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ABSTRACT

This paper shows how the computation of the singularity locus of a 3R robot can be reduced to the analysis

of the relative position of two coplanar ellipses. Since the relative position of two conics is a projective invariant,

and the basic projective geometric invariants are determinants, it is not surprising that, using Distance Geometry,

the computation of the singularity locus of a 3R robot can be fully expressed in terms of determinants. Geometric

invariants have the benefit of simplifying symbolic manipulations. This paper shows how their use leads to a simpler

characterization, compared to previous approaches, of the cusps and nodes in the singularity loci of 3R robots.

Keywords: Wrist-partitioned robots, 3R robots, cuspidal robots, singularities, cusps, nodes, Distance Geometry, coordinate-

free formulations.

1 Introduction

Wrist-partitioned robots can be thought of as having two parts. The first three links of the robot, or regional part,

provide the translation of the robot’s hand, and the last three are responsible for providing the hand’s orientation. The

regional part of most wrist-partitioned robots used in Industry is based on a 3R robot having important simplifying geometric

conditions to make its inverse kinematics reduce to the solution of quadratic equations. One important consequence of these

simplifications is that these robots have to pass through a singularity to change their working mode (change from one inverse

kinematic solution to another). Nevertheless, this behavior is not general at all [1]. It has been shown how a generic 3R

robot can change its working mode, without meeting any singularity, if at least one point in its workspace has exactly three

inverse kinematic solutions (corresponding to a cusp point in its singularity locus). This observation reveals that a precise

understanding of the nature of the singularity curves of generic 3R robots can assist in the design of industrial robots [2].

This is the motivation behind the work presented in this paper where it is shown how, using Distance Geometry, a simple

characterization of the singularity loci of 3R robots is possible, thus departing from the mainstream dominated by the use of

algebraic geometry methods applied on trivial algebraizations of the problem.

The forward kinematics of a 3R robot can be solved in terms of its Denavit and Hartenberg parameters and 4×4 homo-

geneous matrices [3]. This leads to a system of equations of the form:

x = f1(θ1,θ2,θ3)
y = f2(θ1,θ2,θ3)
z = f3(θ1,θ2,θ3)







(1)

where (x,y,z) are the Cartesian coordinates of the robot’s end-effector. By properly locating the world’s reference frame

and giving the end-effector center in cylindrical coordinates (φ,ρ,z), a symmetry with respect to the first joint axis can be

exploited to simplify (1) (see Fig. 1) [9]. Using this representation, in 1968, Pieper proposed a technique to eliminate θ1 and

θ2 from the above three equations to obtain an expression of the form [4]:

F(ρ,z,θ3) = 0. (2)
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Fig. 1. A 3R robot and associated notation.

This formula has been the basis of most subsequent studies on the kinematics of 3R robots. Its analysis shows that:

• For fixed values of θ3, it represents an ellipse in the plane defined by ρ and z.

• For fixed values of ρ and z, it leads to a quartic polynomial in t = arctan(θ3/2).

Each of the four roots of the quartic polynomial in t determines a set of joint angles (θ1,θ2,θ3). This solves the

inverse kinematics of 3R robots in closed-form and permits to conclude that they can have up to four working modes.

Nevertheless, the tangent half-angle substitution introduces some inconveniences [5]. As an alternative, in 1993, Smith and

Lipkin reformulated (2) as:

G(ρ,z,s,c) = 0

s2 + c2 = 1

}

(3)

where s = sinθ3 and c = cosθ3 [6, 7]. For fixed values of ρ and z the solutions to the above system of equations can be seen

as the intersections of an ellipse and a circle. Having represented the inverse kinematics as intersecting conics, the properties

of conics can then be used to derive the properties of the manipulator’s workspace. The approach presented in this paper

keeps some parallelism with this one because, as we will see, it also relies on the properties of conics.

As we already mentioned, the characterization of the singularity loci of 3R robots is a fundamental issue. To obtain

them using (2) we can either:

• obtain the envelope of the family of ellipses generated as θ3 is swept in the range [0,∞) [8]; or

• impose two equal roots to F(ρ,z,θ3) = 0 as an expression in θ3.

Although the geometric interpretation is different, both methods are algebraically equivalent. Both lead to the following

system of equations:

F(ρ,z,θ3) = 0

Fθ3
(ρ,z,θ3) = 0

}

(4)

where Fθ3
denotes the partial derivative of F with respect to θ3. By eliminating θ3 in the above system, it is possible to obtain

the resultant

H(ρ,z) = 0, (5)
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Fig. 2. Encircling a cusp (left) or an α-curve (right) allows, under some circumstances, to change the working mode of a robot without

trespassing a singularity. The curves in red represent part of the singularity loci.

which can be seen as the equation of a curve, in implicit form, resulting from projecting orthographically, onto the plane

defined by ρ and z, those points of F(ρ,z,θ3) = 0 where the direction defined by θ3 is tangent to the surface (see Fig. 2).

These singularity curves, for 3R robots with orthogonal axes, are known to exhibit up to 8 cusps and up to 4 nodes [1, 10].

They divide the plane defined by ρ and z into regions where the number of working modes is constant and, depending on how

these regions are distributed, interesting results can be drawn. For example, it has been shown that it is possible to change

from one working mode to another one without meeting any singularity at least in two situations: by encircling a cusp [1]

or by encircling a so-called α-curve [11] (see Fig. 2). Thus, it is important to locate the nodes and cusps in these singularity

curves.

Equation (5) is a description of the singularity locus in implicit form. In 1989, Ceccarelli [8] showed how to obtain this

curve in parametric form by first eliminating ρ, thus transforming the system in (4) into

z = g1(θ3)
ρ = g2(z,θ3)

}

(6)

Based on this formulation, Saramago et al. [12] proposed a general analytical condition to deduce the existence of cusps and

nodes in the singularity locus. Nevertheless, this formulation has received little attention and the computation of cusps has

been dominated by the technique consisting in imposing three equal roots to (2), that is, in solving the following system of

equations:

F(ρ,z, t) = 0

Ft(ρ,z, t) = 0

Ftt(ρ,z, t) = 0







(7)

where Ft and Ftt denote the first and the second partial derivative of F with respect to t, respectively (where t = arctan(θ3/2),
as above) [10, 13, 14]. The derivation of a general condition for the existence of cusps was also attempted in [13] using the

determinant of the Jacobian matrix. When deriving the singularity locus from this determinant, the result is represented as a

curve in the plane defined by θ2 and θ3 —that is, the configuration space of the robot— (see [15] and the references therein).

Then, this curve can be mapped onto the plane defined by ρ and z using the forward kinematics of the manipulator. In both

cases, the analysis leads, in the general case, to unwieldy expressions that drive most authors to limit their analyses to 3R

robots with orthogonal axes. The results presented here concern the computation of nodes and cusps in the general case, thus

extending some preliminary results presented in [16] which were limited to the computation of cusps.

The rest of the paper is organized as follows. Section 2 describes how, using Distance Geometry, the inverse kinematics

of a 3R robot boils down to compute the intersection of two ellipses. Section 3 shows how the singularity locus of a 3R

robot can be computed from the pencil of conics defined by these two ellipses. Then, based on the fact that cusps and nodes

in this locus correspond to osculating contacts and double contacts between both ellipses, respectively, Sections 4 and 5
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Fig. 3. Left: The equivalent bar-and-joint framework associated with the 3R robot in Fig. 1. Right: This framework can be split by the plane

defined by P3, P4 and P7 into two subassemblies, each containing a tetrahedron (shown as a shaded volume) and a triangle.

derive algebraic conditions for their computation. All these ideas are illustrated through an example in Section 6. Section 7

summarizes the main points and gives prospective points for further research.

2 Distance-based formulation

When fixing the location of a 3R robot end-effector, the first and last links can be seen as articulated through a spher-

ical joint centered at the robot’s end-effector and the inverse kinematics problem is equivalent to that of finding the valid

configurations of a closed loop of four pairwise articulated links through three revolute joints and one spherical joint.

A link connecting two revolute axes can be modeled by taking two points on each of these axes, and by connecting

them all with rigid bars to form a tetrahedron. A link connecting a revolute axis and a spherical joint can be modeled by

taking two points on the revolute joint axis and the center of the spherical joint, and by connecting them all with rigid bars

to form a triangle. In this way, the 3R robot shown in Fig. 1 can be modeled as the bar-and-joint framework shown in Fig.

3(left). In this conversion we are loosing an important information: the orientation of the two tetrahedra. Nevertheless,

given a valid configuration of the obtained bar-and-joint framework, we can derive another valid configuration with the

desired orientations for the two tetrahedra. Indeed, observe that P3, P4, and P7 defines a plane that divides the framework

in two halves and the mirror projection of any of these two halves with respect to this plane changes the orientation of the

corresponding tetrahedron while preserving all bar lengths. As a consequence, any valid configuration for the framework

translates into a valid configuration for the 3R robot.

The distances between the set of points {P1,P2,P3,P4,P7} or {P3,P4,P5,P6,P7} are not independent because they are

embedded in R
3. This dependency, using the theory of Cayley-Menger determinants [17], translates into the following

algebraic conditions:
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= 0, (8)

where si, j stands for the squared distance between Pi and Pj. The above two equations are quadratic forms in the unknown

distances s3,7 and s4,7. They actually represent two conic sections, A : xAxT = 0 and B : xBxT = 0, where x = (s3,7,s4,7,1)
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and

A =





a1 c1 d1

c1 b1 e1

d1 e1 f1



 and B =





a2 c2 d2

c2 b2 e2

d2 e2 f2



 . (9)

The entries of A and B can, in turn, be expressed in terms of determinants as follows:
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All entries in the above determinants are constant for a given manipulator, except s1,7 and s2,7 that depend on the location

of the robot’s end-effector. Therefore, all entries of A and B are constant, except d1 and e1 that depend linearly on s1,7 and

s2,7, and f1 that depends on them quadratically.

We can now compute the intersection of A and B to obtain sets of distances (s1,7,s2,7) compatible with all other dis-

tances. It is important to note that, given the orientation of the tetrahedra with vertex sets {P1,P2,P3,P4} and {P3,P4,P5,P6},

every solution for (s1,7,s2,7) leads to a unique solution for (θ2,θ3). Thus, solving the inverse kinematics of a 3R robot reduces

to calculate the intersections of two conic sections. Since two conic sections intersect in up to four real points, this indicates

that it is necessary to solve a quartic polynomial, as it was already well-known. Actually, the geometric interpretation of the

solution of a quartic polynomial is usually presented as the intersection of two conics [18].

Some of the above determinants have a direct geometric interpretation using the properties of Cayley-Menger determi-

nants [17]. Using these properties, the affine invariants of the conics A and B (see [19, pp. 176-188]) can be expressed

as:
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respectively, where Vi, j,k,l stands for the volume of the tetrahedron with vertex set {Pi,Pj,Pk,Pl}, Ai, j,l for the area of △PiPjPl ,

and φi, j,l,k ∈ [0,π] for the dihedral angle between △PiPjPl and △PiPjPk hinged along Pi,Pj.

Now, observe that:

1. The first and the second rotation axes coincide if, and only if, A1,2,3 = 0 and A1,2,4 = 0.

2. The second and the third rotation axes coincide if, and only if, A4,5,6 = 0 and A3,5,6 = 0.

3. The robot’s end-effector center lies on the third rotation axis if, and only if, A5,6,7 = 0.

4. The first and the second rotation axes intersect or are parallel if, and only if, V1,2,3,4 = 0.

5. The second and the third rotation axes intersect or are parallel if, and only if, V3,4,5,6 = 0.

If we exclude from our analysis the above five degenerate cases in which the analysis could be performed using less than

seven points, then TB > 0, EB > 0, DB < 0, TA > 0, EA > 0, and

sign(DA) = sign[det(A)] = sign
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. (10)

As a consequence, B is a real ellipse that depends only on the robot’s geometry, and A is a ellipse that changes with the

location of the robot’s end-effector as follows:

• it is real if det(A)< 0 (in this case, the input squared distances s1,7 and s2,7 allow P1, P2 and P7 to form a non-degenerate

triangle);

• it degenerates into a point if det(A) = 0 (in this case, P1, P2 and P7 are aligned or, in other words, the center of the

robot’s end-effector lies on the first rotation axis); and

• it is imaginary if det(A)> 0 (in this case, the input squared distances s1,7 and s2,7 do not allow P1, P2 and P7 to form a

triangle).

In what follows, we will obviously limit our analysis to the region of the plane defined by (s1,7,s2,7) where det(A)≤ 0.

3 Singularities

A singularity occurs when we have a repeated solution of the inverse kinematics, that is, when A and B are tangent. The

positional relationship between A and B can be derived from the study of the pencil of conics they define, that is, from the

family of conics defined by pT (λA+B)p = 0, λ ∈ {R∪∞} (see [20] for an introductory explanation). The values of λ for

which a conic of this pencil is degenerate correspond to those in which

f (λ) = det(λA+B) = l3λ3 +3l2λ2 +3l1λ+ l0 = 0, (11)
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where the coefficients li, i = 0,1,2,3, can be expressed in a neat and elegant way as [21, p. 274] [22, p. 191]:
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∣

∣

a2 c2 d1

c2 b2 e1

d2 e2 f1

∣

∣

∣

∣

∣

∣

, (14)

l0 =

∣

∣

∣

∣

∣

∣

a2 c2 d2

c2 b2 e2

d2 e2 f2

∣

∣

∣

∣

∣

∣

= det(B). (15)

The above polynomial in λ is known as the generalized characteristic polynomial of the pencil.

When the two ellipses defining the pencil are tangent, two of the three degenerate conics in the pencil become identical.

This implies that the characteristic equation of the pencil has a repeated root for λ [23]. By definition, f (λ) = 0 has a multiple

root if, and only if, its discriminant, say ∆, vanishes. Furthermore, it can be shown that f (λ) = 0 has three simple real roots

if ∆ > 0, and f (λ) = 0 has two complex conjugate roots and a real root if ∆ < 0. Then, the roots of ∆ = 0 give information

on the positional relationship between A and B . Actually, the sign of the discriminant ∆ gives information about the order

of accessibility of the manipulator’s workspace. It permits to decompose it in the following three regions:

• ∆ < 0 corresponds to a two-way accessible region;

• ∆ = 0 corresponds to the singularities of the manipulator; and

• ∆ > 0 corresponds to a four-way accessible region or an inaccessible region.

To be rigorous, we should say that ∆ = 0 corresponds to the singularities of the robot (A and B are tangent) and to

isolated points, unreachable by the robot, where A and B have a double contact in the complex domain (see [24] for an

explanation of this fact). We will ignore these points for the moment, but they will reappear when computing the nodes of

the singularity locus.

The standard expression of the discriminant of a cubic gives little insight into the structure of our problem [25]. For-

tunately, a much more convenient expression, that will reveal very important for the computation of cusps, can be found

in [26]. It reads as follows:

∆ =

∣

∣

∣

∣

2δ1 δ2

δ2 2δ3

∣

∣

∣

∣

(16)

where

δ1 =

∣

∣

∣

∣

l3 l2
l2 l1

∣

∣

∣

∣

, δ2 =

∣

∣

∣

∣

l3 l1
l2 l0

∣

∣

∣

∣

, and δ3 =

∣

∣

∣

∣

l2 l1
l1 l0

∣

∣

∣

∣

. (17)

Observe that the condition of singularity ∆ = 0 is expressed as a determinant of determinants of determinants of deter-

minants (four levels of nested determinants). It can be shown that the elements of the third level of determinants depend

quadratically on s3,7 and s4,7. Then, since the two outer levels of determinants are quadratic with respect to their elements,

the singularity locus can be displayed as a curve of order 23 in the plane defined by s1,7 and s2,7.

The singularity locus correspond to those points of the configuration space where the two ellipses are tangent. Within

this locus, we can distinguish the following points:

• Nodes. They correspond to double contacts, that is, to configurations in which both ellipses intersect in two points with

multiplicity two [see Fig. 5(f)].

• Cusps. They correspond to osculating contacts, that is, to configurations in which both ellipses intersect in a point with

multiplicity three [see Fig. 5(g)].

• Higher-order singularities. They correspond to hyperosculating contacts, that is, to configurations in which both ellipses

intersect in a point with multiplicity four [see Fig. 5(e)].
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Since a hyperosculating contact can be seen as the conjunction of a double and an osculating contact, a higher-order

singularity can be seen as the coincidence of a cusp and a node. In the next sections, the necessary and sufficient conditions

for the effective computation of cusps and nodes are presented based on their interpretation as contacts between ellipses.

Finally, it is worth noting that A and B can coincide under certain circumstances. For example, it is possible to design

a 3R robot in which the first and the third joint axes can be aligned for some angles of the second joint angle. In this

configuration the robot has a self-motion. In this case, both ellipses coincide because there are infinite solutions to the

inverse kinematics.

4 Cusps as osculating contacts

If three of the points of intersection between A and B coincide, the ellipses are said to osculate each other at this point.

In this case, the characteristic polynomial of the pencil they define is a perfect cube [23]. As a consequence,

l3

l2
=

l2

l1
=

l1

l0
=−1

r
, (18)

where r is the triple root of the characteristic polynomial. Then, observe that

l3

l2
=

l2

l1
⇒ δ1 = 0,

l3

l2
=

l1

l0
⇒ δ2 = 0, and

l2

l1
=

l1

l0
⇒ δ3 = 0.

In other words, in a cusp not only ∆ = 0 but all three components of the discriminant vanish. Moreover, it can be checked

that

l0δ1 = l1δ2 − l2δ3. (19)

Then, since l0 = det(B) 6= 0 (B is a real ellipse), we conclude that we have a cusp if, and only if, δ2 = 0 and δ3 = 0.

5 Nodes as double contacts

In 1848, Salmon gave the conditions for a double contact between two ellipses in terms of their coefficients that required

the introduction of an auxiliary conic [23]. Due to Salmon’s influential work, this conic is today known as the Salmon

conic [27, p. 107]. Unfortunately, the application of Salmon’s conditions, although expressible in terms of determinants,

breaks the hierarchy of determinants of our formulation. Other methods have been proposed to avoid the use of Salmon’s

conic (see, for example, [28]), but probably the most convenient set of conditions for our purposes were found in 1850 by

Sylvester [29]. He showed that, in a double contact, all minors of the determinant in (11) has a common root for λ. That is,

in a double contact,

det

[

λ

(

a1 c1

c1 b1

)

+

(

a2 c2

c2 b2

)]

= p1λ2 +q1λ+ r1 = 0, (20)

det

[

λ

(

c1 b1

d1 e1

)

+

(

c2 b2

d2 e2

)]

= p2λ2 +q2λ+ r2 = 0, (21)

det

[

λ

(

b1 e1

e1 f1

)

+

(

b2 e2

e2 f2

)]

= p3λ2 +q3λ+ r3 = 0, (22)

where

p1 =

∣

∣

∣

∣

a1 c1

c1 b1

∣

∣

∣

∣

, q1 =

∣

∣

∣

∣

a1 c2

c1 b2

∣

∣

∣

∣

+

∣

∣

∣

∣

a2 c1

c2 b1

∣

∣

∣

∣

, r1 =

∣

∣

∣

∣

a2 c2

c2 b2

∣

∣

∣

∣

, (23)

p2 =

∣

∣

∣

∣

c1 b1

d1 e1

∣

∣

∣

∣

, q2 =

∣

∣

∣

∣

c1 b2

d1 e2

∣

∣

∣

∣

+

∣

∣

∣

∣

c2 b1

d2 e1

∣

∣

∣

∣

, r2 =

∣

∣

∣

∣

c2 b2

d2 e2

∣

∣

∣

∣

, (24)

p3 =

∣

∣

∣

∣

b1 e1

e1 f1

∣

∣

∣

∣

, q3 =

∣

∣

∣

∣

b2 e1

e2 f1

∣

∣

∣

∣

+

∣

∣

∣

∣

b1 e2

e1 f2

∣

∣

∣

∣

, r3 =

∣

∣

∣

∣

b2 e2

e2 f2

∣

∣

∣

∣

. (25)
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Since d1 and e1 depend linearly on s1,7 and s2,7, and f1, quadratically, equation (20) determines two possible values for λ
because p1, q1 and r1 are constant. When substituting any of these two values in (21) and (22), the equation of a line and

a conic is respectively obtained. The intersection of this line and this conic leads to up two solutions. Then, since we have

two possible values for λ, we can have up to 4 nodes. Observe that closed-form explicit formulas can be derived for the

computation of nodes despite the singularity locus is an octic curve.

A word of caution must be added here. Equations (20)-(22) characterize all double contacts between A and B both in

the real and complex domains. As a consequence, the computed points are the nodes of the robot’s singularity locus and the

points where A and B have a double contact in the complex domain which we already detected as isolated roots of ∆ = 0.

6 Example: A 3R robot with a near hyperosculating contact

i θi di ai αi

1 θ1 1 1 π/4

2 θ2 1/2 4/5 π/2

3 θ3 5/3 1 0

Fig. 4. The DH-parameters of the robot used as an example, and its schematic representation including orthogonal sections of its singularity

locus in the robot’s workspace.

Let us considered the 3R robot with the standard DH parameters shown in Fig. 4. We have taken two points on each

of the three revolute axes and a point at the center of its end-effector. More specifically, P1 and P7 are located at the origin

of the reference frame and at the center of the end-effector, respectively; P2 and P3 are on the common normal between the

first and the second axis; P4 and P5 are on the common normal between the second and the third revolute axis; and P6 is the

nearest point to P7 on the third revolute axis. For θ1 = θ2 = θ3 = 0 the coordinates of these points are:

p0
1 =

(

0 0 0
)T

,

p0
2 =

(

0 0 1.6667
)T

,

p0
3 =

(

1 0 1
)T

,

p0
4 =

(

1 −1.1785 2.1785
)T

,

p0
5 =

(

1.8 −0.3536 1.3536
)T

,

p0
6 =

(

1.8 −1.5321 0.1750
)T

,

p0
7 =

(

2.8 −1.5321 0.1750
)T

.
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s1,7

s 2
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s 4
,7

s 4
,7

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 5. Center: Plot of the curves defined by det(A) = 0 (in gray) and ∆ = 0 (in green). These curves segment the plane into regions

where the spatial relationship between A and B is the same. We are only interested in the region where A is a real ellipse (that is, the region

where det(A) ≤ 0). Left column: spatial relationships between A (in red) and B (in blue) associated with different regions of this plane.

Right column: spatial relationships between A and B in different points of the singularity locus.

Substituting the squared distances between the above points appearing in the expressions for A and B , we obtain:

A :
(

s3,7 s4,7 1
)





26.54 −11.11 d1

−11.11 11.11 e1

d1 e1 f1









s3,7

s4,7

1



= 0, (26)

B :
(

s3,7 s4,7 1
)





22.23 −0.63 −100.15

−0.63 9.89 −54.2
−100.15 −54.2 701.71









s3,7

s4,7

1



= 0, (27)

where d1, e1, and f1 depend on s1,7 and s2,7 as follows:

(

d1

e1

)

=

(

−14.03 −1.4 30.085

7.86 −7.86 −35.23

)





s1,7

s2,7

1



 (28)

f1 =
(

s1,7 s2,7 1
)





13.58 −7.407 −38.28

−7.407 16.667 12.56

−38.28 12.56 156.28









s1,7

s2,7

1



 . (29)
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Fig. 6. Shaded depth map of log(abs(∆(s1,7,s2,7))). The robot’s singularity locus appear as valleys of this map. The two points marked

with white dots correspond to configurations unreachable by the robot where A and B have a double contact in the complex domain.

Now, substituting in (12)-(15), we obtain:

l3 = 952.6s2
1,7 −1905.2s1,7 s2,7 −5292.2s1,7 +952.6s2

2,7 −5292.2s2,7 +7350.3

l2 = 1183.2s2
1,7 −1703.5s1,7 s2,7 −8745.4s1,7 +2284.4s2

2,7 −14564.0s2,7 +28656.0

l1 = 993.53s2
1,7 −1083.8s1,7 s2,7 −8540.5s1,7 +1219.3s2

2,7 −5762.8s2,7 +14744.0

l0 =−17342.0

Then, substituting these values in (17), we finally obtain:

δ1 =−4.53422 ·105s4
1,7 +1.1056 ·106s3

1,7s2,7 +7.3007 ·106s3
1,7 −4.1345 ·106s2

1,7s2
2,7 +1.5926 ·107s2

1,7s2,7 −7.7745 ·107s2
1,7

+4.4273 ·106s1,7s3
2,7 −7.535 ·106s1,7s2

2,7 −1.1746 ·108s1,7s2,7 +3.6041 ·108s1,7 −4.057 ·106s4
2,7 +5.4596 ·107s3

2,7

−2.8952 ·108s2
2,7 +7.1428 ·108s2,7 −7.1279 ·108,

δ2 =−1.1755 ·106s4
1,7 +2.9748 ·106s3

1,7s2,7 +1.8793 ·107s3
1,7 −5.5586 ·106s2

1,7s2
2,7 −2.7397 ·106s2

1,7s2,7 −1.3712 ·108s2
1,7

+4.553 ·106s1,7s3
2,7 +4.572 ·106s1,7s2

2,7 −8.5565 ·107s1,7s2,7 +4.6545 ·108s1,7 −2.7854 ·106s4
2,7 +3.0922 ·107s3

2,7

−1.6907 ·108s2
2,7 +4.7164 ·108s2,7 −5.4996 ·108,

δ3 =−987099.0s4
1,7 +2.1537 ·106s3

1,7s2,7 +1.697 ·107s3
1,7 −3.5976 ·106s2

1.7s2
2,7 −7.0623 ·106s2

1,7s2,7 −1.2275 ·108s2
1,7

+2.6431 ·106s1,7s3
2,7 +8.3354 ·106s1,7s2

2,7 −3.6933 ·107s1,7s2,7 +4.035 ·108s1,7 −1.4868 ·106s4
2,7 +1.4053 ·107s3

2,7

−1.0878 ·108s2
2,7 +4.2249 ·108s2,7 −7.1432 ·108.

The robot’s singularity locus, according to (16) is given by ∆ = 4δ1δ3 −δ2
2 = 0. In Fig. 5, we can see the curves defined

by ∆ = 0 and l3 = det(A) = 0. The region determined by l3 < 0 is the region where A is a real ellipse. Within this region,
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the curve determined by ∆ = 0 segments the plane into regions with the same number of inverse kinematics solutions. For

example, in Fig. 5, we can identify the following regions:

(a) A region with no solution to the inverse kinematics. Both ellipses are disjoint.

(b) A region with two solutions to the inverse kinematics. Both ellipses intersect at two real points.

(c) A region with no solution to the inverse kinematics. One ellipse contains the other. This region corresponds to a void in

the workspace.

(d) A region with four solutions to the inverse kinematics. Both ellipses intersect at four real points.

At this point we must remember that ∆ = 0 also contains the points where A and B have a double contact in the complex

domain. To visualize these isolated points unreachable by the robot, it is better to represent ∆ as a two dimensional function

(see Fig. 6).

Within the singularity locus (points where both ellipses are tangent in the real domain) we can identify in Fig. 5 the

following interesting points:

(e) A higher-order singularity. A point where both ellipses have a hyperosculating contact.

(f) A node. A point where both ellipses have a double point contact.

(g) A cusp. A point where both ellipses have an osculating contact.

(h) A point where the singularity locus is tangent to the boundary of the region where A is a real ellipse. At this singularity

point A degenerates in a point because det(A) = 0. As proved in Section II, this corresponds to a singularity in which

the robot’s end-effector is aligned with the first rotation axis.

s1,7

s 2
,7

7.4

7.6

7.6

7.8

7.8

8

8 8.2

Fig. 7. What it seemed to be a higher-order singularity in Fig. 5, it is revealed to be a node close to meet two cusps.

In general, to correctly observe cusps, nodes or tangencies, we need a very particular choice of ranges of variables

and parameters and a suitable aspect ratio of the graphics. This is a typical problem when using computer graphics for the

study of singularities [30]. For example, if we magnify the region where the singularity locus seems to have a higher-order

singularity, we observe that we actually have is a node close to two cusps (Fig. 7). Likewise, if we magnify the region where

the singularity locus is tangent to the curve defined by l3 = det(A) = 0, we actually observe two tangencies very close to

each other. This is better analyzed by mapping the singularity locus onto the robot’s workspace as explained next.

We have obtained the singularity locus in the plane (s1,7,s2,7), but mapping this locus onto the robot’s workspace is

straightforward by observing that

z =
s1,2 − s2,7 + s1,7

2
√

s1,2
, ρ =+

√

s2,7 − (d1,2 − z)2, (30)

whose inverse mapping is given by:

s1,7 = ρ2 + z2, s2,7 = (d1,2 − z)2 +ρ2. (31)
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Fig. 8. The singularity locus shown in Fig. 5(center) mapped onto the robot’s workspace (ρ,z). The two singularities at ρ = 0 correspond

to the two tangencies between the curves defined by ∆ = 0 and det(A) = 0 in the distance space (s1,7,s2,7).

The result is presented in Fig. 8. In this plot, we effectively observe two singular points with ρ = 0 that correspond to the

two tangencies between ∆ = 0 and det(A) = 0 in the distance space (s1,7,s2,7).

The curves defined by δ2 = 0 and δ3 = 0 are plotted in Fig. 9. Observe how their intersection coincide with the cusps

of the singularity locus plotted in Fig. 5, as expected. The system of equations δ2 = δ3 = 0 has 12 solutions, 8 of them

are complex. The real solutions correspond to the coordinates in the plane (s1,7,s2,7) of the 4 cusps: (7.3578,1.8467),
(7.6732,7.7518), (4.0859,1.7505), and (8.044,7.8009). The coordinates of these points in the robot’s workspace through

the mapping given in (30) are (1.0837,2.4867), (2.6491,0.8098), (1.3164,1.5340), and (2.6875,0.9063), respectively.

0
0

5

5

10

10

15

15

s1,7

s 2
,7

Fig. 9. Plot of δ2 = 0 (in red) and δ3 = 0 (in green). Observe how both curves intersect at the cusps of the singularity locus (light gray).
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Fig. 10. Left: Plot of the line (in red) and ellipse (in green) resulting from substituting λ1 =−2.3439 in (33) and (34), respectively. Right:

The same for λ2 =−0.5461. Observe in the first case the intersection points do not lie in the singularity locus represented in light gray.

Concerning the computation of the nodes, the evaluation of (20)-(22) yields:

171.4678λ2 +495.5418λ+219.4787 = 0 (32)

(68.587s1,7 +102.88s2,7 +57.156)λ2 +(133.79s1,7 +18.816s2,7 +1439.7)λ+1024.5 = 0 (33)

(89.163s2
1,7 −41.152s1,7s27

−297.21s1,7 +123.46s2
2,7 −274.35s2,7 +495.35)λ2+

(134.29s2
1,7 −146.5s1,7s2,7 +94.598s1,7 +164.81s2

2,7 −603.29s2,7 +5522.9)λ+4000.7 = 0 (34)

The roots of (32) are λ1 =−2.3439 and λ2 =−0.5461. The substitution of each of these two values in (33) and (34) leads to

the equation of a line and a conic, respectively (see Fig. 10). For the first root, the coordinates of the two intersection points of

the line and the conic are (11.21,2.55) and (−1.15,4.05). Observe how they correspond to the points, shown in Fig. 6, where

A and B have a double contact in the complex domain. For the second root, the coordinates are (7.84,7.71) and (5.81,2.48).
In this case, they correspond to double contacts in the real domain, that is, they are effectively nodes of the robot’s singularity

locus. When mapped onto the robot’s workspace, their coordinates are (2.6606,0.8723) and (1.5661,1.8323), respectively.

7 Conclusions

It has been shown how the singularity loci of 3R robots can be described in terms of a hierarchy of four levels of

determinants where the entries of the determinants at the lowest level are squared distances between points in the robot’s

workspace. This coordinate-free formulation, where no reference frames are required, has lead to two new results concerning

the cusps and the nodes in the singularity loci of 3R robots:

• Cusps can be obtained as the intersection of two quartic curves, a simpler characterization than the traditional one based

on imposing three equal roots to the inverse kinematics polynomial.

• Nodes are constructible. That is, they can be obtained by arithmetic operations and taking square roots a finite number

of times.

Higher-order singularities can be seen as those singularities in which a node coincides with a cusp. These higher-order

singularities have already been classified into lips, beaks and swallowtail singularities [31]. Actually, the near hyperoscu-

lating contact analyzed in the example corresponds to a swallowtail singularity. The identification of these three kinds of

higher-order singularities using the presented Distance Geometry formulation is a point that deserves further attention.
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Figure captions

• Figure 1. A 3R robot and associated notation.

• Figure 2. Encircling a cusp (left) or an α-curve (right) allows, under some circumstances, to change the working mode

of a robot without trespassing a singularity. The curves in red represent part of the singularity loci.

• Figure 3. Left: The equivalent bar-and-joint framework associated with the 3R robot in Fig. 1. Right: This framework

can be split by the plane defined by P3, P4 and P7 into two subassemblies, each containing a tetrahedron (shown as a

shaded volume) and a triangle.

• Figure 4. The DH-parameters of the robot used as an example, and its schematic representation including orthogonal

sections of its singularity locus in the robot’s workspace.

• Figure 5. Center: Plot of the curves defined by det(A) = 0 (in gray) and ∆ = 0 (in green). These curves segment the

plane into regions where the spatial relationship between A and B is the same. We are only interested in the region

where A is a real ellipse (that is, the region where det(A) ≤ 0). Left column: spatial relationships between A (in red)

and B (in blue) associated with different regions of this plane. Right column: spatial relationships between A and B in

different points of the singularity locus.

• Figure 6. Shaded depth map of log(abs(∆(s1,7,s2,7))). The robot’s singularity locus appear as valleys of this map. The

two points marked with white dots correspond to configurations unreachable by the robot where A and B have a double

contact in the complex domain.

• Figure 7. What it seemed to be a higher-order singularity in Fig. 5, it is revealed to be a node close to meet two cusps.

• Figure 8. The singularity locus shown in Fig. 5(center) mapped onto the robot’s workspace (ρ,z). The two singularities

at ρ = 0 correspond to the two tangencies between the curves defined by ∆ = 0 and det(A) = 0 in the distance space

(s1,7,s2,7).
• Figure 9. Plot of δ2 = 0 (in red) and δ3 = 0 (in green). Observe how both curves intersect at the cusps of the singularity

locus (light gray).

• Figure 10. Left: Plot of the line (in red) and ellipse (in green) resulting from substituting λ1 = −2.3439 in (33) and

(34), respectively. Right: The same for λ2 =−0.5461. Observe in the first case the intersection points do not lie in the

singularity locus represented in light gray.
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