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In general, high-order coupler curves of single-degree-opin-jointed mechanism possessing a finite number of links of
freedom plane linkages cannot be properly traced by stafinite size is necessarily algebraid [1]. The same result can
dard predictor-corrector algorithms due to drifting prabhs be attained, in a more compact way, by computing the elim-
and the presence of singularities. Instead of focusing a@h fininant of the set of independent loop equatidns [2], [3], [4].
ing better algorithms for tracing curves, a simple methodll coupler curves can be seen as a group of manifold curves
that first traces the configuration space of planar linkagepined through singular points usually classified in kinéma
in a distance space and then maps it onto the mechanises ascrunodesandcuspgb) [6].
workspace, to obtained the desired coupler curves, is pro-
posed. Tracing the configuration space of a linkage in the The problem of tracing a coupler curve is essentially that
proposed distance space is simple because the equation tha¢onnecting sampled points to give rise to its graph. Sam-
implicitly defines this space can be straightforwardly obpling a coupler curve is not a difficult task compared to
tained from a sequence of bilaterations, and the configurdhat of connecting the samples, mainly for high-order cou-
tion space embedded in this distance space naturally decopier curves.Continuation methodare one of the major ap-
poses into components corresponding to different combin@roaches reported in the literature to solve this proble [7
tions of signs for the oriented areas of the triangles inedlv Since, in our case, the curves to be traced are algebraic,
in the bilaterations. The advantages of this two-step nekthgolynomial continuatiorcan be used [8]. These methods
are exemplified by tracing the coupler curves of a doubl@reglobal, that is, they are able to trace all the connected
butterfly linkage. components of a coupler curve but, depending on the ap-
plication, one does not need to trace all components, but
gather one of them starting from a given point. Actually,
this is the encountered problem when simulating the mo-
tion of a plane mechanismI[9]. In this case, a very popu-
lar method is the so-callggredictor-corrector methogfL0].

1 Introduction It consists of two major stages. In the first stage, called
the predictor step, a point in the tangent line to the curve

The mechanisms considered under the litilework, link- ~ at the current given point is estimated [Fig. 1(a)]. In the
ages or articulated systemare plane mechanisms involvingsecond stage, the corrector step, the predicted point is ad-
turning pairs only. That is, sets of plane links articulateitisted onto the curve, using typically a Newton-like method
through pins. For mechanisms of this type, the equatidd get a new point of the curve [Fif] 1(b)]. In the case of
of the curve generated by an arbitrary point on the mechelosed curves, a third stage, called the filling step, is @npl
nism —thetracer point— can be obtained by solving a finite mented to avoid overlaps. The predictor-corrector algoit
number of simultaneous equations expressing constancyi®fimple to implement and hence its popularity. Unfortu-
distance between pin centers which include the tracer poingtely, it exhibits, in general, the undesirable phenomeno
Then, the coordinates of all moving pin points, other thaknown asdrifting in which the procedure fails to keep mov-
those of the tracer, can be seen as unknowns. If we only cdng along a given branch of the curve and drift to another
sidered single-degree-of-freedom mechanisms, the numieig. [I(c)]. In most dramatic cases this might even lead
of independent quadratic equations will be one fewer thda cycling [Fig.[1(d)]. This drawback can be resolved us-
the number of unknowns. The curve generated by the tradgg more sophisticated mathematical tools, than the first or
point —usually known as aoupler curve— is, therefore, der approximations used in standard predictor-corredtor a
the eliminant of these equations. This reasoning permits @rithms, such as Runge-Kutta or Adam’s mettiod [11]. An-
conclude that the curve generated by any point on a plagther important drawback of predictor-corrector algarith
arises when the plane curve to be traced has singular points
) *Sé)me gcf) the ideas _Contlaineq in this paper Wereha!cr{;a%y Pmﬁ@g‘t because the tangent is undefined at them. An approach to
e e e e overcome this issue i by firt computing the Singular points
August 28-31, 2011, Washington, DC, USA with symbolic processing techniques for then use them as
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Figure 1: (a) In the predictor step, a pojsitin the tangent line to the curve at the current pginis estimated. (b) In the
corrector step, the predicted popit is adjusted onto the curve producing a new p@int;. (c) The drifting problem. (d)
The cycling problem

nately, all these methods, generally based on independeidr curve traced by any point linked to one of its bars, while
loop equations, have only been presented for particulas famaking the opposite bar as fixed, are algebraic curves of the
ilies of mechanismg [12, 13, 14,115]. A simpler and morsixth order;i.e., a straight line will cut it in not more than
elegant alternative, valid only for plane curves, is the afse six points [17] [Fig.[2(b)]. The configuration space of this
derivative-free methods such as the Morgado-Gomes falggkage can be easily derived by expressing the location of
position numerical method [16]. the line segment$, P; and P, P, as a function ofd; and
The possibility of drifting, cycling, and having problemsfs, respectively, and imposing the distance betwfegrmand
with singular points, increases dramatically with the numP, as closure condition [19, pp. 26-27]. Thus, all possible
ber of independent kinematic loops of the linkage becausenfigurations of this linkage defines a curve in the space
the order of the coupler curves to be traced grows exponetefined byd; andf,. Unfortunately, this idea cannot be ap-
tially with it. For example, while the coupler curves of theplied, in general, to multi-loop linkages. Actually, thelida
well-known single-loop four-bar linkage are of the sixth orconfigurations of a multi-loop linkage is usually represeht
der [17], that of the three-loop double butterfly linkage cahy the solution set of an independent set of its vector loop
be up to the forty-eighth order [18]. equationsl[P],[I8],[[4]. This requires introducing a vat@&b
In this paper, instead of focusing on a better algorithm fdpr each link representing its orientation with respecttie t
tracing coupler curves able to deal with all mentioned prolfixed link. For the case of the four-bar linkage, its vector
lems in the workspace of the mechanism, a Distance Gleop equation defines a one-dimension variety in the space
ometry approach that first traces the configuration space @gfined by{6,6-,6s} which seems quite complicated for
the mechanism in a distance space and then maps it ostch a simple linkage [Fid.l 2(c)]. Alternatively, the conrfig
the workspace to obtained the desired coupler curves is ptFation space of a four-bar linkage can be represented by a
posed. To get an intuitive idea of this approach and its agingle distance variable, for example the distance between
vantages, Sectidn 2 presents the main clues without goifly and P, provided that the sign of the oriented areas of
into mathematical details. Then, Sectidn 3 presents thie bathe trianglesA\ P, P, Py and AP, P, Ps are given [Fig[2(d)].
mathematical tools to formalize them, and Sediibn 4 conceBesides an important reduction in the dimensionality of the
trates on the case study of tracing the coupler curves of theoblem, the configuration space of the linkage is thus de-
double butterfly linkage. An example is then presented igpmposed into up to four components, one for each com-
Section . Sectiohl6 discusses how the presented approhiration of signs for the two oriented areas. Most impor-
can be applied to other single-degree-of-freedom linkagéantly, this idea of using distances and signs of oriented ar
and, finally, Sectiofl7 summarizes the main contributions. eas can be applied to characterize the configuration spaces
of arbitrary multi-loop linkage. For example, let us corsid
. the three-loop linkage, commonly knownd@suble butterfly
2 Overview of the proposed approach linkage depicted in Fig[B(a). Using the standard formula-
) i o tion based in vector loop equations, its configuration space
A linkage configuratioris given by a set of parametersjg getermined by the solution set of a system of six scalar
u_mque_ly specifying the posrc_lon of ea_ch of its links. Td1m-_ equations in the space defined B8, . ..,0;}. Using the
figuration spaceof a linkage is thus simply the set of all its pistance Geometry approach proposed in this paper, we will
configurations. Then, since all points of a single-degree-0sqy how this configuration space can be characterized by
freedom 'I|nkage trace plane'curvels which can readily be.eé'plane curve in the space defined by the length®d¥;
pres_sed in terms of th_e configuration parameters_ of the I|n5hdm1 and how this curve is decomposed into 16 com-
age itself, an alternative approach, other than direcily-tr ,onents, one for each combination of signs of the oriented
ing coupler curves in thg linkage workspace, natgrallms areas of the triangle& P, Py Pio, AP, Py Ps, AP, Ps P; and
first trace the configuration space of the mechanism and thg|p4pgp7_ This decomposition, together with the reduc-

compute the desired curves from it. To exemplify this idegion of the dimensionality of the ambient space from 7 to
let us consider the four-bar linkage in Figl 2(a). The cou-
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Figure 2: (a) A four-bar linkage and (b) the coupler curvedby a point affixed to one of its bars while taking the opigosi
one as fixed. (c) Any coupler curve generated by this linkagehe expressed in terms of its configuration space which
can be represented by a one-dimension variety in the spdicedéy {0, 02,03}, or by {6, 6-} if the distance constraint
betweenP; and P, is used as closure condition instead of the standard loogtiequ (d) Alternatively, this configuration
space can be represented by value ranges of a single vadablene range for each combination of signs of the oriented
areas of the triangled P, P, Ps and AP, Py Ps.
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Figure 3: (a) Using the standard vector loop formulatioe,¢bnfiguration space of a double butterfly linkage can besrepr
sented by a one-dimensional variety in the space defingdhy. ., 07} . (b) Alternatively, using the proposed approach,
this configuration space can be represented by a one-diometisiariety in the space defined Ky, ¢, s2.4} which can
be decomposed into 16 components, one for each combindtisigres of the oriented areas of the triangla$» P, P,

APy P3Py, APy PgPs andAP4P9P7.



2, greatly simplifies the process of tracing the configuraticthe oriented area ot P; P; P, which is defined as positive if

space of this linkage while retaining, at the same time, th@, is to the left of vectomp; ;, and negative otherwise. The

geometric flavor of the problem contrarily to what happenisiterested reader is addressed_td [20] for a derivatioh)of (1

to the fully algebraic current approaches. Given the triangle in Fid.J4(top), it is possible to compute
It can be argued that the proposed approach belongssia different bilaterations. By algebraically maniputegithe

the set of methods based on the idea of dividing the linlobtained results, it is possible to prove that:

age’s circuits —ke., subsets of the configuration space in

which a configuration can be continuously transformed to Zijr=1—Zjip, ®3)
another one— into segments connected by special points be- Zijn=Zir;) " (4)
cause the linkage’s circuits are also divided into comptsien w -

J P Zijk=~21;jiZjik (5)

However, in the proposed technique the special points —
those configuration space points where a given oriented areaoreover, it can be observed that the product of two bi-

vanishes— have not to be calculated beforehand. lateration matrices is commutative. Then, it is easy to @rov
The next section presents the necessary mathematigait the set of bilateration matrices., matrices of the form
tools to formalize the proposed approach. a —b ) _
b , constitute a commutative group under the prod-
3 Distances in strips of triangles uct and addition operations.

Another important property, that will be useful later,
comes from the fact that ¥ = Zw, whereZ is a bilater-
P, ation matrix, therj|v||* = det(Z) ||w]|>.
Now, let us consider the two triangles sharing one edge
depicted in Fig[#(bottom). Them,; can be expressed in
terms ofp; ; by applying two consecutive bilaterations, as

Pil = Zi k1 Pik = Lik1 2Lk Dij- (6)

Actually, a vector involving any two different points in
the se{ P, P;, Pi, P} can be expressed in function pf ;
using bilateration matrices. For example,

P =Pii —Pij = (Zini1Zijr —I)pij. (7)

Therefore, the squared distance betwégrand P, can be
Py obtained as:

Sj1 = det(Ziyk,l Zi,j,k: — I) Sij- (8)

If this result is compared to the one presented for example
in 21, pp. 65-69], one starts to appreciate the ability tftbi

P, Pij P; eration matrices to represent the solution of complex prob-

lems in a very compact form. This result can be extended

Figure 4: Top: The bilateration problem. Bottom: Concatgo a strip of triangles —-e., a series of connected triangles

nation of two bilaterations. that share one edge with one neighbor and another with the

next— to obtain the squared distance between any couple

The bilateration problem consists in finding the feasiblgy jts vertices. As an example, let us suppose that we are
locations of a point, say;, given its distances to two other jnterested in finding; 5 as a function ofp, 4 for the strip
points, sayP; and P;, whose locations are known. Then.of three triangle§ A Py Pyo Ps, APy Pyo Py, APy P3Py} ap-

according to Fid.J4(top), the result to this problem, in rixatr pearing in Figlha. In this case,
form, can be expressed as:

k=i 1 Pij 1
P, bk Pig @) P1,3 = —P2,1+ P24+ P43
—
wherep; ; = P;P; and = —7510,1P2,10 + P2,4 + Z4,10,3 P4,10
Z, - 1 Sij 4 Sik — Sjk —4 A = —2210,122,4,10P2,4 + P2,4 + Z4,10,3 P4,10
I 28 44k Sij+ Sik — Sjk = (=Z2,10,1Z24,00 + 1 — 24,103 Z4.2,10) P2,4-
is called abilateration matrix with s;; = ||p:;||°, the Therefore, the squared distange; can be expressed as:

squared distance betweéhand P;, and

1 5 51,3 = det<91)52,47 ()]
Aige =%7 \/(Si,j+5i,k+8j,k) =2 (i +sik>+5587),

(2) whereQ = ~Z 101 Z2,4,10 + 1 — Z410,3 Za 2,10-
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Figure 5: (a) In the strip of trianglefA P, P1o Py, AP, Pio Py, AP1o P3Py}, s1.3 can be obtained from bilaterations. (b)
After affixing the strip of triangle§ APy Ps P3, APy Ps Ps, AP Ps Py} to the previous onesy 9 can also be obtained using
bilaterations. (c) Likewisess ¢ can be obtained after affixing the strip of triangles Py Py P;, AP; Py Ps}. (d) A double

butterfly linkage. (e) If the lengths of dotted segments vke@wvn, this double butterfly linkage would be equivalentte t

obtained structure resulting from attaching three strigsiangles.
The possibility of computing squared distances that in- = (—I+ Z3 10,1 Z2,4,10)P2,4 + (I —Z659Z61,5)
volve arbitrary couples of vertices, using sequences af-il 7156 Pos
erations, is not limited to strips of triangles. This carodie _ (—717+ 7 ’ 7 +(I= ZosoZors)
applied, for example, to two strips sharing two arbitraryve 2,10.1 42,4,10 6,5,9 £46,1,5
tices. To exemplify this, let us suppose that we are intetest Z13,61)P2,a-
in finding p4 9 as a function op 4 after attaching the strip
of triangles defined by AP, PsPs, AP, PsPs, APsPs Py} Therefore,
to the previous strip so that they share vertié¢gsand P;
[see Fig[b(b)]. Then, S4,9 = det<92)52,4 (10)
where
P4,9 P24 + P21 + P16 + P69 Qo = —T+ Zo 101 Zosso + (I — Zs s Zo 1 5)
= —P2,4 + Z2,10,1 P2,10 + P1,6 + Z6,5,9 P6,5 7 Q
= (1422101 Z24,10)P2,4 + (I —Zg 59 L3O
The process of adding a strip of triangles sharing two ar-
bitrary vertices with the obtained structure can be itetate
further. For example, we can now add the strip of triangles
defined by{ AP, Py P;, AP; Py P}, as shown in Fidg15(c).

Z6,15)P1.6
= (—1+Z2,101Z2,4,10)P2,4 + (I —Z59Z6,1,5)
In this case, we might be interested in obtainiig as a

Zi136P1,3



function of s 4. To this end, we could compute Computing a resultant from the above triangular system be-
comes a trivial task that yields a scalar radical equation in

P28 =P24+ P19+ Pos two variables:s; 4 ands; .

=p24+ (I —Zo758%9.47) Pay By expanding[{1Zc), we get
=T+ (T —=Zg78%947)20)P24. )
Therefore, 52,8 = S1o51s 510 v, (13)
598 = det(Q3) S2.4, (11) where
where V=W + VA5 410+ V3Ai 36+ Vadies+ VsAsgr
Qs =1+ (I Zors Zosr) s + WeA2 4104136 + V7rAz410416,5 + Vsl 4104197

Then, ifs, 5 is fixed, equatior{{11) can be seenas a closureJr Yodisedies + YiodiseAsor + Pndiesdaor
condition: it is satisfied if, and only if, the resulting stture + P12ds41041364165 + VisA2,41041,36449,7
can be assembled with the specified distances. This idea car V14424104165 44,07 + V1541 3641654407
be applied to solve the position analysis problem of linlsage  + U545 4 1041 3.641.6,544.0.7,
as shown next for the double butterfly linkage.
with ¥;, 7 =1,...,16, being polynomials ir¥3 4, s1 6, 51,3,

. . . and3479, andA274710, A1,376, A1,675, andA47g’7, the oriented
4 Traqlng the double butterfly linkage config- areas ofAP, Py Pro. AP, PuPy. APLPsPy. andAP,PyP;.
uration space respectively, and substituting (12a) ahd (12b) which antou
_The double butterfly linkage has one of the sixteen_topolégrégﬁ;[ir:;n%? ?sq?ha;i?oiﬁ:glﬁ%iggg%?:[he double but-
gies available for 8-bar single-degree-of-freedom liréag terfly linkage. This equation contains four variable oreght
[19]. In the context of classical kinematics of mechanism reas, namelyds s 10, Ar5.6, Ar5 andAsg 7. Each of

the input-output problem for this linkage Ie.ads to eithgr i these oriented areas involves a radical. By iterativeliatso
Eﬁenthl or?edr f(_)r e'gtheen:r;. Olide; pzlyznzomlTa;]l_S eretndlr;g ‘i)r?g one radical on one side of the equation and then squaring
e selected fix and input linksl[l 4,122]. This input-ou PUoth sides of the equation, it is possible to transform égnat

problem, thatwgs solved u_sing continuationin [23]’.i5 equl (I3) to polynomial form. Nevertheless, it is advantageous
?oe\/nttrhostshees%cf)?;;)c;nf :r?(ljyﬁ ﬁg;o,?lgm:;é?;ﬂi?:;?;gﬁizto keep it in its current form, not only because of its com-
for the path of a point Iocatéd !in_a-coupler link of the doupactngss compargd to the polynomial for-m, but becausg, and

X : . mostimportantly, it provides a decomposition of the configu
ble butterf!y linkage was presented in [18] for the first UMe,ation space of the double butterfly linkage into sixteeti-var
The resulting polynomial was shown to be, at most, of fortyéties, one for each combination of signs of the orientedsarea

eighth order. A sampled plot of this curve is presented |22 110, A1 5.6, Ay 6.5 and Ay o -. Therefore, the configura-

[2.5]' Thellnterested. reader is referred ({o![26] for more d‘?i'on space of the double butterfly linkage can be decomposed
tails on this mechanism.

. . ._into sixteen components in the space defineddys, s2,4}-
of ﬁ;gdrmégaf;?r:isaaﬂguglir 22?::;5’ Ililr?llzsa?;i.th I:hfggsiffs The advantage of this.decomposition is that the resulting
dependent loops. The centers of the revolute joints of Lcomponents can be. ea:;lly traced. In the example presented
) . o X in'the following section, it is shown how all the crunodes ap-
blnc?ry links (?jeflr?e thfe Imﬁ segment?ll';s, gﬁpﬁ }I}P?" pear as intersections of two different components, and how
aln %ﬁsﬁar}, tAo;e Po;t Z;Sr;ag mnSAJiI;eli e":rlané” the cusps appear when mapping these traced components
gtgzd ofl C(l)?n 2l,.ltin 1?ts3co4r;fi ur6ati50n9 'saace in7te9rn$é of i the workspace. Starting from a given configuration in a
angles througph Ioc?p-closuregequationsr,) we will use sthJar mpc.)ne.nt, thg tracing process WO.U|d proceed il 'the-start
distances in strips of triangles to compu’te the set of vadfies pointis again reac_hed or when it arrives ata point where
one of the defining oriented areas vanishes. Then, the trac-

th“ ?r?dsl’ﬁ compatible with all binary and ternary link SIdeing process would have to skip to another component: the
engins. one defined by the same oriented area signs except for the

It can be verified that, if the distancess, s1,6, 54,9, @and . .
524 of the double butterfly linkage in Fig] 5(d) were fixed 2c2 N8t vanishes whose sign has to be changed.

the structure in Fid.]5(c) would be obtained [iy. 5(e)]. he
if we rewrite equationg {9)[{10), and {11), leaving these di5 Example
tances as variables, we get the following system of equsition

According to the notation used in Fifl 5(d), let us set
51,2 = 169, S1,5 = 145, S$1,10 = 65, 528 = 200, $2,10 = 52,
s1,3 = f1(s24) = det(nl)s“ (12a) s34 = 9, s36 = 90, s310 = 5, s4,7 = 36, 5410 = 10,
5.6 = 5, 85,9 = 53, S$6,9 = 34, S7.8 = 10, S79 = 5, and
s4.9 = fa(s2.4, 516, 513) = det<92)52»4 (12b) 'y = 25. Using triangular inequalities;,. s can be bound

(12¢) to lie in the interval[62 — 41/13v/10,62 4+ 4+/13+/10].

s2,8 = f3(s2.4, 516, 51,3, 549) = det(ﬂ3> 52,4- Fig. [B(top) shows the root locus df{13). This root locus



20
180
160
51,6
120

100

2001 2001

] ﬁ 0l
)

160 160

51,6 1ot 51,6 wf

1200 120 /_\ 120
100- 100 \N 100

60 70 80 % 100

200
180
160

51,6 1w

20 30 40 50 60 70 80 90 100 20 30 40 50
$2.4

S2,4 82,4

Figure 6: Top: The real solution set of equatibnl (13) in thenpldefined by, 4 ands; ¢ for sampled values of; 4. Bottom:
From left to right, the connected components of the confiipmaspace traced when starting from the initial configanadi
82,4 = 74, S1,6 = 188.68, andA274’10 >0, A173’6 <0, A1,675 <0, andA47977 <0, S2.4 = 74, S1,6 = 122, andA274,10 > 0,

A1’3’6 > 0, A176’5 > 0, andA4’9,7 < 0, and32,4 = T4, S$1,6 = 98.92, andAgA’m < 0, A1’3’6 < 0, A1’675 < 0, and

Ay 97 < 0, respectively.

has been obtained by clearing the radicalgid (13) to obtain
a polynomial equation irs 4 ands; ¢ and then solving this
equation for sampled values &f 4 at increments o%. The
result contains no information on the connectivity of each
sample to its neighbors. Actually, finding this connecyivit

is the difficult point but any of the obtained samples can be
used as a starting point for a tracing algorithm. The sampled
curve has been included here for comparison purposes with
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the results obtained by tracing as shown next.

Let us suppose that we are interested in tracing the con-
figuration space followed by the linkage from the following e

three initial configurations:

1. S2.4 = 74, S$1,6 = 188.68, andA274,10 > 0, A17376 < 0,
A176,5 <0, andA4,977 <0,

2. S2.4 = 74, 81,6 = 122, andA2’4,10 > 0, A1’3’6 > 0,
A1)6,5 > 0, andA479,7 <0,

3. S2.4 = 74, S1,6 = 98.92, andA274,10 < 0, A173,6 < 0,
A17675 <0, andA47917 < 0.

+ 4+ 4+ ++
+ +
!
|+ 1+

+ +

+

Table 1: Code of colors used in Fig$. 6 amd 7 for the signs of
Az 410, A1 3,6, A1,6,5, andAy g 7.

In order to determine the coupler curve of a selected
tracer of the linkage using the computed configuration space
we proceed to calculate the position of the linkage’s rev-
olute pair centers using bilateration. Let us suppose that

The results using the procedure discussed in the previods?, P, Py is the fixed link. Then, for example, we can set
section appear in Figufg 6(bottom), from left to right, rep; = (4,0)7, p2 = (17,0)7, andp;o = (11,4)7, and the
spectively. In the three plots, colors indicate the signthef path traced byPs, Py, Ps, Ps, P, Ps, and Py can be ob-

oriented areas according to Table 1.

tained by replacing each previously computed configuration



space point in the sequence of bilaterations given by: one range for each combination of sign of two or three ori-
ented areas, depending on the case. A similar situation oc-
P24 = Z2,10,4 P2,10, curs for twelve of the sixteen possible topologies for ®ngl
degree-of-freedom 8-bar linkages. In these cases, four ori
ented areas are needed. For the remaining four topologies
—in which the double butterfly linkage is included— the
P15 = Z1,65P16; one-dimensional configuration space is embedded in a two-
P59 = Zs5.6,9 P5,6, dimensional distance space. Since the sign of four oriented
areas are needed in all these four cases to uniquely iden-
tify a configuration, the configuration space is naturally de
composed into 16 components. Table 2 presents the equa-

. ) tions representing the corresponding configuration sfaces
Fig.[A(top) shows the path followed Wy from the first these four cases.

initial configuration. It can be observed how the mapping
from configuration space to workspace is surjective (two
points of the configuration space can be mapped onto the =gnclusion
same point in the workspace) and how this fact is actually

the underlying reason that makes coupler curves so difficult-l-he current approaches for tracing the coupler curves of

_to be trac_ed Q|rectly in the Ilnkagelworkspace. The .Zoomeﬂlane mechanisms provide a rapid algebraization of the-prob
in areas in Fig[17(top) present this effect by showing hoyk, thys becoming blind to the underlying geometry. A new
two overlappln_g brar!ches n<_axt to a rar_nph0|d cusp, Wh'%‘istance Geometry approach that first computes the link-
leads to a reciprocating motion of the linkage, and a neaty, configuration space embedded in a space of squared dis-
quadruple point are generated. Similar situations arise f%nces and then maps it onto the linkage workspace has been
the path fo_IIowed byP from the second initial Conf?gur""f.presented. The used formulation involves products, addi-
tlo_n. In this case a cusp and a tacnode can be |dent|f|ﬁgnsy and square roots. The presence of square roots per-
[Fig. [A(center)]. The curve traced when starting from thg;is 5 more compact representation than the standard tech-
third initial <_:onf|gurat|0n appears m_[F@ 7(botto_m)]. Ob niques based on polynomials. Square roots actually play
serve how in this case a smooth simple curve in the CoQ-f,ndamental role in the presented approach because their
f'Qura“O” space maps (_)nto.the linkage Workspaf:e asa Curs\fﬁn represent the orientation of triangles formed by skts o
with several singular points in a reduced area which would B e oints of the linkage thus retaining important geomet
very difficult to be directly traced using a standard presfict . iytormation. Configuration spaces are thus decomposed
corrector procedure without highly increasing its resolut . components for which the signs of the oriented areas of
Ifwe were interested in the curve traced by a coupler poife jnyolved triangles remain invariant. This decompositi
different from the revolute pair centers, we could comptte ipesides providing a new insight in the analysis of coupler
location by introducing one extra bilateration with refece curves, avoids most of the possible drifts that could arise
to the revolute pair centers of the corresponding couplér li \yhen ysing a standard predictor-corrector method directly
For the curves traced in a different kinematic inversion qf, the linkage workspace. In all the experiments we have
the linkage, we simply have to calculate the Euclidean trangarried out with the proposed method, all individual com-
formation between the constant values of the correspondipgnents, defined by constant sign areas, of the configuration
fixed link and the values computed with the above set of bipace are free from singularities. As a result, tracing treem
laterations, and use it to recompute the values for the othgg easy task. We actually conjecture that, in general, these
revolute pair centers. With this simple procedure, the codpmponents cannot self-intersect. Unfortunately, a férma
pler curves of any kinematic inversion of the double butyerflproof or a counterexample remains elusive despite our best

linkage can be computed. efforts. This is a point that deserves further attention.
As it has been shown in this example, the main advantage

of the proposed method for tracing the coupler curves is that
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P10,3 = Z10,4,3 P10,4,
Pi,6 = 41,36 P1,3,

Pa,7 = 24,97 P49,
P78 = Z7938P7,9.

The proposed method for tracing coupler curves can be
easily applied to any single-degree-of-freedom plandelin References
age. It can be verified that tracing the coupler curves of the
4-bar linkage and the two 6-bar linkages —the Watt and th¢1] Freudenstein, F., 1962. “On the variety of motions gen-
Stephenson linkages— becomes trivial because their con- erated by mechanismsJournal of Engineering for In-
figuration spaces correspond to ranges of a single distance, dustry, 39(February), pp. 156 — 160.



Linkage

Distance space
and oriented areas

Closure conditions

(81,65 52,7) 59,10 = f(s1,6,52,7)
A A = d9t<*I+Z6,5,QZ6,1,5 +7Z1347216,3 —Z4,1,271,3,4716,3
1,6,3 1,6,5
A ’ A ’ —(I—Z73,10Z7,2,8) Z4,2,7Z4,1,2Z1,3,4Z1,6,3)81,6
2,4,7,A2.78
9 10
' s7,10 = f(51,4, 56,9, 55,6)
=det(z Zino—Zas6Z415 — (I — Zosr0Z
(51,45 56.9) 4,2,7Z4,1,2 4,3,624,1,3 — ( 9,8,1029,6,8)
s 3 Z6,5,gﬂ1)81,4
A A3, A1z, sl
- - et( )
As.6.9, 46,98 55,6 = f(s1,4) 1)51.4
= det( —Z135Z1,43+1— Z4,3,GZ4,1,3)81,4
1 2
10
s5,9 = f(s1,7, 54,10, 53,10)
S1.7,8
( L7 4’10) = det( (I—2Z435Z410,3 — Z10,8,9Z10,4,8) Z10,3,491)81,7
6 9
A6, A1,7.2, s3,10 = f(s1,7) = det<91>51,7
! ° Asz104, Aa108 = det< —Z123Z172+1— Z7,6,1OZ7,1,6>81,7
3
9 s2,8 = f(s2,4,51,6,51,3,54,9)
5
( = dEt(I +(X—2Z9,78%Z9,4,7) n2>82,4
8
(s2,4,51,6) s4,9 = f(s2,4,51,6) = d9t(92)82,4
= d9t( —X1+4+Z21012Z2,410 + A—Ze5,9Z6,1,5)
v Az 410, 4136,

Av6,5,As0,7

-
[N

Z136 91)52,4

51,3 = f(8274) = det(91>32,4
= d9t< —Z2,10,12Z2,4,10 +1—2Z4,10,3 Z4,2,10>82,4

Table 2: The four 8-bar linkages whose configuration spangbeaembedded in a two-dimensional distance space. Since
four oriented areas are needed in the four cases to uniqieyify a configuration, the corresponding configuratioacgs
are decomposed into 16 components. The equations represdm corresponding configuration spaces in implicit form

are given on the right column.



0 2 4 6 8 10 12

Figure 7: The paths followed by the revolute pair cergrfrom different initial configurations. Top: For the curvaded

from the initial configurationss s = 74, s16 = 188.68, and Az 410 > 0, A136 < 0, A165 < 0, andAsg7 < 0,
zoomed-in areas show how, after mapping the configuratianespnto the workspace, a ramphoid cusp and near-quadruple
point are generated. Center: For the curve traced from ilialinonfigurations, 4 = 74, s16 = 122, andAs 4,10 > 0,
Ai136>0,A165>0,andAs 97 < 0, acusp and a tacnode can be identified. Bottom: For the crawed from the initial
configurationss 4 = 74, 516 = 98.92, andAz 4,10 < 0, 4136 <0, A1 65 < 0,andA, 97 < 0, Zzoomed-in areas show how,
after mapping the configuration space onto the workspageraesingular points are generated in a reduced region.
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