
Instantaneous Kinematics

Slide companion notes

Kinematics: refers to the motion of points or
bodies. Here we deal with velocities only.

Instantaneous: Means at a precise instant of
time. The velocities that we would see at a specific
“snapshot”, or configuration, of the global robot
movement.

Goal: Our purpose is to provide geometric tools
to establish the relationship between the actuated
joint and end-effector velocities of a robot manipu-
lator.

Slide 2 Let us remind the basic concepts of Mod-
ule 2, Statics:

1. Line in the XY plane: ŝ = {L,M ;R}.

2. Normalized (or unit) coordinates of previous
line: ŝ = {c, s; p}.

3. Wrench: ŵ = {f ; co}.

4. Pure couple: ŵ = {0; co}.

5. Translation and rotation: ŵ = [e]ŵ′.

6. Statics of parallel robots: f = [j]τ .

We will discover that all of these concepts have
kinematic analogous ones. The underlying mathe-
matics is, again, Projective Geometry.

Slide 3 Consider a coordinate system OXY Z,
and a line $ parallel to its Z axis. The line intersects
the XY plane at the point (xo, yo, 0), with position
vector ro, and has a direction vector S = Nk. As
we did in Statics, we want to provide a coordinate
vector describing this line. What about this one?

ŝ = {S;So},

where So = ro × S is the moment of S about the
origin O. Why not? Observe that

So =

∣
∣
∣
∣
∣
∣

i j k
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0 0 N

∣
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∣
∣
∣

=





yoN
−xoN

0



 =





P
Q
0



 .

Clearly, the line can be described by the coordi-
nates N , P , and Q, because such values identify
one and only one line. Although both S and So

are spatial vectors, we accept a slight abuse of no-
tation and we write

ŝ = {N ;P,Q} = N{1; yo,−xo},

because N , P , and Q are the only non-null compo-
nents of S and So.

Remember that for a line in the XY plane,
(L,M) determines a free vector on the line, and
R the moment of such line about the Z axis. Now,
for a line parallel to the Z axis, only N is needed to
define a free vector on the line, and (P,Q) are mo-
ments about the X and Y axes, respectively. These
two representations are consistent, and can in fact
be written in the expanded form:

{L,M, 0; 0, 0, R} (Line in XY plane)

{0, 0, N ;P,Q, 0} (Line parallel to Z axis)

In the course appendix we can see that these are
particular cases of the way we represent general
lines in 3-space. Indeed, the homogeneous coor-
dinates for a general spatial line take the form

{L,M,N ;P,Q,R} (General spatial line).

We add that, since in general ŝ = N{1; yo,−xo},
then for a unit line segment parallel to the Z axis
it will be

ŝ = {1; yo,−xo}

because N = 1. These are the normalized (or unit)
coordinates of a vertical line. The last two coordi-
nates provide the point of intersection of the line
with the XY plane, (xo, yo).
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Slide 4 This provides the first two concepts in
our analogy table. The line parallel to the Z axis,
and the normalized coordinates of the line.

Slide 5 Left figure: An important point to re-
call from Mechanics is that the velocity field of a
rigid lamina under planar motion can always be de-
scribed as an instantaneous rotation about a point,
called the instant center of rotation. This picture
shows such a velocity field. We can always find an
instant center, even in the case of pure translation.
If we know the location of the instant center, and
the angular velocity vector ω, how do we compute
the linear velocity of any point of the lamina? This
is explained in the right figure.
Right figure: This is our lamina in 3D, rotating

about the red point—the instant center I. The
velocity of the black point, with position vector r

from I, is simply v = ω × r.
Our goal now is to find a compact way to describe

the whole velocity field. But ... there is an infinity
of velocity vectors! How can we describe them with
only a few numbers? This leads to the concept of
twist.

Slides 6-7 Left figure: It turns out that the ve-
locity field can be described by the twist1 t̂ =
{ω;vo}:

• ω encodes the angular velocity generating the
velocity field.

• vo is more tricky. It is the velocity of the
point in the lamina that instantaneously coin-

cides with the origin of the coordinate system.
The lamina is moving on a plane, which is the
ground, and the coordinate system is fixed to
that ground. The lamina can be thought of as
unlimited in all directions. At any instant of
time, a point of the lamina will pass over the
origin O with some velocity. That velocity is
precisely vo. If ro is the position vector of the
instant center relative to O, then clearly:

vo = ω × (−ro) = ro × ω

Note that the structure of the twist

t̂ = {ω;vo}

1In planar kinematics, some texts also use the term rotor

for a twist.

is analogous to that of the wrench

ŵ = {f ; co}

presented in Module 2. In both cases we have a
vector, and the moment of such vector w.r.t. the
orgin O.

Right figure: The twist t̂ = {ω;vo} provides
a complete representation of the velocity field be-
cause the velocity of any point P can be computed
from ω and vo as follows:

vP = ω × p+ vo

Certainly

vP = ω × (p− ro)

= ω × p+ ω ×−ro

= ω × p+ ro × ω

= ω × p+ vo.

The origin O of the coordinate system can be
chosen arbitrarily. We have drawn it below the
lamina, but it could be located outside it, as in
slide 7.

Slides 8-9 Consider again our body rotating with
angular velocity ω = [0, 0, ω]T about a point with
position vector ro = [xo, yo, 0]

T from the origin.
The body twist is

t̂ = {ω;vo}

where vo is the velocity of the lamina point at the
origin. Since

vo = ro × ω =

∣
∣
∣
∣
∣
∣

i j k

xo yo 0
0 0 ω

∣
∣
∣
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∣

=





yoω
−xoω
0





we can write

t̂ = {ω; yo ω,−xo ω}

= ω · {1; yo,−xo}

= ω · ŝ

In other words, the twist t̂ can be seen as a multiple
of the vertical unit line ŝ = {1; yo,−xo}, in which
the pair (xo, yo) provides the location of the instant
center.
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Slides 10-11 Just as couples are special cases of
forces, instantaneous translations can also be seen
as special cases of instantaneous rotations.
Suppose that a lamina is undergoing a pure

translation. Its velocity field looks like the top-
left figure. It is a constant field. Since ω = 0, all
points move with the same velocity vector vo, and
the lamina twist is:

t̂ = {0;vo}.

We can see this field as the limit case of a family
of fields in which the instant center is pushed to
infinity. Suppose that initially the field is like in the
top-right figure. The body is rotating with angular
velocity ω about the instant center in Q. We select
two points on a line through Q, say O and P , and
choose the X and Y axes depicted. Let vo and v
be the Y components of the velocities of O and P ,
respectively. Also let p and q be the X coordinates
of P and Q. Using

vo = −ω q

v = −ω (q − p)

it is easy to see that the three quantities v, vo, and
p, completely determine the angular velocity ω and
the position q of the instant center. In other words,
v, vo, and p can be seen as parameters determining
the velocity field.
Certainly, dividing the first equation by the sec-

ond we get q as a function of v, vo, and p

q(v, vo, p) =
vo p

vo − v

and substituting this expression into ω = −vo/q we
get

ω(v, vo, p) =
v − vo

p

Now, if we try to convert the field to a constant
field, e.g. by making v tend to vo, we have

r → ∞

ω → 0

so the instant center really tends to the point at
infinity in the direction orthogonal to vo, and the
angular velocity tends to zero.
Consider a general translational twist

t̂ = {0;vo}

If we express vo as vo = vo So, where So is a unit
vector, we can write

t̂ = vo{0;So}

The line {0;So} is the unit vertical line through
the point at infinity in the direction So. Thus, a
translational twist can be seen as a multiple of a
vertical line at infinity. The instant center is the
point at infinity in the direction orthogonal to vo.

Slide 12 Now try to find the twist of each ball
at the moment shown in the figures, relative to the
coordinate system OXY indicated. Assume that
ω, L and v are all of them positive values.

Slide 13 We next introduce a somewhat artificial
convention. It is difficult to grasp at this point, but
it will be useful in Module 4 “Duality” to write the
reciprocal product between twists and wrenches as
a standard dot product.

Twists and wrenches are geometrically the same
thing: a vector, and the moment of this vector with
respect to the origin. We can write the vector and
the moment in either of the following orders:

Order Order name

{vector ; moment} Ray coordinates
{moment ; vector} Axis coordinates

From now on:

• Wrenches will be written in ray coordinates
using lowercase letters:

ŵ = {f ; co} = fŝ

with ŝ = {S;So}.

• Twists will be written in axis coordinates using
capital letters:

T̂ = {vo;ω} = ωŜ,

with Ŝ = {So;S}.

Note how the vector and the moment parts of the
line coordinates are swapped between ray and axis
coordinates. Since here we deal with the planar
case, wrenches and their supporting lines ŝ will be
in the XY plane, and twists and their supporting
lines Ŝ will be parallel to the Z axis.
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Slide 14 Try to find the correct answer/s.

Slides 15-16 The coordinates of a line $ can
be expressed in different coordinate systems. Let
OXY and O′X ′Y ′ be two coordinate systems, such
that the vector between O and O′ is [a, b]T, and the
angle between X and X ′ is φ. The system O′X ′Y ′

is translated and rotated with respect to OXY . If
Ŝ and Ŝ′ are the coordinates of $ in OXY and
O′X ′Y ′, respectively, then

Ŝ = [E]Ŝ′,

with

[E] =





c −s b
s c −a
0 0 1



 ,

where c = cosφ and s = sinφ.

Slide 17 It can be shown that the matrix [E] is
related to the matrix [e] that appeared in Module
2 “Statics” through

[e]−1 = [E]T.

This connection stresses the duality between stat-
ics and kinematics, i.e. between the forces and mo-
ments applied on a body, and the rotations and
translations that the body performs. This will be
further developed in the following course modules.

Slide 18 We should make it clear that the veloc-
ity field of a rigid body—and hence its represen-
tative twist—is relative to the observational frame
used. An observational frame is an observer and
all points fixed to that observer. I.e., all points
that keep their pairwise distances fixed along time.
Think of it as a large rigid body on which the ob-
server is firmly standing.
In the figure there is a wheel rotating about its

center. The velocity of P seen by observer B is
the black arrow. The velocity of P seen by the
observer in A is the blue arrow. The two differ by
the red vector, which is the translational velocity
of the train car on which observer B is standing.

Slide 19 Once an observational frame is chosen,
we usually attach a coordinate system to it: a point,
and three direction vectors. Such a system allows

us to specify the coordinates of points and velocity
vectors in that frame.

There is an infinity of coordinate systems that
we may choose. The choice affects the coordinates
given to points and velocities in the frame, but not
how they are perceived by the observer.

Since the twist coordinates depend on both
the observational frame and coordinate system as-
sumed, an orthodox sentence to refer to a twist is
(e.g., in the setting of this slide):

“Twist of the wheel relative to observa-
tional frame A, and expressed in coordi-
nate system OXY”

Since this is rather long, and very often the obser-
vational frame is the body on which the coordinate
system is drawn, or known by context, we usually
omit it and say

“Twist of the wheel relative to coordinate
system OXY”

Slide 20 Let us now recall the law of composi-
tion of velocities that relates the velocity vectors
observed from two different observational frames.

We have two observers, A and B, in their respec-
tive observational frames. They measure different
velocities of point P . These velocities are related
as follows, where absolute means “observed from
frame A”:

Law of composition of velocities: The
absolute velocity of P is equal to the ve-
locity of P observed from frame B, plus
the absolute velocity that P would have if
it were a fixed point in frame B.

Slide 21 We now wish to perform the kinematic
analysis of a 3R serial arm: establish the relation-
ship between the articular and end-effector veloci-
ties. The manipulator consists of three bodies, la-
belled L1 to L3, articulated through revolute joints.
The first joint is attached to the ground, labelled
as L0. Each joint Ji makes Li rotate with angular
velocity ωi relative to Li−1.
Now let

• γ = [ω1, ω2, ω3]
T be the vector of joint angular

velocities.
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• T̂ = [vo
T, ω]T be the twist describing the ve-

locity field of the end effector relative to an
observer on the ground, expressed in the coor-
dinate system OXY .

The twist T̂ is here written in square brackets [·],
instead of curly braces {·}, because we shall soon
operate with it in vector form.
There are two problems we wish to solve:

• The forward instantaneous kinematic problem
(FIKP): Given γ, compute T̂ .

• The inverse instantaneous kinematic problem
(IIKP): Given T̂ compute γ.

To that end, we next prove that the twist T̂ can be
expressed as:

T̂ = T̂1 + T̂2 + T̂3,

where

T̂i =

[
voi

ωi

]

,

in which voi is the velocity of the point of link Li

that instantaneously coincides with the origin O,
assuming that all revolute joints, except joint i, are
locked.
We first write the equation in expanded form

[
vo

ω

]

=

[
vo1

ω1

]

+

[
vo2

ω2

]

+

[
vo3

ω3

]

and note that if α = θ1 + θ2 + θ3 is the orientation
angle of the end effector, we have α̇ = θ̇1 + θ̇2 + θ̇3.
Since ω = α̇ and ωi = θ̇i, it must be ω = ω1 +ω2 +
ω3, which proves the angular part of the equation.
To prove that vo = vo1 +vo2 +vo3 we apply the

law of composition of velocities.

Slide 22 For simplicity, we apply this law to the
serial 2R manipulator depicted. Here link 1 is ro-
tating about P at ω1 with respect to the ground,
and link 2 is rotating about Q at ω2 with respect to
link 1. Consider the following observational frames:
a “frame 0” on the ground, and a “frame 1” on link
1. Frame 0 acts as the absolute frame. Then, the
absolute velocity of any point R on link 2 is the sum
of its velocity relative to frame 1 plus the absolute
velocity that R would have if it were a fixed point
in frame 1:

v(R) = ω2 ×
−−→
QR+ ω1 ×

−→
PR

This equation is true for any point R of link 2. In
particular, it is true when R is the origin point O
of link 2 (the one that coincides with the origin).
We thus can write

v(O) = ω2 ×
−−→
QO + ω1 ×

−−→
PO,

and, reordering and writing in “moment form” we
have

v(O) =
−−→
OP × ω1
︸ ︷︷ ︸

vo1

+
−−→
OQ× ω2
︸ ︷︷ ︸

vo2

So, clearly,
vo = vo1 + vo2

which proves the linear velocity part of the equation
for the 2-link manipulator. The extension to a 3-
link manipulator is straightforward.

Slide 23 Now we know that, for the 3R manipu-
lator

T̂ = T̂1 + T̂2 + T̂3

where

T̂i =

[
voi

ωi

]

Assuming that the coordinates of the i-th joint
are (xi, yi), we can compute voi as:

voi =

∣
∣
∣
∣
∣
∣

i j k

xi yi 0
0 0 ωi

∣
∣
∣
∣
∣
∣

= ωi





yi ωi

−xi ωi

0





and hence

T̂i = ωi





yi
−xi

1





Thus we can write:

T̂ = ω1





y1
−x1

1



+ ω2





y2
−x2

1



+ ω3





y3
−x3

1



 .

By defining

J =





y1 y2 y3
−x1 −x2 −x3

1 1 1





we finally obtain the equation we were looking for:

T̂ = J · γ.
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This equation provides the mapping between the
angular velocities at the actuated joints, γ, and
the resulting end-effector twist, T̂ . If we know the
robot configuration, we know J , and the equation
solves the forward instantaneous kinematic prob-
lem. It is easy to compute T̂ for a given γ, and
there will be one and only one such twist. To solve
the inverse instantaneous kinematic problem for a
given T̂ , we solve the associated system of linear
equations. Depending on the situation, this system
will have one solution, infinitely-many solutions, or
no solution at all.

Slide 24 Notice that each column of J contains
the Plücker coordinates Ŝ1, Ŝ2, and Ŝ3 of the lines
parallel to the Z axis passing through the center
of the corresponding joint. As we shall see soon,
this interpretation is quite useful as it will allow us
to rapidly detect singular configurations visually,
those in which the serial robot loses dexterity.
The interpretation also works when a given joint

is prismatic. A prismatic joint can be interpreted
as a revolute joint at a point at infinity (the one in
the direction orthogonal to the sliding direction of
the joint). In that case, the column of J certainly
gives the Plücker coordinates of the line through
that point and parallel to the Z axis.
It can be shown also that the inverse of the Ja-

cobian matrix can be computed as

J−1 =
1

det J





a23 ŝ
T
23

a31 ŝ
T
31

a13 ŝ
T
12



 ,

where aij is the distance between Ji and Jj , and
ŝij are the coordinates of the line in the XY plane
passing through joints Ji and Jj . Moreover,

det J = a23 ŝ23
T Ŝ1 = a31 ŝ31

T Ŝ2 = a12 ŝ12
T Ŝ3.

Slide 25 This completes our analogy table. The
matrix J plays a role similar to the jacobian matrix
j of parallel manipulators, but instead of encoding
a mapping of forces, it encodes a mapping of veloc-
ities.

Slides 26 to 29 If we have a general chain of n
links connected in series, the end-effector twist will
be the sum of the intermediate link twists. This fol-
lows directly from applying the law of composition
of velocities recursively to the whole chain.

The links are numbered from 1 to n. Link 1 is
the one connected to ground. Link n is the end
effector, and its twist relative to some observer in
the ground, written in OXY , can be expressed as

T̂ = T̂1 + . . .+ T̂n

We can interpret T̂i in either of two equivalent ways:

• As the twist of the i-th link in the observa-
tional frame 0 attached to ground, assuming
all joints are locked except joint i.

• As the twist of link i in the observational frame
of link i−1; i.e., as the twist of link i relative
to link i− 1.

In both cases, T̂i is written in the same coordinate
system used to describe the end-effector twist (e.g.,
OXY in the figure).

If the i-th joint is a revolute joint, then we al-
ready know:

T̂i = ωi





yi
−xi

1





If, instead, it is a prismatic joint, then

T̂i = vi





ai
bi
0





where vi is the signed magnitude of the linear veloc-
ity of the joint, and [ai, bi]

T is a unit vector provid-
ing the direction of such velocity. Thus, in general
the velocity equation will take the form:

T̂ =





yi aj
. . . −xi . . . bj . . .

1 0



 ·












...
ωi

...
vj
...












asuming that joints i and j are of revolute and pris-
matic type, respectively.

Slide 30 Match each manipulator with its corre-
sponding Jacobian matrix.
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Slide 31 In a general robotic mechanism (one
with either open or closed kinematic chains), we
define the forward and inverse instantaneous kine-
matic problems (FIKP and IIKP) as follows:

• The FIKP consists in, given the vector of in-
put velocities γ (those of the actuated joints),
compute the whole velocity state of the mech-
anism, obtaining the end-effector twist T̂ in
particular.

• The IIKP consists in, given the end effector
twist T̂ , compute the whole velocity state of
the mechanism, obtaining the vector of input
velocities γ in particular.

Here, the “whole velocity state” means “enough
velocity coordinates to compute the velocity of any
point on the mechanism”. For example, in a 3R
arm, it is enough to know ω1, ω2 and ω3 to deter-
mine the velocity of any point of the arm, and in
particular

T̂ = ω1Ŝ1 + ω2Ŝ2 + ω3Ŝ3

which solves the FIKP.

We say that a configuration q of our robot is non-
singular if in such a configuration both the FIKP
and the IIKP have one and only one solution for any
value of γ and T̂ . Otherwise the configuration is
said to be singular. Thus, in nonsingular configura-
tions we have a one-to-one correspondence between
the vectors γ and their compatible velocity states,
and between the twists T̂ and their compatible ve-
locity states. At least one of the bijections is lost
at a singular configuration: we may find that one
of the two problems is undetermined (infinite solu-
tions) or unsolvable (no solution), for some value
of γ or T̂ .

Slide 32 To see this on an example, consider
again the 3R manipulator. The IIKP will be un-
solvable for some T̂ when detJ = 0, because in such
a case J−1 does not exist. Assume for convenience
that we put the origin of the coordinate system in
joint 1. Then

det J =

∣
∣
∣
∣
∣
∣

0 y2 y3
0 −x2 −x3

1 1 1

∣
∣
∣
∣
∣
∣

= x2y3 − x3y2,

and det J = 0 whenever

x2y3 − x3y2 =

∣
∣
∣
∣

x2 x3

y2 y3

∣
∣
∣
∣
= 0,

so that the singular configurations are those in
which the three revolute joints are aligned.

Slide 33 We here see some examples of singular
configurations. Do you see that in them there are
twists T̂ that cannot be produced by any combina-
tion of the angular velocities ω1, ω2, ω3? And that
some other twists T̂ can be produced by infinitely-
many combinations of ω1, ω2, ω3? Try to find them
for yourself.

Intuitively we see that in these configurations the
velocity of P cannot be parallel to the line of the
joints. Velocities of P orthogonal to that line, on
the other hand, can be produced by infinitely-many
combinations of the angular joint velocities.

Slide 34 In this configuration P can move un-
der any velocity! Is this a singular configuration?
Why?

Slide 35 Compute det J in each case and de-
termine which of these configurations is singular.
What happens with the instant centers relative to
the joint twists T̂1, T̂2, T̂3 in each manipulator?

Slides 36-38 On a serial manipulator, only the
IIKP may become unsolvable. To show a robotic
mechanism where both the FIKP and IIKP may be-
come unsolvable, we next analyze the 4-bar mech-
anism.

Consider the shown 4R manipulator. We have

T̂ = T̂1 + T̂2 + T̂3 + T̂4.

where T̂ is the twist of the end effector relative to
the ground, and T̂i is the twist of link i relative to
link i − 1. The joints are numbered from 1 to 4,
with joint i being the one between links i and i−1.

If we connect the end-effector to ground, then
the effector is fixed and T̂ = 0. Therefore, for such
a closed kinematic chain

T̂1 + T̂2 + T̂3 + T̂4 = 0.

Now, suppose that we actuate ω4 and that we con-
sider ω1 as the output velocity. This corresponds
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to viewing T̂4 and T̂1 as input and output twists
respectively. Note that the whole velocity state
is determined once we know ω1, . . . , ω4. With the
choices just made, in this mechanism:

• The FIKP consists in, given ω4, compute
ω1, ω2, ω3 (from which it is immediate to ob-
tain T̂1).

• The IIKP consists in, given ω1 (and hence T̂1),
compute ω2, ω3, ω4.

Slide 39 Let us solve the FIKP for this 4 bar
mechanism. Since

T̂1 + T̂2 + T̂3 + T̂4 = 0,

we can write

ω4





0
0
1



 = −





0 y2 y3
−x1 −x2 −x3

1 1 1





︸ ︷︷ ︸

Jf





ω1

ω2

ω3





where ωi is the relative angular velocity of joint i.
The output velocity is ω1, and ω2 and ω3 are passive
joint velocities. Clearly, the FIKP will have one and
only one solution for any value of ω4 whenever Jf

is a full rank matrix.
The configurations where det Jf = 0 are called

forward singularities of the 4-bar mechanism, be-
cause in them the FIKP is unsolvable or undeter-
mined for some input ω4. Since Jf is equivalent to
the Jacobian of a 3R manipulator, such singulari-
ties arise when joints 1, 2, and 3 become aligned.
In such a situation, the only feasible input velocity
is ω4 = 0. Moreover, the input velocity ω4 does not
determine the global velocity state of the manipu-
lator. Intuitively, observe that when we lock joint
4, joint 2 is still able to move infinitesimally in the
direction orthogonal to the line through joints 1, 2,
and 3.

Slide 40 To solve the IIKP on the same manip-
ulator, we write

T̂1 = −(T̂2 + T̂3 + T̂4),

or, in expanded form,

ω1





0
−x1

1



 = −





y2 y3 0
−x2 −x3 0
1 1 1





︸ ︷︷ ︸

J i





ω2

ω3

ω4



 .

In this case we want to find the values of ω2, ω3,
and ω4 that produce the desired output velocity ω1.
Similarly as before, the IIKP will be unsolvable or
undetermined for some ω1 whenever det J i = 0,
which occurs if and only if joints 2, 3, and 4 are
aligned. In such a configuration ω1 = 0 and T̂1 = 0

necessarily. Any value of T̂4 is in principle possible,
and hence the velocity state of the manipulator is
undetermined. Likewise, any T̂1 6= 0 is unfeasible.

The configurations in which detJ i = 0 are called
inverse singularities of the 4-bar mechanism, be-
cause in them the FIKP is unsolvable or undeter-
mined for some value of ω4.
Following an analogous procedure, one can de-

fine the forward and inverse singularities of a gen-
eral mechanism. In module 4 we shall illustrate the
two kinds of singularities on a large class of useful
parallel robots.
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