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Abstract

The fusion of geometric information is of great significance in
multisensorial systems, mainly in robotics applications, where
multiple sensors or mobile sensor systems that change their per-
spective of the environment capture sparse, and sometimes partial,
geometric data. These data contain some level of uncertainty and,
in general, some level of redundancy. Probabilistic approaches
have been used to solve the problem of fusing this information to
obtain the best estimate of a given set of parameters describing
a collection of geometric features and its final associated uncer-
tainty. Nevertheless, a probabilistic description of errors is not
always available and only a bound on them is known. The set-
membership approach postulates that a measurement only allows
us to establish an uncertainty region in the space of parameters
describing a geometric feature. This approach avoids the general
assumptions of unbiased and independent measurements taken by
the probabilistic approaches.

1 Introduction

Low-level sensing processes extract geometric features such as
line segments or surface patches from the sensor data, while
high-level sensing processes use symbolic models, geometric
templates, and prior heuristic assumptions. While probabilistic
approaches have been usually applied for solving the problems
arising in the former processes, Artificial Intelligence techniques
have been applied for the latter. In this paper, we will concern
ourselves to the former kind of processes. See [8] and [6] for
recent surveys on sensor fusion.

Given some uncertain information about geometric features in
the environment, the problem tacked here is to obtain an esti-
mate for each of these features which satisfies a set of constraints
derived from stored object models to which the features belong
to, or from the acquired information itself. For example, let
us assume a system that extracts straight line segments from im-
ages, with some uncertainty in their position, and this information
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must be fused to obtain a consistent interpretation of the scene.
For this example, the geometric features would be the straight
line segments and their ending points, and the constraints would
be derived from local spatial relationships — such as alignment,
perpendicularity or parallelism — between segments leading to
equations relating the parameters that represent the features. An
estimate of the actual position of the features must satisfy all the
introduced constraints and must be close to the original measure-
ment.

The probabilistic approach has dominated much of the work
on low-level sensing processes handling uncertainty. Although
probabilistic models which assume an uniform distribution inside
a range [5] have been used, the computational tractability of low-
level sensing processes, under this approach, requires the general
assumption that the experimental error is simply an additive term
with Gaussian distribution, and the data combination formalism
is essentially that of maximum likelihood estimation.

Gaussianity is usually assumed because: (1) the mean and the
covariance matrix are sufficient information to completely define
the feature density function; and (2) the distributions are eas-
ily manipulated only through matrix computations, allowing the
development, in general, of fast and efficient algorithms for the
manipulation of uncertain geometry. Nevertheless, this approach
exhibits some drawbacks. For example, when the flow of in-
coming information and the number of constraints between the
geometric features to estimate are large, there is a heavy com-
putational overhead in the maintenance and updating of large
covariance matrices.

Actually, it is difficult to give a complete error analysis be-
cause the complexity of the process of extracting low level data.
Instead, errors in measurements are assumed to be bounded, so
that every measurement leads to an uncertainty set in the space
of parameters where the actual value is bound to be.

The essence of the set membership approach, as it has been
pointed out in [3], is that certain a priori information is known
about the system that helps pare down the space of parameters
that need to be considered as estimations.

The underlying set membership principles have been applied
in the control and systems science domains. Two main sorts of
sets have been used: polytopes [10] and ellipsoids [3]. Our ap-
proach makes use of both kinds of sets. We will concentrate
ourselves on the propagation of uncertainty over graphs of ge-



omelric constraints. In these graphs, nodes stand for geometric
primitives whose uncertainty regions are represented by ellipsoids
in their parameter spaces. When a new measurement is acquired,
a new uncertainty set is introduced. This set is assumed to be
a convex polytope defined by a set of strips, or pairs of parallel
hyperplanes. These strips are the elements propagated all over
the graph of geometric constraints and fused at each node. An
updated ellipsoid is thus obtained as the final uncertainty region
for each feature, as well as an estimation of its actual location.

2 Probabilities and uncertainty sets

We defined an observation as a given spatial configuration of a
sct of sensors and their surrounding environment. We will denote
x* € R™ the vector of parameters, Or measurement, Tepresenting
a geometric feature obtained in observation 7, n being its dimen-
sion.

The parametrization chosen for each feature are very important
for two reasons:

- The volume of the uncertainty region associated with an
estimation may change if the reference frame of the geo-
metric feature is changed. We should find a set of param-
eters, so that the volume of the uncertainty region is the
same over different coordinate systems.

- As it will be seen later, we are going to deal with con-
straints between features which can be translated into
equations linking their representing parameters. A proper
choice of the parameters can lead, in some cases, to linear
constraints.

It is not always possible to find parametrizations satisfying
thesc constraints. This problem is outside the scope of this paper.

All measurements are assumed to be contaminated by noise,
that is

x' =X} +1n,

x! being the actual value of X and n* some aditive perturbation.
Under the probabilistic approach, n’ is assumed to be, in general,
an unbiased ramdom Gaussian variable with covariance matrix
Ai. Moreover, for different measurements, these perturbations
are also assumed to be uncorrelated, that is

E{n* - ()T} =0, i#j,

where E{-} denotes the expectation operator. Note that, for
Gaussian distributions, this implies independency between mea-
surements. The independency assumption is the hardest assump-
tion taken, which leads to very optimistic final uncertainties, as
it will be shown in an example below.

The set of points in R™ defined by

(x— x‘)TAfl(x — xi) <k

is an ellipsoid for any positive k, which is called the uncertainty
ellipsoid associated with x*. Depending on the value of k, this
Icads to a region where the actual value of x is most likely to
be. In the set membership approach, there is also an uncertainty
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region associated with each measurement x‘, where the actual
value, X, is assumed to be with absolute certainty. This provides
a connection between both approaches upon which to compare
them.

Often we only have partial information on feature parameters
(infinite uncertainty in one or more degrees of freedom), whence
the distribution function is improper and the covariance matrix is
not strictly defined. In the set membership approach partial in-
formation is represented through degenerated uncertainty regions,
that is unbounded sets which extend till infinity in some direc-
tions.

One of the basic tools of a multisensor system is the fusion
of different measurements, taken at different observations, of a
unique feature to obtain a consensus. Obviously, this consensus
should have less uncertainty than the measurements themselves.

Let us assume that we have sensory information obtained from
p different observations about the same geometric feature. The
problem consists in fusing X%, i = 1...p, to obtain a consensus &
which best estimates X,. Several criteria have been used to obtain
this estimate, but all of them assume statistical independency
between measurements (see the appendix for a brief survey). The
most widely used formula for obtaining this consensus is:

P 1 4
2= )T )TN,

i<l j=l

@

whose covariance matrix is:

Y d
A= ™y
i-1
While using the same optimum (1), other covariance matrices
derived from linear interpolation have been used instead of (2)
(see [7]):

2

c 1 T XA
A-p_l-z; ®)

Dk [ XXk

This tends to reduce the optimistic results obtained through the
application of (2) due to the independency assumption taken. As
an example, fig. I depicts two measurements and their uncertainty
ellipsoids. The estimation obtained and the associated uncertainty
ellipsoid using (2) — fig. 1a — and (3) — fig. Ib — are shown in
dotted lines.

The combination law derived from (2) is commutative and
associative, which are desirable properties for any combination
law of competitive information. Associativity leads to modularity
in the combination when the incoming information from p + 1
sources must be fused. In other words, the fusion of %, and x**!
is the same as the one obtained from the fusion of x',... X7,
and x?*!. Thus, the information provided by sensors with fast
response can be fused before those from sensors with slower
response.

In general, there are some geometric relationships known a
priori between the geometric features. For example, the vertex
of a trihedron is on its adjacent faces and edges, and the edges
on their adjacent faces. These are geometric relationships that
are independent of the position of the trihedron. Let us assume
that some information has been obtained about the edges and
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Figure 1

the vertex they intersect. This leads to a graph of geometric
constraints with three nodes, which can be parametrized in 3D
using three or four parameters each, and three edges. Obtaining
the best estimate of the edges involves dealing with covariance
matrices of 15 x 15.

Features and geometric constraints define a graph, called graph
of geometric constraints, whose nodes stand for geometric fea-
tures — stored as parameter vectors — and arcs, for constraints
— stored as vectorial functions.

Geometric constraints allow us to propagate information, since
information about a feature gives information about other features
in relation with it through constraints.

A geometric constraint between two features with parameters
X € R™ and y € R™ may be given as a vectorial expression
h;(x,y) = 0. In general, these functions do not define x or y in a
deterministic sense. This is because the two related features may
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have different degrees of freedom as described by their different
dimension. If functions h; are considered in a stochastic sense,
then this lack of constraint can be represented as partial informa-
tion [4]. When propagating partial information, the uncertainty
regions become degenerate, that is, there is infinite uncertainty or
no information in one or more degrees of freedom.

Any constraint h;(x, y) = 0 can be linealized for small errors,
so that

oh; . Oh; ;
ﬁ(Xo, Yo)(x — X*) + a—;(xo, Yo)(y —¥") = 0.

where Xo and yp are previous estimates (see [12] for examples of
geometric constraints and their linearizations). Using a Gaussian
model, this equation leads to
oh;\T
(%)
¥y ay

RE N
"\ o9x 3y
where A, and A, are the covariance matrices of x and y, respec-
tively, and %{- and 9%,-”- are the Jacobian matrices obtained in
(%0, Yo)-
If a set membership approach is used and the uncertainty re-
gions for both geometric features are

oh;
0x

x-x)TE(x-x)<1  ad  -y)EG-y)<],
then r r

O -1 ()T L 2y ()

ax e \Bx) dy Ey dy
holds.

This matrix equation permits the information propagation from
feature x to feature y. Actually, if x** € R™ and F, € R™*™
are known and we have a previous estimation of y, £, € R™*™

can be obtained from:
By - (2)" (Zhip (2)7) 7
d a3y ax T ax ay ’
See [11] for a proof of this last step.

The information about y given by these equations is complete
if rank (%yi = n, or partial if rank (35} < n. If the in-
formation is complete £y describes a non degenerate ellipsoid,
otherwise an ellipsoidal cylinder.

If h(x,y) = 0 does not allows us to completely determine ¥,
we can take as y* the point y in the manifold h;(x*,y) = 0 with
shortest Euclidean distance to the previous estimation of y.

3 Finding a tight uncertainity bound

Given several measurements and their associated uncertainty re-
gions, the best uncertainty bound that we can obtain for the esti-
mation is the intersection of these regions.

Let xy...x, be a set measurements and & ... €&, their asso-
ciated uncertainty sets. These sets are assumed to be possibly
degenerate hyperellipsoids, that is:

E:x—-x)TEx-x)<1 @



Notice that &; can also be a strip as defined above. Then, any
cstimation of x, %, must simultaneously belong to each of these
sets, that is

n
Re é = r} E;.
i=1
We could intersect all sets in (4) in parameter space, and in
this case end up with a minimal membership set. Nevertheless,
even in the case the initial uncertainty sets are strips, so that
the resulting region is a polytope in R™, high computational
complexity algorithms have to be implemented [10].
The accumulated inequality derived from (4) holds and defines
the following set:

é: X": Aix —xX)TE(x —x) < i: i
1=1 i=1

for any non-negative set of weights A;. Since £ is the smallest
possible set, it must be true that € C €. Actually, the exact
computation of the ellipsoid with minimum volume leads to a
problem that can only be solved by using numerical methods.

Then, let us assume that we are only to find the uncertainty
region obtained from the fusion of two measurements whose un-
certainty regions are an ellipsoid &; and a strip S (fig. 2a). To
this end, let &1 be an ellipsoid, that is

& :x-xHYTERE-x)<1, (5
where x' € R™ is its center and F; is a n x n symmetric positive
defined matrix, and let S be a strip, that is

S:|ATx-d| <1, (6)

where b € R and A € R™ is a normal vector to the hyperplanes.
All the ellipsoids containing the intersection £; NS satisfy

x—x)TEi(x — )+ A|ATx —b <1+,

where X is a positive weight. This inequality can also be ex-
pressed as

E:x-TEx-%<1

where
Eo = E;+)MAAT
E = E/K
£ = By NEix'+)bA)
K = l+i—(&TEx +20%)+3TE~ '8

% being the center of £.

It is better to compute diArectly the matrix Eo~' and £~ from
Ey7Y, instead of Eo and E, since only the inverse matrices are
needed in latter fusions. Thus, it can be shown [3] that:

1 _ -l E1AATE !
BT =BT -ATng

where

A
e
z' +AEp €A

7=
G=ATE"'A
e=b—ATn;

K=1+X-
1
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The ellipsoid which smallest volume, including the intersection
of the ellipsoid and the strip, is the one that minimizes 1/ det £
Thus, we should find, by derivation, the corresponding weight A.
It has been proved elsewhere [3] that this value for A is the most
positive root of the equation:

n=-DEN+C2rn—-1+& - @GAr+n(l—-) -G =0, ()

(b)

Figure 2

The thus obtained ellipsoid, which will be denoted by (£;1S),
contains the set defined by (5) and (6) in C™. If this set is embed-
ded in R™, the obtained ellipsoid is the tightest one bounding the
intersection, as shown in fig. 2a. Otherwise, the ellipsoid obtained
is not the tightest possible (fig. 2b). Nevertheless, this is not an
important drawback since it can be proved that (£,18) C (£;US).
In other words, no new elements of uncertainty are ever intro-
duced.

Two important situations arise: (a) if K is negative, there is
no intersection between the ellipsoid and the strip. This provides
an easy way of detecting inconsistencies; and (b) if there is no
positive value for X satisfying equation (7), the intersection of the
ellipsoid and the strip is the ellipsoid itself, that is, the measure-
ment acquired does not reduce the uncertainty in the system.



4 Updating a graph of constraints

A process for updating a graph of geometric constraints would
consists in obtaining a set of estimations that satisfy all the con-
straints inside the uncertainty regions associated with them. Be-
fore obtaining an estimation, the resulting uncertainty regions will
be found.

Each time a sensory data is acquired, the corresponding mea-
surement is assumed to be inside a set of strips. These strips
must be propagated and fused with the uncertainty ellipsoids to
obtain the updated ellipsoids of uncertainty. Let us assume that
only a new uncertainty strip for feature ¢ is introduced and, as a
result of this, we want to update the uncertainty ellipsoids for all
the features in the graph. This can be carry out by propagating
this strip all over the spanning trees rooted at g. This suggests
the important role of cycles in graphs of geometric constraints.

Since no previous assumption about the probability distribu-
tions inside the uncertainty regions has been taken, any point
inside these regions would be a good estimation for the corre-
sponding feature. Thus, any set of values inside the regions sat-
isfying the constraints would be a good estimation. Nevertheless,
the center of the uncertainty regions are considerer as the best
estimation [3]. In our case, since these values must satisfy all the
constraints, a good estimation would be that which minimize the
sum of the Mahalanobis distances to the centers of the uncertainty
regions, that is, the estimations &; would be the values for x; that
minimize

P
Z(Xi —e)TEix; — <)

i=1

c; being the centers of the regions defined by £;, subject to the
constraints h(.). Thus, in general, the uncertainty regions will not
be centered around the estimations.

5 Conclusions

An alternative approach for the propagation of uncertain geomet-
ric information, based on the ideas presented in [3] and extended
to deal with graphs of geometric constraints, has been presented.
This method avoids the independency assumption taken by the
probabilistic approach, being of great interest for those situations
in which no probabilistic description of errors is available and
only bounds on them are known.

Under the described approach, when a new sensory data is
acquired, a set of strips are obtained, propagated and fused to ob-
tain the updated ellipsoids associated with each feature. Then, the
hypothesis about the location of the involved geometric features
can be easily updated. Also, inconsistencies are easily detected.
This means fast rejection of erroneous data.

Finally, a hardware implementation of the described method,
extending the implementation presented in [2], would be of great
interest for robotic systems with massive incoming sensory in-
formation, such as hands with multiple tactile sensors and vision
systems extracting geometric features in real time.
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6 Appendix

This appendix contains a brief survey of criteria for fusing com-
petitive information under the probabilistic approach.

Let us assume that we have a set of measurements obtained
from p different observations. The problem consists in fusing x*,
t=1...p, to obtain a consensus X which best estimates x,.. The
value of this consensus can be obtained according to the following
optimality criteria:

1] Maximum total probability (see [7]). This criterion as-

sumes that the optimum R corresponds to the maximum
of

Ed .
> et |w ®
i=1
where f,-(xi | x) is the density of probability of a feature
being x* given that the measurement is X, hence

; 1 XX T (4~ X —
Sl %) = e IR XTI X
@mz | Az

Nx(x', A%) ©)

To find the maximum of (8), (9) can be substituted into
(8) and the resulting expression derived in x. This leads
to a transcendental equation which can be solved using
numeric methods [7]. This criterion has, in general, very
little sense since (8) may have more than one maximum.

2

—

Weighted minimum squares (see [9]). According to this
criterion, the optimum % is the value of x that minimizes
the cuadratic error:

P
=Y (x—x) 47 (x - x)
i=1
The solution can be easily obtained by taken the derivative
of (10) with respect to x, and set it to zero, taking into
account that:

(10)

(1n

Maximum likelihood (see [1]). Assuming that all sen-
sory data have been obtained from independent sources,
we have

%[(x - x)TA7 & = x)] = 247 (x — X)
3

—

) 4
A A A0 =[AE 0 (2
i-1
Taking (12) as a function in X, f(x! AX* A ...AXP | X)
is called the likelihood of x with respect to the sensory
information {x',x%,..., x?}. The estimation of maximum
likelihood of x is the value of X that maximizes (12).
It is easier to work with the logarithm of the likelihood,
than the likelihood itself. Since the logarithm is mono-
tonically increasing, the value of % that maximizes the al-
gorithm of the likelihood also maximizes the likelihood.
This optimum is obtained by taking the logarithm of (12)
and taking its derivative with respect to x using (11).



[4] Minimum volume of uncertainty (see [11]). Let us as-
sume that % can be obtained as a linear combination of the
scnsorial information in different observations, then:

P
X= E \Vix'
i=1

where W; € R™*™ is a weighting matrix. For the estima-
tion to be unbiased:

(13)

E{3} = 2 W, E{x'} = Z Wx, =x,  (14)
i=1 =1

then

¥4
EW,— =1¢ g™ (15)
1=1

The volume of the uncertainty ellipsoid associated with
% depends on the values chosen for the elements in the
weighting matrix. Minimizing this volume, subject to the
constraint (15), is easy through Lagrange’s multipliers.

5

—

Optimum in Kalman’s filter sense (see [13]). According
to Kalman filtering theory, to find an optimal solution con-
sists in obtaining the weighting matrix W that minimizes

aTV[xla =aTWYWTa (16)
where
Jiadt o 0
Y= - |ewme
6} PRI A

for any constant vector a € R™, since the dynamics is the
identity and the state is static.

The optimum — for criteria [2], [3], [4] and [5] - is (1), and
the associated covariance matrix, (2). Thus, (1) is an optimum in
many senses. Moreover, it can be shown that & converges with
probability 1 to X, as p — oo. The likelihood function (12) is
asymptotically Gaussian in X, that is

P
[] & 102 M@, ).

i=1
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