first at the three base joints, then at the
three intermediate joints, and finally at the three upper platform joints. Compute the corresponding
external forces acting upon the upper platform for each of these three cases. Assume that the point
(1)1 is the origin of the coordinate system.

60◦

80◦
120◦

120◦
135◦

0.893′′

1′′

1.7′′

2′′

2′′

2′′
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2.5′′

(1)1 (1)2 (1)3

(2)1 (2)2

(2)3

(3)1

(3)2
(3)3

upper platform

Figure 11: A 3RRR parallel manipulator.

Problem 4
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Figure 12: A 2R serial manipulator. While v is the velocity of point P , f is the force applied on P by the
environment.

The goal of this exercise is to check that all the phenomena mentioned in the last table of “The duality
diagram of a serial manipulator” arise in practice. To easily visualize the phenomena we consider the
simple 2R robot of Fig. 12, whose link lengths AB and BP are equal to one. Since it is a 2-revolute
manipulator we speak of end-effector velocities v and forces f , instead of twists T̂ and wrenches ŵ, and
use the kinetostatic relationships

v = J rγ τ = J r
Tf

given in the bottom note, where J r is the so-called reduced jacobian. Using J r, determine the singular
configurations of the robot and

(a) Find the internal velocities γ.

(b) Find the forces of constraint f .

(c) Prove that a same velocity v can be produced by infinitely-many joint angular velocities.

(d) Prove that a same joint torque τ can be equilibrated by infinitely-many end-effector forces f .

(e) Find the impossible end-effector velocities.

(f) Find the non-equilibrable joint torques.

(g) Select an impossible end-effector velocity v and show that it requires very high joint speeds γ as we
approach the singularity.

(h) Select a non-equilibrable joint torque τ and show that it requires very large end-effector forces f as
we approach the singularity.

Note: To obtain the relationships v = J rγ and τ = J r
Tf we place the origin O of the coordinate system

at point P of the end effector. In this way, the end-effector twist will be T̂ = [vx, vy, ω]
T, where vx and vy
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are the X and Y components of the velocity v of point P , and ω is the angular velocity of the effector.
The components of A and B in the coordinate system PXY are:

xA = −(cos θ1 + cos θ2) xB = − cos θ2

yA = −(sin θ1 + sin θ2) yB = − sin θ2

and thus the standard relation T̂ = Jγ given in the course is





vx
vy
ω



 =





−(sin θ1 + sin θ2) − sin θ2
cos θ1 + cos θ2 cos θ2

1 1





[

ω1

ω2

]

(1)

However, since rank(J) = 2 at most, the robot cannot generate all possible twists T̂ ∈ R
3. Thus, it is

better to view the 2R robot as a system that allows to control v = [vx, vy]
T through commanding [ω1, ω2]

T.
Therefore, the relevant part of Eq. 1 is:

v =

[

vx
vy

]

=

[

−(sin θ1 + sin θ2) − sin θ2
cos θ1 + cos θ2 cos θ2

] [

ω1

ω2

]

= J rγ (2)

where J r is called the reduced Jacobian of the manipulator.
From a statics viewpoint, the 2R robot should also be viewed as a system that allows to equilibrate

the force f = [fx, fy]
T applied on P , by commanding the joint torques τ = [τ1, τ2]

T. The relation between
τ and f is given by τ = JTŵ, where JT is the standard static Jacobian explained in the course. In the
coordinate system of the figure, the relation is

[

τ1
τ2

]

=

[

−(sin θ1 + sin θ2) cos θ1 + cos θ2 1
− sin θ2 cos θ2 1

]





fx
fy
0



 (3)

which is equivalent to:

τ =

[

τ1
τ2

]

=

[

−(sin θ1 + sin θ2) cos θ1 + cos θ2
− sin θ2 cos θ2

] [

fx
fy

]

= J r
Tf (4)

Note that the singularity condition of the 2R robot is thus detJ r = detJ r
T = 0.
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Problem 5

Fig. 13 shows a CNC drilling machine based on a parallel 3-PRR robot. The prismatic joints are actuated
and the revolute joints are passive.

1. Using the coordinate system OXY , compute the A and B matrices of the velocity equation

A T̂ = B γ, (5)

where T̂ = [vox, voy, ω]
T is the end-effector twist, and γ = [l̇1, l̇2, l̇3]

T is the vector of prismatic joint
velocities.

2. In the shown configuration the drill bit is in contact with a planar surface. This surface applies
a reaction wrench ŵ on the drill. The manipulator is equipped with load sensors providing the

60◦

60◦120◦

4 c
m

4 c
m

12
cm

l1

l2

l3

O

X
Y

Figure 13: Left: A CNC drilling machine based on a fully parallel 3-PRR robot. Right-top: A spatial
version of this machine build at Universidad Pública de Navarra: http://www.imac.unavarra.es/ cnc/.
Right-bottom: Detail of a drill mounted on a similar platform.
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magnitudes of the resultant forces on the prismatic joints f1, f2, and f3. Determine the value of ŵ
assuming that the current sensor readings are

τ =





f1
f2
f3



 =





0.627081
−0.102857
1.257790



 N.

Verify that the action line of ŵ meets the tip point of the drill bit.

3. We want to drill a hole orthogonal to the surface. The contact bewteen the drill bit and the surface is
punctual and frictionless. Use the geometric information encoded in ŵ to determine the infinitesimal
displacement δD̂ that places the drill bit orthogonally to the surface.

4. By multiplying Eq. (5) by a small time increment δt, we obtain the relationship between the small
displacements δD̂ of the end effector, and the small displacements δl = [δl1, δl3, δl3]

T of the actuators.
Compute the displacements δl required to perform the small correction δD̂ obtained in point 3.

5. Suppose that we rotate the prismatic joint axes 90◦, as shown in Fig. 14, keeping the rest of the
configuration as in Fig. 13. Show that the drill loses dexterity in this new design. In particular, show
that the robot will be unable to perform the small correction δD̂ obtained in point 3.

O

X
Y

Figure 14: A 3-PRR CNC drilling machine with horizontal prismatic joints.
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Short questions

Short question 1

Consider the following RP manipulator, in the drawn configuration, where joint R rotates with angular
velocity ω, and joint P translates with linear velocity v in the direction of Y.

R

P

X

Y

v

ω

Which one of the following statements is false?

1. The twists of freedom of the end effector have the form [0, v;ω]T .

2. The wrenches of constraint of the end effector have the form [F, 0; 0]T .

3. The twists of freedom of the end effector form a vector space of dimension two.

4. The wrenches of constraint of the end effector form a vector space of dimension one.

5. The end effector can support any couple without having to actuate the joints.
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Short question 2

Remember that the static and kinematic behaviour of a serial manipulator is given by the relations
τ = JT · ŵ, and T̂ = J · γ, respectively. If the manipulator is in a singularity, which one of the following
statements is false?

1. There are non-zero joint velocities γ that produce a zero twist T̂ at the end effector.

2. Some twists T̂ can be produced by many joint velocities γ.

3. As we are approaching a singularity, there are small twists T̂ that require very large joint velocities.

4. At a singularity, the end effector can support certain wrenches ŵ, without actuating the joints.

5. There are non-zero joint torques τ that produce a zero resultant wrench ŵ at the end effector.

Short question 3

Consider the following four configurations of the same RPR manipulator. All of the links are one meter
long.

45◦

90◦90◦

90◦

90◦

135◦

(0, 0)

(0, 0)

(0, 0)(0, 0)

(1, 1)

(1,−1)

(−1, 1)
(−1, 1)

(1) (2) (3) (4)

If di is the value of det(J) for configuration (i), it holds that

1. d1 > d2 > d3 > d4.

2. d4 > d3 > d2 > d1.

3. d1 = d2 = d3 = d4.

4. d1 = d2, and d3 = −d4.

5. No one of the previous answers is right.

Short question 4

Consider a 3R serial robot. If J is the Jacobian that transforms joint velocities γ into end effector twists
T̂ , which one of the following statements is true when the robot moves from a non-singular to a singular
configuration?

1. Dim(Ker J) increases, Dim(Im J) decreases, Dim(Ker TJ) increases, Dim (Im TJ) decreases.

2. Dim(Ker J) decreases, Dim(Im J) increases, Dim(Ker TJ) decreases, Dim (Im TJ) increases.

3. Dim(Ker J) increases, Dim(Im J) increases, Dim(Ker TJ) decreases, Dim (Im TJ) decreases.

4. Dim(Ker J) decreases, Dim(Im J) decreases, Dim(Ker TJ) increases, Dim (Im TJ) increases.

5. The four spaces Ker J , Im J , Ker TJ , and Im TJ decrease their dimension.
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Short question 5

The beam maintains contact with the wall and the ground at points A and B shown in the figure (a = 3m
y b = 2m), and is falling towards the ground, with angular velocity ω = 1 rad/s. It can be assumed that
there is no friction at the contacts.

O X

Y

A

B(b, 0)

(0, a)

What happens if we apply with a robot one of these two wrenches on the beam?

ŵ1 = [−2 N,−3 N ; 0 Nm]T

ŵ2 = [−1 N, 0 N ; 0 Nm]T

1. We can not determine what will happen, as the application points of the forces are unknown.

2. Applying ŵ2 we tend to stop the fall.

3. Applying ŵ1 we tend to accelerate the fall.

4. Applying any one of the two forces we tend to stop the fall.

5. No one of the previous answers is right.

Short question 6

Consider the following two configurations of a 3R manipulator, with the indicated coordinates for the
joints (anywhere SI units are used).

(C1) (C2)

A1 = (0, 0)

A2 = (0, 1)

A3 = (1, 1)

A1 = (0, 0)

A2 = (0, 1)

A3 = (0, 2)

Which one of the following statements is false?

1. At configuration C1, the space of twists of freedom of the end effector has dimension 3, and the space
of wrenches of constraint has dimension 0.
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2. At configuration C2, the space of twists of freedom of the end effector has dimension 2, and the space
of wrenches of constraint has dimension 1.

3. At configuration C2, the manipulator can support structurally the wrench ŵ = T[−1, 0, 2] applied at
the end effector.

4. At configuration C1, a wrench ŵ = T[−1, 0, 1], applied at the end effector, produces a vector of
resultant couples at the joints of ~τ = T[1, 0, 0].

5. At configuration C2, there are joint velocities that produce a zero twist at the end effector.

Short question 7

Consider the following PR manipulator:

X

Y

v

ω

A = (1, 1)

l

(Coordinates in meters)

Be T and W, respectively, the space of twists of freedom and the space of wrenches of constraint of the
end effector, given in the XY coordinate system displayed in the figure. Indicate which of the following
statements are true:

A1: In “axis” coordinates,

T = 〈





1
0
0



 ,





1
−1
1



〉

A2: In “ray” coordinates,

W = 〈





0
−2
−2



〉

A3: Any force applied at the end effector actuating on line l is structurally supportable.

A4: If v = 1 m/s, and ω = 2 rad/s, then the instant center of rotation of the end effector will be at point
(1, 3

2
).

A5: For every ŵ ∈ W and every T̂ ∈ T, it will be Tŵ · T̂ = 0.

The correct statements are:

1. All of the statements.

2. None of the statements.

3. Only A1, A4, and A5.

4. Only A2 and A4.

5. Only A1, A3, A4, and A5.
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Short question 8

Consider the two serial robots RPP in the following figure:

XX

YY

(1) (2)

θθ

θ

90◦

Mark the false statement:

1. Robot 2 can support structurally a wrench ŵ = T[− cos θ,− sin θ, 0] applied on the effector (that is,
without having to actuate the joints).

2. The determinant of the Jacobian of robot 1 has always an opposite sign to that of robot 2.

3. Robot 1 can never be in a singular configuration.

4. Robot 2 can never be in a singular configuration.

5. Neither robot 1 nor robot 2 can have internal velocities.
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