AN ALGORITHM FOR THE SOLUTION OF
INVERSE KINEMATICS PROBLEMS
BASED ON AN INTERVAL METHOD

A. CASTELLET AND F. THOMAS

Institut de Robotica i Informatica Industrial,

Edifici Nexus, Gran Capita, 2—4, planta 2a.,

08034 Barcelona, Spain,

email: acastellet@iri.upc.es & fthomas@iri.upc.es

Abstract. In this paper we describe a general procedure to solve the posi-
tional inverse kinematics problem using an interval method. The classical
interval Newton method is used together with specific developed interval
cuts over the closure equations. The algorithm uses a basic branch-and-
bound procedure to obtain all solutions of the inverse positional problem
of arbitrary single-loop kinematic chains. Some preliminary examples are
given, although still much improvement can be done in the heuristics in-
volved and the code optimization, leaving plenty of room for future im-
provements.

1. Introduction

Solving loops of kinematic constraints is a basic requirement when dealing
with inverse kinematics, task-level robot programming, assembly planning,
or constraint-based modeling problems. This problem is difficult due to
its inherent computational complexity (i.e., it is NP-complete) and due
to the numerical issues involved to guarantee correctness and to ensure
termination.

Two basic approaches have been used for solving this problem: contin-
uation and elimination methods (Roth, 1994). Recently, interval methods
for solving systems of non-linear equations have attracted much attention
and have been explored by a variety of authors (Hansen, 1992) and (Kear-
fott, 1996). They have already been used to solve some kinematic problems
proving to be robust but sometimes slow compared to continuation meth-
ods (Van Hentenryck, McAllester and Kapur, 1997).

2 A. CASTELLET AND F. THOMAS

In our case, the interval method receives a box, i.e. an interval-tuple
of the variables of rotation and translation, specifying the initial bounds.
Then, it returns a set of boxes containing the different solutions. When
the kinematic chain is redundant, this method is also able to provide a
discretized version of the underlying self-motion manifold.

This paper is structured as follows: Section 2 describes the closure equa-
tions used, Section 3 gives an introduction to interval methods, in Section
4, the basic steps of the algorithm are described and, in Section 5, three
different examples are presented.

2. Closure Equations

The n-bar mechanism used here was first introduced in (Thomas, 1992)
and is defined as a closed single-loop mechanism composed of n links —or
bars—, each one being orthogonal to the next bar and having a rotational
and a translational degree of freedom (Fig.1).

Figure 1. The n-bar mechanism (a) and the involved degrees of freedom (b).

The loop equation of the n-bar mechanism can be expressed as

n

[[T@R¢)Z =1, (1)

i=1
where T(d;) is a translation along the z-axis, R(¢;) a rotation around the
z-axis and Z a rotation of 7/2 around the z-axis. The n-bar mechanism is
. A
defined by the wvector of rotations, ¢ = (¢1, P2, ---,¢n), and the vector of
. A
translations, d = (d1,da, ..., dp).

Any single-loop kinematic chain can be described using an n-bar mech-
anism. We have been using it as an alternative to the Denavit-Hartenberg

AN INTERVAL METHOD FOR INVERSE KINEMATICS PROBLEMS 3

parameters to represent spatial mechanisms because of its simple struc-
ture, which leads to more regular closure equations than using the D-H
parameters.

A deep study of the n-bar mechanism and its underlying self-motion
manifold can be found in (Castellet and Thomas, 1998). Here, we only give
two equivalent sets of closure equations, which are used by our interval
method.

The loop equation (1) can be factored into the following two equa-
tions (Thomas, 1992):

F(¢) 2 A7(¢) =1 2)
and
A w ; di
T(¢,d) =) |AT7' () 8 =0, (3)
=1
I fork=1+1

L(b) 2 !
where Al (¢) = HR(¢j)Z for k <1
j=k

These two equations are called the rotation and the translation equa-
tions, respectively. It is straightforward to proof that the solutions to both
of them are the solutions to the loop equation (1).

Parameterizing the solution sets of both matrix equations, we can derive
another set of closure equations, the parametric rotation and translation
equations:

¢n—2 = TN (¢1a ¢2a v 7¢n—3)(+ﬂ-)
bn—1 = Fro(d1,¢2,-..,In-3)
¢n = r3(d1,d2,. .., Pn3)(+7)

dn—o = ti(p1,¢2,-..,Pn,d1,da,...,dn_3)
dno1 = to(p1,d2,-. ., Pn,d1,da,. .. dy_3)
dn — t3(¢1,¢27"'7¢n7d17d27"'7dn—3) .

The expressions of r; and ¢; are explicitly given in (Castellet and Thomas,
1998). They are simple products and sums of rotation matrices affected
by an atan2 function for the r;. There are two possible solutions for the
rotation equations, corresponding to the 7 added to r; and r3 and the +
sign in 79. Note that these equations are general for any kinematic chain
represented by an n-bar mechanism.

4 A. CASTELLET AND F. THOMAS

These equations are also equivalent to the loop equation (1), except for
points corresponding to singularities of the parameterization; that is, when
¢n—1 = 0 or 7. Expressions of their derivatives are also simple and can be
found in (Castellet and Thomas, 1998).

3. Interval Methods

Interval methods manipulate upper and lower bounds on variables and are
based on interval arithmetic (Hansen, 1992). They have been used to solve
systems of nonlinear equations, global optimization problems and to avoid
rounding errors due to floating-point representations of real numbers in
computers.

One of the problems that arise when using interval arithmetic is the
overestimation of functions where a variable appears more than once. This
overestimation is due to the fact that a natural evaluation of the function
supposes that the variable varies independently in each appearance.

For our purposes we need to solve the system of nonlinear equations
derived from the closure equations. We describe it as

F(x)=0, where F:xCR'—R".

An interval-method algorithm would receive a box, i.e. two interval vectors
specifying the initial range of the vectors of rotation and translation, and
it would return a set of boxes of specified accuracy containing all solutions.

Interval Newton Methods have been widely used to solve systems of
nonlinear equations and we describe them briefly in next section (for more
details see (Kearfott, 1996)). Here, an interval Newton method is used
together with some specific developed interval cuts, as described in Sec-
tion 3.2. Then, in Section 3.3, we describe the branch-and-bound strategy
required for the algorithm to converge.

3.1. INTERVAL NEWTON METHODS

Interval Newton methods can be viewed as computational analogues of the
Brouwer fixed-point theorem. The first-order Taylor expansion around the
center of the box X results in a interval linear system that must be bounded:

S(x — %) = —F(%) ,

where S is a sort of interval jacobian matrix of the original system. The
computation of this matrix is an important point in interval Newton meth-
ods. Its efficiency can be highly improved using slope functions instead of
interval derivatives. Although both slope functions and interval derivatives
can be obtained by automatic differentiation, we use directly the explicit

AN INTERVAL METHOD FOR INVERSE KINEMATICS PROBLEMS 5

expressions we have for the derivatives of the closure equations to compute
a Hansen’s slope matrix (Hansen, 1992).

The most suitable method to compute outer estimates to the solution set
of an interval linear system is the interval Gauss-Seidel method. It proceeds
coordinate by coordinate in a similar way than its real counterpart, but
usually requires the system to be preconditioned in order to be effective.

Preconditioning the system is one of the clues of interval Newton meth-
ods. Although the mostly used preconditioning matrix is the midpoint in-
verse of the system, often, much better preconditioners can be found. Fam-
ilies of optimal preconditioners have been developed, which optimize some
specific criterion. The most studied, and the one we use, is the width-
optimal LP-preconditioner, which minimizes the width of the resulting in-
tervals. Using some heuristics, this preconditioner can be computed as a
linear-programming problem.

Finally, existence and uniqueness in the interval Gauss-Seidel method
can be usually verified without extra computing, since they result as a
byproduct of the algorithm.

3.2. SPECIFIC CUTS

Interval cuts are procedures which operate on a set of constraints and a
box, reducing this box by deriving a new bound on one of the variables.
In (Van Hentenryck, McAllester and Kapur, 1997), three general cuts are
described, which operate in a similar way than the interval Newton method.

We have developed some specific cuts, based on the structure of the ro-
tation and the translation equations (2) and (3). In both of these equations,
it is possible to isolate the variable we want to cut and evaluate directly its
range of possible values.

We can perform three different types of specific cuts: two cuts for the
variables of rotation —derived from both the rotation and the translation
equation— and one cut for the variables of translation —derived from the
translation equation. All these cuts are described in (Castellet and Thomas,
1997); we include here only their final expressions:

1. Cutting ¢; with the rotation equation:

b; arccos(vhy N v43) Narcsin(vhy N —vhs) N @; (5)

where V* = (ZAZ,, (9) AL (9))".
2. Cutting ¢; with the translation equation:

) whowt. — wh.wk whow?. — wh.wk
¢i + arcsin (03*11 132 02 ﬂarccos 02 1% }32 03 m(lsz ,

. 2 . .
i 2 i i
wip +wis wip + Wi
(6)

6 A. CASTELLET AND F. THOMAS

. dy,
where wh 2 — (A771(9))' i AV @) [0 | and
0
wi = AT ()| 0
0
3. Cutting d; with the translation equation:
' ' ' 1
di + (wh— Al(@)w?) | 0 | nd;. (7)
0

These specific cuts are computationally much less expensive than perform-
ing an interval Newton cut. They are usually able to cut large initial boxes
at first stages, but they are not enough —by themselves— to converge to
the solutions. Thus, they should be seen as complementary to the interval
Newton method and the branch-and-bound strategy described in the next
section.

3.3. BRANCH-AND-BOUND STRATEGY

After reducing a box using our specific cuts and the interval Newton method,
three possibilities arise. First, the pruning operation may have resulted in
an empty box, in which case there are no solutions. Second, it may be the
case that the interval associated with each variable has reached a width
below a specified accuracy. In this case we terminate and return the box
containing a solution, depending on the existence test. If the pruning op-
eration results in a box which is not of sufficient accuracy, we split the
box and two branches are generated. Then, solutions on each branch are
recursively searched.

Replacing a single box by two smaller boxes allows either the overesti-
mation in interval extensions to be reduced or the interval Newton method
to converge in the smaller boxes.

Generalized bisection divides a box by one of its variables. A natural
choice for the bisection coordinate would be the variable for which the width
is maximum. However, the variable corresponding to maximum width is not
always the most effective at reducing overestimation or producing boxes in
which the interval Newton method will converge. Many heuristics have
been proposed to chose the variable to split (Kearfott, 1996); they usually
attempt to choose a coordinate such that the function components have
the highest variations along the range of the variable.

AN INTERVAL METHOD FOR INVERSE KINEMATICS PROBLEMS 7

4. General Algorithm

The overall algorithm combines an interval Newton method with our spe-
cific cuts and the branch-and-bound strategy in order to isolate all solutions
into boxes as small as desired.

The input of the algorithm is an initial box xg, the desired accuracy
€ and the maximum number of boxes to process M. The box xy is com-
posed of the vectors of rotations and translations. Most of the elements of
these vectors are degenerate intervals of zero width corresponding to the
geometry of the mechanism. The other elements are those representing the
configuration of the mechanism (rotations and translations of joints) and
are intervals whose limits are the allowed range of joint motions.

The algorithm can be summarized in the following steps:

e place the initial box xy onto an empty list £
eDO k=1to M WHILE L # 0
1. remove one box from £ and place it in the current box x,
2. DO WHILE size of x. > ¢
a. (reduce the box using specific cuts)
FOR i =1 TO number of variables DO (specific cuts)
IF variable ¢ is a rotation THEN
cut variable ¢ using cut (5)
cut variable ¢ using all possible cuts (6)
ELSE (variable i is a translation)
cut variable i using all possible cuts (7)
b. (reduce the box using an interval Newton method)
DO 5 =1 to 10 WHILE size of x. > €
FOR 7 =1 TO number of variables DO
compute the optimal preconditioner row
perform a Gauss-Seidel iteration for variable
i using the closure equations (4)
END DO
c. IF the box does not contain a solution THEN
EXIT loop 2 and CYCLE main loop
d. IF x. has not been reduced THEN
bisect x. and insert one of the boxes into £, while
the other one becomes x.
END DO
3. insert x, into list R (list of resulting boxes)
¢ END DO

Although the algorithm converges to the solutions, many heuristics can be
introduced which may speed up the process considerably.

8 A. CASTELLET AND F. THOMAS

Step 2.a. could be iterated until specific cuts do no longer reduce the
box. However, experiments show that the reduction after the first iteration
decreases significantly and it is not worth cycling more.

It should be pointed out that in Step 2.b., the interval Newton method
has to be applyed to both sets of equations (4). Here, more sweeps are
useful and we limit them to 10 to avoid cases with slow convergence.

5. Examples

The experiments we have been doing show that the main problem is that
the algorithm usually converges to a solution without branching only if
the box is very small. We have been trying to avoid branching as much
as possible in order to speed up the process. Using Hansen’s slopes and
width-optimal linear programming preconditioners in the interval Newton
method is crucial, but other minor heuristics have been used, such as the
ones in the computation of the preconditioner (Castellet, 1998).

The algorithm has been implemented in C++ using BIAS/PROFIL
portable interval libraries (Kniippel, 1993) in a SUN Ultra 2 2300 Creator
with a 296MHz processor.

We show here three examples: a PUMA 560 in three different config-
urations, a particular 6R mechanism also in three different configurations
and a case of the 7TR example of Duffy (1980) and Lee (1988). Although
there are no aparent differences with the other examples, in the last case
the program takes a long time to obtain the right solutions.

For each of these examples, we give the number of branchings, the num-
ber of boxes eliminated by specific cuts and by an interval Newton iteration,
the average sweeps of the interval Newton methods and the required CPU
time. All examples return 8 solutions, except for Duffy’s example, which
returns 6.

PUMA 560. We use 14 bars to describe a PUMA 560 and 3 more bars
to close the chain. The vectors of rotations and translations of a PUMA
560 are:

& =(90, 01, —90, 65, 180, 63, 90, 4, 90, 05, 90, 86, 90, 0, 15, P16, b17)
d =(0,0,0,0,432, 149.098, —20.5, 433, 0,0, 0,56.5, 0, 0, d15, d1g, d17)

A 6R. We use 12 bars to describe a 6R mechanism and 3 more bars to
close the chain. The vectors of rotations and translations are:

¢ =(90,61,90, 02,90, 63,90, 04,90, 05,90, 66, P13, P14, P15)
d 2(5, 2,7,4,8,0,2,0,12,15,6, 3,d15, d1g, d17)

AN INTERVAL METHOD FOR INVERSE KINEMATICS PROBLEMS 9

TABLE 1. PUMA 560

Configuration Branching specific Newton avg. New. CPU
cuts sweeps time

& =(...,195,90,335) 236 159 71 1.88 1247

d=(...,—780,—15,430)

¢ =(...,200,56,305) 197 154 37 240 1'15”

d=(...,—370,600, —550)

¢ =(...,178,52,279) 328 282 40 1.78 142"

d=(...,340,—200,615)

TABLE 2. A 6R

Configuration Branching specific Newton avg. New. CPU
cuts sweeps time

¢ =(...,200,15,85) 1636 1484 152 1.68 6’15”

d=(...,9,0,7)

¢ =(...,300,340,5) 1983 1804 179 1.79 752"

d=(...,1,7,5)

¢ =(...,20,30,340) 1862 1755 107 1.24 6°25”

d=(...,6,8,10)

Duffy’s example. We need here 14 bars. The vectors of rotations and
translations are:

& =(01,260, 65,273, 05, 300, 64, 300, 05, 273, 06, 260, 67, 215)
d =(1.0,0.9,1.2,1.1,0.8,1.5,2.0,1.5,0.8,1.1,1.2,0.9, 1.0, 0.5)

TABLE 3. Duffy’s example

Configuration Branching specific Newton avg. New. CPU
cuts sweeps time

07 =30 11264 9977 1284 1.53 38°25”

10 A. CASTELLET AND F. THOMAS

6. Conclusions

In this paper we have summarized the basic ideas of a general algorithm
based on an interval method for solving single-loop inverse kinematics prob-
lems. The procedure returns all solutions and works even in singular situa-
tions and for mechanisms with special geometries. Although the algorithm
is still too slow for most practical applications, much improvement can be
done in the heuristics involved and in the code optimization.

Because of its generality, interval methods can be seen as a competitive
alternative to elimination and continuation methods for inverse kinematics
problems, despite the slowness of these preliminary results.

The contents of this paper is fully developed in (Castellet, 1998).

7. Acknowledgements

The research work reported here has been partially supported by the Span-
ish CICYT under contract TIC96-0721-C02-01.

References

Castellet, A., (1998), Solving Inverse Spatial Kinematic Problems Using an Interval
Method, PhD thesis, Universitat Politécnica de Catalunya, Spain, (to appear).

Castellet, A., and Thomas, F., (1997), Using Interval Methods for Solving Inverse Kine-
matic Problems, Proc. Computational Methods in Mechanisms, NATO ASI, Varna,
Bulgaria vol. 2, pp. 135-144.

Castellet, A., and Thomas, F., (1998), Characterization of the Self-Motion Set of the
Orthogonal Spherical Mechanism, Mech. Mach. Theory, (in print).

Dufty, J., and Crane, C., (1980), A Displacement Analysis of the General Spatial 7-Link,
7R Mechanism, Mech. Mach. Theory, vol. 15, pp. 153-169.

Hansen, E., (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New
York.

Kearfott, R. B., (1996), Rigorous Global Search: Continuous Problems, Kluwer Ac. Pub.

Kniippel, O., (1993), PROFIL-Programmer’s Runtime Optimized Fast Interval Li-
braries, Tech. Report, Technische Universitdt Hamburg-Harburg, 93.4., available at
http://www.ti3.tu-harburg.de/indexEnglisch.html.

Lee, H.-Y ., and Liang, C.-G., (1988), Displacement Analysis of the General Spatial 7-Link
7R Mechanism, Mech. Mach. Theory, vol. 23, n. 3, pp. 219-226.

Roth, B., (1994), Computational Advances in Robot Kinematics, Advances in Robot
Kinematics and Computational Geometry, eds. A. J. Lenar¢i¢ and B. B. Ravani,
Kluwer Ac. Pub., pp. 7-16.

Thomas, F., (1992), On the N-bar Mechanism, or How to Find Global Solutions to
Redundant Single Loop Kinematic Chains, Proc. IEEE Int. Conf. Robotics Automat
vol. 1, pp. 622-634.

Van Hentenryck, P., McAllester, D., and Kapur, D., (1997), Solving Polynomial Systems
Using a Branch and Prune Approach, STAM J. Numer. Anal., vol. 34, no. 2, pp.
797-827.

