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Objective of this Module

A workpiece held by the gripper of a robot is in contact with the environment.
This module presents hybrid control techniques to simultaneously control the
position of the workpiece relative to the environment, and the force it exerts
against such environment.

5.1 Introduction

Consider a robot that holds a workpiece with its gripper or end effector.
Hybrid control techniques allow to simultaneously control:

• The displacements of the workpiece with respect to the environment.

• The forces that the workpiece applies to the environment.

To understand when hybrid control techniques are applicable, it is useful
to start considering the extreme situations of complete restraint and com-
plete freedom illustrated in Fig. 5.1. In Fig. 5.1(a), the workpiece is rigidly
connected to the environment E, and it is possible to control any force that
the robot may exert on E, as E will always provide the necessary reaction to
guarantee equilibrium. However, the manipulator will be unable to control
the displacements of the workpiece, because its movements are fully con-
strained. In Fig. 5.1(b), the workpiece is free to move in open space, and
hence it is possible to control its three degrees of freedom. However, the
manipulator cannot apply any wrench to the workpiece, as there is no envi-
ronment available that can provide the necessary reaction. Whereas in the
first situation force control is the strategy to follow, position control is the
option of choice in the second case. The correcting actions to be taken in
each case would be computed as follows:
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Figure 5.1: Two extreme scenarios: (a) The workpiece is anchored to the
environment and there is complete restraint. (b) The workpiece is held by
the robot in free space, and there is complete freedom.

Complete restraint Let us assume that in the situation of Fig. 5.1(a),
the robot is in static equilibrium, and that the workpiece currently applies a
wrench ŵcur to the environment. The equilibrant torques that produce this
wrench are

τ cur = JTŵcur. (5.1)

Thanks to this relation, and to the motor torque sensors that measure τ cur,
we can compute ŵcur and thus know the force error with respect to the desired
wrench ŵdes:

δŵ = ŵdes − ŵcur.

The equilibrant torques that would be required to provide ŵdes are

τ des = JTŵdes, (5.2)

and substracting Eq. (5.2) from Eq. (5.1) we find that the small variation δτ
required to correct the force error δŵ is

δτ = τ des − τ cur = JTδŵ.

Complete freedom Analogously, if in Fig. 5.1(b) we know that the posi-
tion error is δD̂, where δD̂ is an infinitesimal displacement of the end effector
(Appendix A), then we can compute the small joint angle variation δθ that
corrects this error as follows

δθ = J−1δD̂, (5.3)
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Workpiece

Contact

Environment

Figure 5.2: An intermediate scenario with a partial constraint on the motions
of the workpiece.

where δθ = [δθ1, δθ2, δθ3]
T. Note that Eq. (5.3) is obtained by multiplying

γ = J−1T̂ by a small time increment (Appendix B).
Between the previous extreme scenarios, we may find situations in which

the environment only partially constrains the motions of the workpiece, as
in Fig. 5.2. In these situations one needs to simultaneously control:

• The force that the workpiece exerts on the environment.

• The position of the workpiece with respect to the environment.

This occurs for example in robotized welding. The robot has to lay a welding
bead along a path, while maintaining the pressure against the welded part
within acceptable limits, and controlling the position at every instant. The
primary question that arises is: what variations of force and position can
we make, and thus control, while maintaining the workpiece-environment
contact?

5.2 Controllable position and force variations

Let us assume that in Fig. 5.2 the contact between the workpiece and the
ground is punctual and frictionless. This means that the workpiece-ground
contact can be modelled as a PR chain, as displayed in Fig. 5.3.

Note that in order to maintain the contact, it only makes sense to com-
mand workpiece velocities that correspond to the twists of freedom of the
workpiece in the equivalent PR chain. Thus, the only contact-preserving dis-
placements δD̂ of the workpiece are those related to these twists of freedom.
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Figure 5.3: Workpiece-ground contact (a) and its kinematic model (b).
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Figure 5.4: Controllable (a) and impossible (b) displacements.

The space T of twists of freedom of the workpiece is, using the coordinate
system displayed in Fig. 5.3,

T = 〈





1
0
0



 ,





0
0
1



〉.

Thus, a displacement δD̂ of the workpiece relative to the ground will be
controllable if δD̂ ∈ T, i.e., if

δD̂ =





1 0
0 0
0 1





[
ε1
ε2

]

for some [ε1, ε2]
T ∈ R

2. This is illustrated in Fig. 5.4.
In a similar way, note that the workpiece may only exert against the

ground those forces that are structurally supportable by the workpiece, seen
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Figure 5.5: (a) Controllable force: the environment provides the necessary
reaction to control it. (b) Non-controllable force: the environment cannot
provide the necessary reaction.

as a component of the equivalent PR mechanism (Fig. 5.5). These forces are
precisely the wrenches of constraint of the workpiece in the PR chain, i.e.
the wrenches of the space

W = 〈





0
1
0



〉

whose action line is $a. Thus, we will be able to command force variations
δŵ such that δŵ ∈ W, i.e., such that

δŵ =





0
1
0



µ

for some µ ∈ R. Table 1 summarizes the contact-preserving displacements
δD̂ and the contact-compliant force increments δŵ that it makes sense to
control under this and other contact models.

One might think that to control the position of the workpiece and the
force that it exerts against the environment it is only necessary to translate
the position error and the force error into correcting variations of the joint
positions and torques, according to δŵ = ŵdes − ŵcur and δθ = J−1δD̂, but
this option is not possible as a motor cannot be controlled simultaneously
in force and position. To control the force and position of the workpiece it
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Contact model
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contact

Point contact with
friction

Frictionless planar
contact

Representation
B

E

B

E

B

E

Kinematic
model

B

E X

Y

B

E X

Y

B

E X

Y

Controllable
displacements
δD̂ of B relative
to E

〈





1
0
0



 ,





0
0
1



〉 〈





0
0
1



〉 〈





1
0
0



〉

Controllable
force variations
δŵ of B on E

〈





0
1
0



〉 〈





0
1
0



 ,





1
0
0



〉 〈





0
1
0



 ,





0
0
1



〉

Table 1: Controllable displacements and force variations under different con-
tact models, in the indicated coordinate systems.

is necessary to adopt a control strategy that reduces the problem to provide
only position commands, or only force commands, to the robot actuators.
These are the so-called hybrid control strategies.

We note that the term “Hybrid Control” is used in other contexts as well,
to name mixed analogic-digital control schemes. In our context, the meaning
of “hybrid” is pretty different, and solely refers to the need of simultaneously
controlling forces and positions.

In the remainder of this module we will derive a hybrid control strategy
that reduces the correcting actions to position commands of the robot joints
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Figure 5.6: A serial 3R robot equipped with a force sensor in its wrist. This
sensor has the structure of a 3-RPR parallel mechanism, where the linear
actuators have been replaced by a linear spring, whose force can be measured.

exclusively. For concreteness, we will study the strategy in the particular
system shown in Fig. 5.6, in which the gripper is pressing the workpiece
against the ground. The goal is to control the force that the workpiece
exerts on the ground, and also the relative position of the workpiece with
respect to such ground. To measure the workpiece-ground contact force, we
mount a 3-RPR spring in the wrist of the 3R robot, equipped with sensors
that provide the lengths li of the individual springs. Moreover, the position
of the workpiece is measured using a camera that provides visual feedback of
the scene. From the force feedback provided by the sensorized 3-RPR spring,
and from the position feedback of the workpiece given by the camera, we will
design a control strategy that translates the force and position errors of the
workpiece into position commands that correct these errors, for the 3R robot
joints. To develop such a strategy it is first necessary to find the relationship
between the force applied to a 3-RPR spring, and the linear displacements
of its three legs.
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5.3 Rigidity analysis of 3-RPR springs

Consider the 3-RPR mechanism in Fig. 5.7 where the P joints are not ac-
tuated, but coupled with springs of elastic constants k1, k2, and k3. Asume
that the platform is in equilibrium under the action of an external force f ,
of wrench ŵ and magnitude f , on a line $. Then we have:

ŵ = f1ŝ1 + f2ŝ2 + f3ŝ3, (5.4)

where each fi is the magnitude of the resultant force on leg “i” and ŝi is the
unit coordinate vector of leg “i”.

A small change δŵ in the applied force will cause a small displacement
δD̂ of the platform with respect to the ground. The quantities δŵ and δD̂
are related by a 3× 3 matrix K, called the rigidity matrix.

platform

C1

C2

C3

B1

B2

B3

$1 $2

$3

θ1 θ2 θ3

$

f

k1

k2
k3

Figure 5.7: A 3-RPR spring.
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To find K we will use the following notation:

• li = length of leg i.

• l0i = length of leg i in rest position (i.e., when the spring is unloaded).

• ki = elastic constant of the spring of leg i.

• ŝi = normalized coordinates of the action line of leg i, with the unit
direction vector pointing from the base towards the platform.

We will also assume that the resultant force acting on the spring of leg i
follows the usual relation

fi = ki(li − l0i). (5.5)

Substituting Eq. (5.5) into Eq. (5.4) we obtain

ŵ = k1(l1 − l01)ŝ1 + k2(l2 − l02)ŝ2 + k3(l3 − l03)ŝ3 (5.6)

To determine the relation between δŵ and δD̂ we now differentiate the
previous Eq. (5.6) 1. We must take into account that the quantities that
change as a function of time are li and ŝi, whereas l0i and ki are fixed pa-
rameters. Furthermore, we assume that the coordinates of ŝi are expressed
as a function of the θi angles (Figure 5.7) and that θi varies as a function of
time:

δŵ = k1δl1ŝ1 + k1(l1 − l01)
∂ŝ1
∂θ1

δθ1

+ k2δl2ŝ2 + k2(l2 − l02)
∂ŝ2
∂θ2

δθ2

+ k3δl3ŝ3 + k3(l3 − l03)
∂ŝ3
∂θ3

δθ3

By noting that ∂ŝi
∂θi

are the coordinates of a line ŝiB orthogonal to ŝi through

points Bi (Appendix D) and defining ρi =
l0i
li
, we can write

δŵ = ŝ1k1δl1 + ŝ2k2δl2 + ŝ3k3δl3+

+ ŝ1Bk1(1− ρ1)l1δθ1

+ ŝ2Bk2(1− ρ2)l2δθ2

+ ŝ3Bk3(1− ρ3)l3δθ3,

1A reminder of the process of differentiation is given in Appendix C.
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Figure 5.8: Significant lines in the 3-RPR spring.

which can be expressed in matrix form as:

δŵ =
[
ŝ1 ŝ2 ŝ3

]
k





δl1
δl2
δl3



+
[
ŝ1B ŝ2B ŝ3B

]
k(1− ρ)





l1δθ1
l2δθ2
l3δθ3



 , (5.7)

where

k =





k1 0 0
0 k2 0
0 0 k3



 , k(1− ρ) =





k1(1− ρ1) 0 0
0 k2(1− ρ2) 0
0 0 k3(1− ρ3)



 .

Now note from Appendix B that




δl1
δl2
δl3



 = jTδD̂,





l1δθ1
l2δθ2
l3δθ3



 = CTδD̂,

where
C =

[
ŝ1C ŝ2C ŝ3C

]

is the matrix of the lines $1C , $2C , $3C orthogonal to $1, $2, $3 through the
points C1, C2, and C3 (Fig. 5.8). By substitution of these expressions in
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Eq. (5.7), and using the notation

j =
[
ŝ1 ŝ2 ŝ3

]
, B =

[
ŝ1B ŝ2B ŝ3B

]
,

we arrive at
δŵ = {j k jT +B k (1− ρ)CT}

︸ ︷︷ ︸

K

δD̂,

This equation can be written as

δŵ = K δD̂, (5.8)

where K is the rigidity matrix anticipated at the beginning.
Eq. (5.8) can be interpreted in the following way. If the platform is in

equilibrium under the effect of an external wrench ŵ, applied by a robot for
example, and then we move the platform slightly by performing an infinites-
imal displacement δD̂, the new force that the robot will have to apply to
keep the platform in equilibrium is (Fig. 5.9):

ŵ + δŵ = ŵ +K δD̂.

Alternatively, we can also read Eq. (5.8) as follows: if the environment (the
robot) varies the applied force from ŵ to ŵ + δŵ, then, to maintain equilib-
rium, the platform has to be displaced an amount δD̂ with respect to the
ground. The reasoning is similar to the one on a linear spring (Fig. 5.10).

ŵ ŵ + δŵ

δD̂

platform

3R robot

ground

Figure 5.9: The meaning of δŵ. δD̂ is the displacement of the platform
relative to the ground.
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xx0 x0

F = k(x− x0)

Figure 5.10: To maintain the equilibrium of forces when the spring is dis-
placed from its rest position x0 to a new position x, we need to apply an
external force F = k(x−x0). Reversely, to compensate an externally applied
force F , the spring has to deform until position x is reached.

O X

Y

X ′

Y ′

O′ = O′′

X ′′

Y ′′

φ

a

b

Figure 5.11: Translation and rotation of the coordinate system.

5.4 The rigidity matrix in a new coordinate

system

Note that j, B and C, and hence K, are not invariant under changes of
coordinate system. How does K change when another coordinate system is
chosen? For example, assume thatK is expressed in coordinate system OXY
and we want to express it in the new coordinate system O′′X ′′Y ′′ shown in
Fig. 5.11. On the one hand, we know from Module “Statics” that

δŵ = e δŵ′′, (5.9)
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where δŵ and δŵ′′ are the force increments expressed in coordinate systems
OXY and O′′X ′′Y ′′, respectively,

e =





1 0 0
0 1 0
−b a 1









c −s 0
s c 0
0 0 1



 ,

and c and s stand for cosφ and sinφ. On the other hand, we know from
Module “Kinematics” that

δD̂ = E δD̂′′, (5.10)

where δD̂ and δD̂′′ are the infinitesimal displacements expressed in the OXY
and O′′X ′′Y ′′ coordinate systems, and

E =





1 0 b
0 1 −a
0 0 1









c −s 0
s c 0
0 0 1



 .

Therefore, we can substitute Eqs. (5.9) and (5.10) in (5.8), obtaining:

e δŵ′′ = KE δD̂′′.

If we multiply by e−1 we get

δŵ′′ = e−1 KE δD̂′′,

and since e−1 = ET we finally obtain

δŵ′′ = ET KE δD̂′′.

Thus, the new rigidity matrix K′′ relates to the old one through

K′′ = ET KE.

5.5 A hybrid control strategy

We now have the elements to develop the desired hybrid control strategy.
Fig. 5.12 recalls the whole system under study. For concreteness we assume
that the contact at P is frictionless and punctual, but other contact models
could also be assumed (Table 1). Relative to ground, the workpiece is able to
rotate and translate while keeping the shown contact constraint. The space
of wrenches of constraint of the workpiece is formed by the vertical forces
with action line $a through point P . We first explain the hybrid control
strategy in a simple limit case (Section 5.5.1), then describe it for frictionless
point contacts (Section 5.5.2), and finally see how it extends to arbitrary
contact models or robots (Section 5.5.3).
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5.5.1 Control with an anchored workpiece

Consider the situation in Fig. 5.13, in which the workpiece is initially an-
chored to ground. Clearly, any force that the ground exerts on the workpiece
can be controlled. The position of the workpiece cannot be changed, and
thus it makes no sense to control it. Note that any displacement δD̂F of the
wrist base with respect to the workpiece (caused by the motion of the 3R
robot, in this case) will cause the following variation of the force that the
ground applies on the workpiece:

δŵ = −K δD̂F . (5.11)

Here K is the rigidity matrix of the 3-RPR spring, which is a particular case
of the one shown in Fig. 5.7. The negative sign in this equation is due to the
fact that δD̂F has now been defined as the displacement of the wrist base
B12B3 relative to the workpiece C1C23, whereas in Eq. (5.8) it was defined
considering the displacement of C1C2C3 with respect to B1B2B3.

From Eq. (5.11) we see that if we aim at causing a variation of the force
of the ground on the workpiece of δŵ, the necessary correcting displacement
of the wrist base with respect to the ground will be

δD̂F = −K−1δŵ

3R robot

workpiece C1

C23

B12

B3

P

$a

δψ1

δψ2

δψ3

Figure 5.12: A serial 3R robot with a compliant 3-RPR wrist.
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workpiece

ground

C1

C23

B12

B3wrist base

Figure 5.13: Simple case: the workpiece is anchored to the ground.

and the required displacements at the 3R robot joints will be:

δψ =





δψ1

δψ2

δψ3



 = J−1δD̂F .

5.5.2 Control under frictionless point contact

In the general case both the force that the workpiece exerts on the ground and
also its position can be controlled. To this end, note that any displacement
δD̂G of the wrist base with respect to the ground can be viewed as the
composition of the displacement δD̂F of the wrist base with respect to the
workpiece, maintaining the workpiece fixed, plus a displacement δD̂E of the
whole set (workpiece and wrist) with respect to the ground, maintaining the
spring lengths fixed (Fig. 5.14):

δD̂G = δD̂F + δD̂E (5.12)

These displacements have the following effects:

• The displacement δD̂F causes a change in the reaction force of the
ground against the workpiece in an amount of δŵa = −K δD̂F , and
thus one can see this displacement as correcting the reaction of the
ground. It is important to notice that this displacement will not cause
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ŵ ŵ + δŵŵ + δŵ

δD̂F δD̂E

δD̂G

Figure 5.14: Decomposition of δD̂G into the force- and position-correcting
displacements δD̂F and δD̂E.

the workpiece to move, because the change in the reaction force δŵa

acts on the line $a and does not generate virtual power under any twist
of freedom of the workpiece relative to ground. Therefore, it cannot
cause a position error of the workpiece.

• The displacement δD̂E changes the pose of the whole set with respect
to the ground. Thus, one can view δD̂E as a correcting displacement
of the position of the workpiece. It is important to notice that since
the relative position between the workpiece and the wrist base does not
change under δD̂E, this displacement cannot cause a force error. The
reaction force of the ground will remain constant while performing this
displacement.

Therefore, to simultaneously attain

• a force variation δŵa (of the ground on the workpiece)

• a position change δD̂E (of the workpiece relative to ground)

the following displacement of the wrist base relative to ground has to be
performed:

δD̂G = δD̂F + δD̂E = −K−1δŵa + δD̂E (5.13)

17



Vector equations ♯ equations ♯ variables

δD̂G = δD̂F + δD̂E 3 6

δD̂F = −K−1δŵa 3 3

δŵa = W µ 3 1

δD̂E = T ε 3 2

Total 12 12

Table 2: The system of equations that determines δD̂F and δD̂E (left column)
together with its number of scalar equations and variables (middle and right
columns). In the right column, only the new unknowns not appearing in the
previous equations are counted.

To this end, it is only necessary to command the following angular increments
δψ at the joints of the 3R robot:

δψ =





δψ1

δψ2

δψ3



 = J−1δD̂G. (5.14)

We can guarantee that the desired displacement δD̂G will always decom-
pose into the required displacements δD̂F and δD̂E because the decomposi-
tion δD̂G = δD̂F + δD̂E is, for a given δD̂G, unique. Note that the values
δD̂F and δD̂E verify the system of equations in Table 2, where the columns
of W constitute a basis of the space of wrenches of constraint, the columns of
T contain a basis of the space of twists of freedom (of the workpiece relative
to the ground), µ ∈ R is a scalar, and ε is a vector of R2. The system has
as many equations as variables, and, thus, in general it will have a unique
solution.

5.5.3 Control under arbitrary contact models or robots

Note that, the methodology described in the previous section is equally
applicable under arbitrary contact models, in particular those of Table 1.
Eq. (5.12) always applies irrespectively of the contact model assumed, and
the correcting displacement δD̂G and associated joint motions δψ are always
computed using Eqs. (5.13) and (5.14). We only need to check initially that
the force variation δŵa and position change δD̂E demanded lie within the
spaces W and T of the contact model assumed.
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Finally, we have assumed that the compliant wrist is connected to a serial
robot, but we could connect it to a different robot as well, e.g., a fully parallel
robot. We would equally compute the correcting displacement δD̂G using
Eq. (5.13), but we would then replace Eq. (5.14) by an analogous relationship
derived from the velocity equation of the considered robot.
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A Infinitesimal displacements

Consider a lamina in the plane instantaneously rotating about a vertical axis
$ through point Q = (xQ, yQ), with angular velocity ω = ωk (Fig. 5.15).
The twist of the lamina is

T̂ = ω





yQ
−xQ
1



 =





vox
voy
ω





where vo = vox i + voy j is the velocity of the origin point of the lamina.
Assume now that the lamina rotates a certain infinitesimal angle δφ during a
very small time increment δt. Then, in analogy to the twist, the infinitesimal

displacement of the lamina is defined as the vector

δD̂ = δφ





yQ
−xQ
1



 =





δrox
δroy
δφ





where δrox = δφ yQ and δroy = −δφ xQ. Note that, since ω = δφ/δt, the

displacement δD̂ can be obtained by multiplying the twist T̂ by δt.

X

Y

$

ω

Q

O

P

δφ

δr
P

v
P

Figure 5.15: Infinitesimal displacements of a lamina.
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Q

Oδφ

δro

Figure 5.16: Small rotation about Q.

Remember that the twist T̂ completely encodes the velocity vP of any
point P of the lamina (Fig. 5.15), because

vP = ω × rP + vo,

where rP =
−→
OP . In a similar way, we next prove that δD̂ completely encodes

the small displacement rP undergone by P due to the small rotation δφ,
because it will turn out that

δrP = δφ× rP + δro, (5.15)

where δφ = δφ k and δro = δrox i+ δroy j.
To obtain Eq. (5.15), we first see that δro is precisely the displacement

of the origin point of the lamina. Note that due to the rotation δφ about $,

the origin point follows a circular path centered in Q, of radius ‖
−→
QO‖, and

since δφ is quite small, we can approximate the norm of δro by the length
of the arc of circumference described (Fig. 5.16). Thus we can say that δro
is a vector with the same direction than δφ k ×

−→
QO, with norm δφ · |

−→
QO|.

Therefore, δro = δφ k ×
−→
QO, i.e.

δro =





0
0
δφ



×





−xQ
−yQ
0



 =





δφyQ
−δφxQ

0



 =





δrox
δroy
0



 .

And now the displacement δrP of an arbitrary point P of the lamina is

δrP = δφ×
−→
QP = δφ× (

−→
QO +

−→
OP ) = δφ×

−→
OP + δφ×

−→
QO

= δφ× rP + δro,

which produces the desired Eq. (5.15).
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It is important to note that since the infinitesimal displacement δD̂ is a
multiple of the twist T̂ , the vector space of twists of freedom of the lamina
coincides with the vector space of feasible infinitesimal displacements of the
lamina.

B The displacement equations

Recall that the relations that describe the kinematic behavior of serial and
parallel robots are

T̂ = J γ (Serial robot)

v = jT T̂ (Parallel robot)

Multiplying these relations by δt, analogous expressions are obtained that
relate the infinitesimal displacement of the end effector δD̂ with the infinites-
imal rotations δθ and linear displacements δl undergone by the joints:

δD̂ = J δθ (Serial robot)

δl = jT δD̂ (Parallel robot)

where

δθ =





δθ1
δθ2
δθ3



 δl =





δl1
δl2
δl3



 .

In the case of the parallel robot, we also recall from Module 4 the expres-
sion that relates the transversal velocities of Ci, i = 1, . . . , 3, (Fig. 5.17), and
the end-effector twist T̂

vt = CT T̂ , (5.16)

where the columns of C are the normalized coordinates of the lines $iC
through Ci, i = 1, . . . , 3. Again, through multiplication by δt, we can can
convert Eq. (5.16) into a displacement equation, obtaining





l1 δθ1
l2 δθ2
l3 δθ3



 = CTδD̂,

where liδθi is the infinitesimal displacement of Ci. Note that this point traces
an arc of circumference of length li δθi, with δθi being the small angle rotated
by the leg.

22



θi

li

Ci

$i
$iC

Figure 5.17: Lines at points Ci.

C Derivatives and differentiation

Let w be a function R
n → R, of n parameters pi

w = F (p1, . . . , pn). (5.17)

Eq. (5.17) defines the graph of w in the augmented space of p1, . . . , pn, w, a
hypersurface in this space, as shown schematically in Fig. 5.18. Assume that
the parameters p1, . . . , pn vary with time, according to a given trajectory

p(t) = (p1(t), . . . , pn(t)),

so that w can be viewed as w(p(t)). By applying the chain rule, the derivative
of w with respect to time is,

δw

δt
=
∂F

∂p1

δp1
δt

+ · · ·+
∂F

∂pn

δpn
δt

or, equivalently,

δw

δt
︸︷︷︸

w′

=
[
∂F
∂p1
, · · · , ∂F

∂pn

]

︸ ︷︷ ︸

J






δp1
δt
...

δpn
δt






︸ ︷︷ ︸

p′

. (5.18)
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p1

pn

w

t0

p(t)

p(t)

w(p(t))

graph of w = F (p1, . . . , pn)

parameter space p1, . . . , pn

Figure 5.18: The graph of function w.

Eq. (5.18) is called the total derivative of w. It provides the relationship
between the rate of change of p, and the rate of change of w. By multiplying
the equation by an infinitesimal time increment, we obtain the following
expression

δw =
[
∂F
∂p1
, · · · , ∂F

∂pn

]






δp1
...
δpn






︸ ︷︷ ︸

δp

, (5.19)

or, in matrix form,
δw = J δp,

which relates the small variations in the parameters, δp, with the small
variations of the function, δw.

Eq. (5.19) is called the total differential of w. The process of obtaining
Eq. (5.19) is analogous to the one followed to obtain Eq. (5.18), and it is called
differentiation. The rules are also analogous to those used when computing
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derivatives. The total differential, or simply differential, of w is, thus,

δw =
∂F

∂p1
δp1 + · · ·+

∂F

∂pn
δpn.

Eqs. (5.18) and (5.19) can be quickly generalized to functions w from R
n

to R
m:

w1 = f1(p1, . . . , pn)
...

...

wm = fm(p1, . . . , pn)

In particular, Eq. (5.18) generalizes to:






δw1

δt
...

δwm

δt




 =






∂f1
∂p1

· · · ∂f1
∂pn

...
. . .

...
∂fm
∂p1

· · · ∂fm
∂pn











δp1
δt
...

δpn
δt




 , (5.20)

and the generalization of Eq. (5.19) is obtained by multiplying Eq. (5.20) by
a small increment of time δt.

D The derivative of a line

Consider the leg of a parallel manipulator, which rotates about point Bi

anchored to ground (Fig. 5.19). The leg line $i forms an angle θi with respect
to the X axis, as shown in the figure. The unit coordinates of $i are

ŝi =





cos θi
sin θi

OBi sin(θi − α)





The unit coordinates of δŝi
δθi

are

ŝiB =
δŝi
δθi

=





− sin θi
cos θi

OBi cos(θi − α)





which are clearly the coordinates of a line $iB perpendicular to $i through
point Bi.
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Figure 5.19: The derivative of line $i.
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