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Abstract. In this paper the statics and the instantaneous kinematics of
serial and parallel robot manipulators are studied. A projective interpreta-
tion of the concepts of twist, wrench, twist space and wrench space — based
on the concept of extensor — is presented and a description of the dualistic
relation between twist and wrench spaces of serial and parallel robot manip-
ulators is given in terms of the Grassmann-Cayley algebra. The importance
of this algebra is that its join and meet operators are very effective tools
for joining and intersecting the linear subspaces involved in the kinestatic
analysis of manipulators when they are represented by extensors.

1. Introduction

Any instantaneous motion of a rigid body can be described as a twist on a
screw and any set of forces and moments that act on a rigid body can be
described by means of a wrench on a screw.

Any possible twist of a rigid body partially constrained by a wrench
is characterized by the reciprocity condition, that is, the work generated
by the twist against the wrench must be zero and the term kinestatics
refers to this dualistic relation between the statics and the instantaneous
kinematics of rigid bodies. Mathematical frameworks of both differential
and projective geometry have been used to describe this condition, also
called duality, and relevant references on this subject are Ball (1900), Hunt
(1990), Duffy (1990), Bruyninckx and De Schutter (1998) and Bruyninckx
(1999).
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In this paper we gain a deeper understanding of the projective inter-
pretation of kinestatics for serial and parallel robot manipulators using the
Grassmann-Cayley algebra extending the work of White (1994) where the
possible applications of this algebra to robotics are limited to the instanta-
neous kinematics of manipulators.

The works of Doubilet, Rota and Stein (1974) and Barnabet, Brini
and Rota (1985) are comprehensive surveys on the properties of the Gras-
smann-Cayley algebra while White (1995) and White (1997) emphasize the
concrete approach to this algebra and give more details on the connection
to robotics, in particular, to the analysis of singular configurations of ma-
nipulators.

Sect. 2 reviews the most relevant properties of a version of the Gras-
smann-Cayley algebra based on the Pliicker coordinates of linear subspaces
of a given vector space and those of their duals, also called dual Plicker
coordinates.

In Sect. 3 the representation of generalized forces and velocities in a
projective setting is explained. It is based on the concept of extensor that
corresponds, in the coordinated version, just to the vector of Plucker co-
ordinates of a linear subspace. Since any element of a vector subspace 1S
reciprocal to any element of its dual, twist and wrench spaces of partially
constrained rigid bodies can be described by means of the Pliicker coordi-
nates and the dual Pliicker coordinates, respectively.

Moreover, by using the join and meet operators of the Grassmann-
Cayley algebra, which correspond to the sum and intersection of linear sub-
spaces, respectively, the twist and the wrench spaces resulting from serial
and parallel combinations of kinematic constraints can be easily expressed.
This is discussed in Sect. 4.

The importance of the Grassmann-Cayley algebra is that it has an
explicit formula for the meet operator and that it contains intrinsically a
useful dualistic property: the meet and the join operators can be inter-
changed in a given expression if we change the arguments with their duals.
For this reason it is also called double algebra.

Finally, Sect. 5 contains an example in which the Grassmann-Cayley
algebra is used in the kinestatic analysis of a parallel manipulator.

2. The Grassmann-Cayley Algebra

In this section we report the most relevant properties of a version of the
Grassmann-Cayley algebra that involves Pliicker coordinates. Further de-
tails can be found in White (1994).

We start from some basic concept about projective space and homoge-
neous coordinates. If x = (21, Z2, ... ,Tm)" is a point in ™ given In terms
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of Cartesian coordinates, the vector = = (z1,%2,... ,Tm,1)" is defined to
be its homogeneous coordinate vector.

If we allow points with the last coordinate 0 for representing projective
points at infinity, the standard m-dimensional projective space that includes
R is obtained. So, we represent R with points at infinity by a (m + 1)-
dimensional vector space V.

92.1. PLUCKER COORDINATES

Let U be a k-dimensional subspace of the (m + 1)-dimensional vector space
V, and {u; ug ... ug} a basis of it. When these vectors are arranged as
rows of a matrix, we obtain:

Wy Wis 7Y Wi 1
U1 Uz -+ U2m 1
Uk Uk v Upm 1

The (j1, 2, ,Jk)-th Plicker coordinate of the subspace U, denoted by
P;, jy. x> 18 the k x k determinant formed by the & columns of the above
matrix with indices 7, j2,- -« ,jx. Since we have a Pliicker coordinate for
each combination of the k columns, the total number of Pliicker coordinates
1S (mgl). The Plicker coordinate vector of the subspace U is the vector
Py that contains in some predetermined order its Plicker coordinates. U

uniquely determines Py up to a scalar multiple.
The Pliicker coordinate vector of the line A passing through points a
and b, represented in homogeneous coordinates by the rows of

- ag az az 1
by by b3 1)°
is defined as:
Py =(—Pia, ~Poa, —Faay Bia, =B, Bal=

(b1 — @1, by — az, bz — as, azbs — asbs, agby — a1z, a1bs — azb1)* = (S,r x 8)*

where S = b — a, (r x S) represents the moment of A with respect to the

origin, and r is any point on the line. The vector P, is determined by A
up to a scalar multiple and, since it will be used to represent rotations, it
is convenient to normalize it such that S-S5 = 1.

The point at infinity on A has homogeneous coordinates (b; — a1,b2 —
as,bs — as,0)! and can be thought as infinitely far away in the direction
given by S.

A line at infinity is determined by two distinct points, ¢ and d, at
infinity represented by the rows of

Ci €2 C3 0
di, dy d3 0
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whose Pliicker coordinate vector 1s
Pﬁ = (0,0, O,ngg = ngz,{?gdl == Cldg, C1dg = ngl)t = (U,U,O,I‘ X S)t

Since lines at infinity will be used to represent translations, it 1s con-

venient to normalize this vector in such a way that (r x S) - (r X Bi=1,
The Pliicker coordinate vector of the plane I, determined by three
finite points whose homogeneous coordinates are the rows of

a; az az 1
by by b3 1],
1 p2 p3 1

Pi= (Posu4, —Pizi, F124; Pios)t = (Nyr- N)*,

is defined as

where N is a normal vector to IT and r is the position vector of any point
on II.

99 DUAL PLUCKER COORDINATES

Let U be a k-dimensional subspace of the (m+ 1)-dimensional vector space
V and {u1, ug, ... ,uk} a basis of it. We can build up the dual of the
vector subspace U as follows. Consider the linear system of equations

m+1
LjUh,j = 0, h = 1,2,... ,k.
7=0

Since its matrix has rank k its solution space is a (m +1 — k)-dimensional
vector space U*. Let {w1, wa, ..., Wym+1—k} be a basis of U™ we have the
following relationships between the basis vectors of U and U”

m-+1
S wijun; =0, i=1,2,... m L=k, h=1,2,.. ok (1)
j=0

by which we can compute the basis of UU* from the basis of U up to a scalar
multiple. The vector spaces U and [7* are said to be dual spaces. Thus, the
dual Pliicker coordinate vector of U is defined to be the vector that contains
the Pliicker coordinates of U* called dual Plicker coordinates of U.

It can be proved that the number of dual Pliicker coordinates equals
the number of Pliicker coordinates, the only difference between them being
their ordering and some sign changes. For example, the Pliicker and dual
Pliicker coordinate vectors of lines in 13 have the first three and the last
three elements interchanged.
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We also have
m-+1
Zwi,jmj =0, 1= | 8 ST ,(m+1—k).
j=0

Since the w; can thought as hyperplanes each containing U, these equa-
tions express the fact that the same subspace U can be represented as the
subspace spanned by the basis vectors u; or as the intersection of the hy-
perplanes w;. A line in 3. for example, can be constructed in two ways
as the join of two points or as the meet of two planes. Traditionally, the
Pliicker coordinates of lines are called ray coordinates while the dual Pliicker
coordinates are called azis coordinates of the line.

If we replace vectors of V by hyperplanes we obtain its dual vector
space V™.

2.3. THE JOIN AND MEET OPERATORS

Let V be a n-dimensional vector space over the field , U a k-dimensional
subspace of V, and {u1,us,... ,ux} a basis of it. Let also P be the Plucker
coordinate vector of U, that is, a vector in the (})-dimensional vector space

V(&) The vector P is called a k-extensor which is denoted by
P=V(ugug---ux)=uyVug V- Vug.

The subspace U, also denoted by P, is defined as the support of P and
the scalar k is defined to be the step of the extensor. If n = 4, that is, if we
are using homogeneous coordinates in 13, the support of a 2-extensor is a
line and“the support of a 3-extensor is a plane. Two k-extensors are equal

up to a scalar multiple if, and only if, their have the same support.
Let A=a;VayV---Vagand B=10b; Vb V-V b; be two extensors.

The join of A and B is defined as the (j + k)-extensor
AVB=a;VayV---Vapr Vb VbV ---Vbj.

If thé vectors {ai,as,... ,ak,b1,b2,... ,b;} are linearly dependent, then
AV B = 0. If they are independent,
AV B =A+ B =span(AU B). (2)

This means that the join of two extensors represent the operation ot joining

the associated vector subspaces.

Now, another operation that plays a similar role for the intersection
of subspaces is defined. Let A and B be the above two extensors with
(k + §) > n. The meet of A and B is defined as: |

AANB=

Z sgn(a)[azays -« - »Bo(n—g)s b1,- .. 05 Go(n—jt1) V Gon-j+2) ¥V o V 8o (k) (3) °
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where the brackets stand for determinants and the sum is taken over all
the permutations o of {1,2,... ,k} such that o(1) < ¢(2) < --- < a(n —7)
and o(n —j+1) < o(n—j+2) < -+ < o(k). This formula, called the

shuffle formula, 1s a very useful tool in practical applications.
It can be proved that if A £ 0 and B # 0 and AU B spans V, then

AANB =ANB. (4)

An important property is that V and A are dual operators. If we inter-
change V and A we must interchange V*) with V*("=k).
We combine the vector spaces V(¥) into another vector space over R,

AlV) = VO vV g...o v

where V(© and V(™ both coincide with R. The elements of A(V) are all
tensors, that is, arbitrary linear combinations of extensors of various steps.
We have that dim(A(V)) = Yk—o (3) = 2™.

The Grassmann-Cayley algebra is defined as the vector space A(V') with
the operations V and A. These operations are both associative, distributive
over addition, and anticommutative.

3. Projective Representation of Twists and Wrenches

If v is the velocity of the Euclidean point p, then we define the motion of
the projective point p as M(p) = (v,p - v)%.

If a and b are finite projective points, for each point p in space we can
express this motion in projective terms as M (p) = (v,p:v)* = aVbVp. The
2-extensor aVb, that represents the line passing through a and b, is called the
center of the motion. Since M (a) = 0 and M (b) = 0, it represents a rotation
about the axis determined by a and b. For example, the center of motion

of a counterclockwise rotation having unitary angular velocity about the z
g 0 1 1

axis can be represented by the extensor V (0 0 9 1) = (0,0.1,0,0.0)* .
using the projective points a = (0,0,1,1)* and b = (0,0,2, 1)".

A translation can be described as a rotation about an axis at infinity.
Let ¢ = (61,62,6310)t and d = (dl,dg,dg,())t be two points at infinity,
then the extensor ¢ V d can be used as the center of motion such that
M(p) = ¢V d V p. The corresponding velocity is v = (cads — c3da, c3d; —
c1ds, c1dy — cody)t. Since it is independent from the point p, it can be used
to represent a translation. For example, a translation along the positive
direction of the z axis having unitary linear velocity can be expressed by
means of the two points at infinity ¢ = (1,0,0,0)¢ and d = (0,1,0,0)?.

Then, the corresponding center of motion is the extensor Vv ([1) ? g g) =
(0,0,0,0,0,1)"
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With a serial composition of translations and rotations a more general
screw motion in space can be obtained. This motion is represented by a
twist t = (w,v)*, where w and v represent an angular velocity vector and a
linear velocity vector, respectively. In general, a twist cannot be represented
using the join of two projective points. However, it can be expressed as the
composition of a translation along an axis and a rotation about the same
axis. Instantaneously, the serial composition of twists corresponds to their
simple addition.

A vector f = (f1, fa, f3)! that represents an Euclidean force applied at
the Euclidean point p = (p1,p2,p3)" can be represented in the projective
space by the join of the two projective points p = (p1,p2,p3,1)t and f =
(f1, f2, f3,0), that is, by the extensor F =pV f = (f,p x f)t. If we have
a set of forces F; = p V f; applied at a given point p, the resultant, G, can
be obtained by adding the free vectors f; and applying this sum at p, that
is, G=3,(pV fi)=pV (X fi)

If two forces F} =pV f and F» = qV g with f = —g are applied to two
distinct points p and g, the resultant G = F1+Fy, = pV f+qVg=pV f+qV
(=f) = (p—q) V f is called a couple. Since p—q = (p1—q1,P2—q2,P3—q3,0)"
is a point at infinity, a couple can be thought as a force at infinity.

In general, the composition of forces in space does not correspond to
a single new force and cannot be expressed using the extensor of two pro-
jective points. Their resultant is a wrench w = (f, m)*, where f and m are
a force vector and a moment vector, respectively. A wrench can always be
rewritten as a composition of a force along a line and a couple on the plane
normal to the line.

We will represent twists using 2-extensors of V(%) while wrenches will
be represented by means of the 2-extensors of its dual space V*(2),

Instantaneously, the resultant of the parallel composition of wrenches
corresponds to their simple addition.

4. Twist-Wrench Duality

Let us consider a rigid body, say M, partially constrained by another, say
S. We define the twist space T of M as the vector space of all possible
instantaneous twists that it can have with reference to S, and we define
the wrench space W as the vector space of all reaction forces that can be
generated in the interaction between M and S.

Any twist ¢t € T of M must be reciprocal to any wrench w € W between
M and S because the power generated by ¢ and w must be zero (see Duffy
(1990)), that is, w -m + v - f = 0. This relation is nothing more than
the expression of the pairing of the vector spaces V2 and its dual V*?)
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as expressed by (1). Thus, we can say that twist and wrench spaces of a
partially constrained rigid body are dual spaces in the sense of Sect. 2.2.

Now, it should be clear that the kinestatic analysis of serial and parallel
robot manipulators can be done in terms of 2-extensors, that is, in terms
of the 6-dimensional vector spaces V(2 and V*2),

If the twist space of a robot is the entire V(2) its end effector has
full mobility while, if its wrench space is the whole V*2) it can resist any
wrench applied by the environment without exerting any force or torque
at its joints. In general, since the twist space is a subspace of V(2 and
the wrench space is a subspace of V*2) | it is convenient to set v = H
and work in the Grassmann-Cayley algebra A(H) over this auxiliary vector
space in which 2-extensors of V() become 6-dimensional vectors.

It is well known (see, for example, Bruyninckx and De Schutter (1993))
that the twist (wrench) space of the serial (parallel) combination of mo-
tion constraints is the sum of the twist (wrench) spaces of the composing
constraints. Analogously, the twist (wrench) space of the parallel (serial)
combination of motion constraints is the intersection of the twist (wrench)
spaces of the composing constraints. It is important to point out that the
reciprocity relation remains valid under serial and parallel combination of
motion constraints.

These considerations can be re-formulated in the language of the Gras-
smann-Cayley algebra for kinematic chains, for which the centers of motion
of their links are called joint eztensors. From properties (2) and (4) of the
join and meet operators it follows that:

— The twist (wrench) space of the serial (parallel) connection of kine-
matic chains is the support of the join of the extensors that repre-
sent the twist (wrench) spaces of the chains, provided that their twist
(wrench) extensors are linearly independent.

— The twist (wrench) space of the parallel (serial) connection of kine-
matic chains is the support of the meet of the extensors that represent
the twist (wrench) spaces of the chains, provided that the sum of the
composing twist (wrench) spaces spans H (H™).

For example, let Ly, Lo, ... , L be linearly independent joint extensors
of a serial manipulator Rger. The twist space of Ry is the support of the
k-extensor Lg,, = L1V LV ---V Li of H*¥) that is, Tg,.. = Lg,,, =
L{V LoV ---V L, where L; are vectors of H. The wrench space is its dual,
that is, the support of the (6 — k)-extensor L}, = (L1 V La V-V Lg)* =
L*ALEA -+ AL; of H¥6F) that is, Wg,,, = L% =L ALSA--- ALL.
In this expression L} are 5-extensors of H #(BY,

Likewise, let Ly, Lo, ... ,L; be the extensors of the kinematic chains
that compose a parallel manipulator R,.-. The wrench space of Ryor 18
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Figure 1. A parallel manipulator

the support of the extensor L;,. = L7V L3V ---V L, that is, Wg,.. =

par

Ly = LiVL;V---V L. The corresponding twist space is the support

Rpa T

of the extensor Lg,,, = L1 A Ly A --- A Ly, that is, Tg,,. = Lg,,, =
LiANLgA---A Lg.

5. An Example

In this section we describe a simple application of the Grassmann-Cayley
algebra to the kinestatic analysis of a parallel manipulator, with special
reference to the shuffle formula (3) for the meet operator.

Let us consider the parallel manipulator represented in Fig. 1 (Lee
and Shah (1988)), where the spherical joints of the upper platform and
the revolute joints of the lower one are both located at the vertices of an
equilateral triangle.

The twist space T; of the composing serial chain 7 is the support of
Li = Ly V Ly, V Ls; |V L, ,V Ly, 5, where Ly, Ly, are the rotational and the
prismatic joint extensors, respectively. The spherical joint of the chain 7 is
modelled as three revolute joints having intersecting axes whose extensors
are L, ,, L, , and Ly, ,. Its wrench space W; is the support of L;.

In a non-singular configuration, the twist space T of the parallel ma-
nipulator corresponds to the support of L = L; A Ly A L3. By using the
associative property of the meet operator, the shuffle formula gives

L = Ly tllp= + [Epy Lvw LopgLggs Lag s Tragos] gy ¥ Lgyy N Eogyi ¥ Ligy
— [Lpy Lyy Ly Lgy y Ligy o Lsg 3] Ly V Lgy y V Ly , V Ly, 4
gy o Dipg Bpy gy Lo Lo | Dy, Vi, ¥ T N B,
— [Bope s D bie Livs B s B L hpe Ve Wiy N g

L Loac Loy B s L) vy W Loy, W D W gy 5

§1.3 ~ra ~pn LEgo.
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L' is a 4-extensor so that L' A L3 gives a 3-extensor. This means that, in
this case, the support of L is a three dimensional subspace of H and hence
the manipulator has three degrees of freedom. The wrench space W ot this
manipulator is the support of the 3-extensor L*. In some cases, given the
joint extensors, it is convenient to compute first L™ = (Ly A Ly A Lg)* =
L% Vv L3V L§ whose support is W and then, by duality, T.

6. Conclusions

In this paper a unifying framework for the study of the statics and the in-
stantaneous kinematics of serial and parallel robot manipulators, based on
the Grassmann-Cayley algebra, has been introduced. A projective interpre-
tation of the concepts of twist, wrench, twist space and wrench space based
on the concept of extensor has been presented. It has been shown that the
join and meet operators are effective tools for joining and intersecting the
linear subspaces involved in the kinestatic analysis of manipulators. More-
over, the duality inherent in the Grassmann-Cayley algebra has been used
to reflect the duality between reciprocal twists and wrenches.
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