Interference Detection between Non-Convex Polyhedra
Revisited with a Practical Aim *

Federico Thomas and Carme Torras

Institut de Cibernètica (UPC – CSIC)
Diagonal 647, 2 planta
08028 Barcelona, SPAIN

e-mail: thomas@ic.upc.es torras@ic.upc.es

Abstract

well-known that exact interference checking between arbitrary polyhedra has \(O(mn)\) complexity, where \(m\) and \(n\) are the number of edges in the two polyhedra. This is a worst-case bound that still leaves plenty of room for algorithm improvement in practice.

The algorithm presented herein has been developed so:

Minimize the number of operations that each pair of edges entails (i.e. the constant factor \(k\) in the worst-case complexity \(O(mn) = k \cdot mn\)). We prove that factor is 4.5 for multiplications and 8.5 for additions.

Avoid the construction of auxiliary geometric entities.

The standard approach is to decompose the non-convex polyhedra (or their faces) into convex entities and then check for interference in this convex setting. However, this entails the construction of many fictitious edges, which indirectly contribute to the growth of the factor above. Our algorithm reduces interference detection to the additive combination of determinants involving only vertices of the polyhedra.

Permit the straightforward application of pruning heuristics to most practical situations, so that the worst-case bound above is reached only when truly needed.

Allow the derivation of both directional and undirectional distance bounds between the polyhedra, which are extremely useful for collision avoidance and local planning.

The simplicity and homogeneity of the algorithm has a quick implementation, which has been proven to be both fast and simple. Some performance measurements are reported.

1 Introduction

Interference detection algorithms lie at the base of many applications in Robotics, CAD-CAM and Computer Graphics. To name but a few, local path planning, assembly verification and computer animation are examples of tasks relying on such algorithms. Since interference detection needs to be performed in a repetitive way in those applications, every possible effort should be devoted to speeding this basic operation up.

One way to attain this speed up is to enclose each object within either a simpler approximating solid (typically, “an enclosing box”), or a hierarchy of solids. Since spheres are rotationally invariant and thus their interference can be easily checked [13], they have been extensively used. Two approaches based on overlapping [17, 20] and dynamic [25] spherical descriptions have been proposed.

Approximate and hierarchical representations are particularly helpful in dealing with non-cluttered environments. However, in tasks with small tolerances (such as, for instance, assembly planning and validation [24]) eventually it becomes necessary to work with the most exact representation of objects available.

The two most widely used representation schemes are Constructive Solid Geometry (CSG) and Boundary representations (B-rep). In the context of CSG representations, exact interference detection is performed through the so-called “null object detection” algorithms [19]. Ways to speed up the application of these algorithms have been devised as, for instance, setting a set of convex bounds around the primitive nodes and, through simple composition rules, isolating zones of space where objects might interfere [6].

For several reasons, however, most solid modelling and robot simulation environments resort to B-rep’s when performing exact interference detection. When the objects can be modelled as convex polyhedra, effi-
Algorithms developed in the field of Computational Geometry can be readily applied [9, 15]. In the case of non-convex polyhedra need to be used, the standard approach consists in decomposing the polyhedron (its faces) into convex entities [7, 12]. Each entity in one polyhedron is then tested for intersection with an entity from the other, until either an intersection is detected or all entities from both polyhedra are free from intersection.

This requires a preprocessing of the polyhedron in order to be decomposed, leading to the creation of many “fictitious” edges and faces, which are subsequently tested for intersection. As a result, although the worst-case complexity remains $O(nm)$, since the number of fictitious edges is in the number of real edges, the constant complexity factor k associated to each pairing of real edges grows steadily with the “degree” of non-convexity of the polyhedron.

The algorithm presented herein, k is truly constant, in the sense that it does not depend on the “degree” of convexity of the polyhedron. Moreover, our aim has been to keep this constant as small as possible and, accordingly, we have proven that is 4.5 for multiplications and 8.5 additions. Note that this is a constant upper bound which is nice to have, instead of having one dependent on the complexity of the input), and thus we have implemented some pruning strategies in order to make the algorithm work as fast as possible when the simplicity of the situation permits.

The algorithm falls in the tradition of predicate-based convex hull algorithms [2, 3, 7] and, therefore, it is easy to derive from it a way to compute distance bounds between polyhedra. Furthermore, the elements from the polyhedron realizing the minimum distance and those near this minimum can be directly provided by the algorithm. This facility is very handy for collision-avoidance and its real-time animation, since the critical zones in the scene where collisions may occur can be continuously iterated.

A final practical remark, let us mention that since in the intersection construction algorithms are used to detect interferences, mainly because solid modelers usually provide this facility. It goes without saying that these “construction” algorithms are always more expensive than their “detection” counterparts.

The paper is structured as follows. Section 2 introduces some notation used throughout this paper. Section 3 gives a brief description of the functions and predicates associated with the basic contacts between two polyhedra. In Section 4 the algorithm for interference detection is fully described. The detailed complexity of the algorithm is worked out in Section 5. Section 6 tackles the problem of obtaining distance bounds between polyhedra. Implementation details, pruning strategies and experimental results are reported in Section 7, and Section 8 summarizes the main points in this paper and discusses further research.

2 A few definitions

Definition 1. Tangent vector in \mathbb{R}^3. A tangent vector in \mathbb{R}^3 is a pair $(v, p) \in \mathbb{R}^3 \times \mathbb{R}^3$, where v is a vector applied at point p.

According to this definition, points, lines and planes can be represented as follows. A point i can be represented through a vector v_i from the origin to the point; a line by means of a tangent vector (e_1, p_1), e_1 being a unit vector along the line and p_1 a point on it; and a plane i through a tangent vector (f_i, p_i), f_i being a vector normal to the plane and p_i any point on the plane. Nevertheless, once the adjacency relationships between the elements of a polyhedron - vertices, edges and faces - are known, a single vector is enough to represent each of them. Thus, it is possible to define the dot product (\cdot, \cdot), the cross product (\times) and the determinant $(|\cdot|, |\cdot|)$, between vertices, edges and faces.

Definition 2. Boundary and coboundary operators. ∂ will denote the boundary operator. If f_k is a vector normal to a face k, ∂f_k will denote the ring of edges around the face clockwise ordered from outside the polyhedron. If e_i is a vector along an edge i, ∂e_i will denote the vertices bounding this edge. The coboundary operator is the dual operator and it will be denoted by δ. The coboundary of a vertex is a set of edges converging at this vertex clockwise ordered from outside the polyhedron.

Definition 3. Halfboundary and halfcoboundary operators. Given a direction for an edge, an order relationship between the vertices of its boundary and the faces of its coboundary can be established. The adopted convention is as follows:

$$
\begin{align*}
\langle (\delta^- e_j \times \delta^+ e_j), e_j \rangle &> 0 \\
\langle (\delta^+ e_j - \delta^- e_j), e_j \rangle &> 0
\end{align*}
$$

(1)

with $\partial e_j = \{\partial^- e_j, \delta^+ e_j\}$ and $\delta e_j = \{\delta^- e_j, \delta^+ e_j\}$, where δ^- and δ^+ denote the halfboundary operators and δ^-, and δ^+ the halfcoboundary operators.

3 The two basic contacts

There are two basic contacts between two polyhedra in 3D euclidean space [7, 10]; namely:

Type-A A face of one polyhedron is in contact with a vertex of the other polyhedron.

Type-B An edge of one polyhedron is in contact with an edge of the other polyhedron.
is clear that all other contacts can be expressed as a combination of these two basic contacts.

According to fig. 1a, we define
\[A_{b_i,f_j}=<f_j, b_i - a_k >, \text{ for any } a_k \in \partial^2 f_j. \] (2)
will be shown that the sign of (2) is irrelevant for our purposes (we will only look for sign changes). Thus, the sign to the face can be pointing outward or inward depending on which face it belongs to.

If vertex \(b_i \) meets the plane supporting face \(f_j \), then \(A_{b_i,f_j} = 0 \). We also define the predicate \(A_{b_i,f_j} \), as in fig. 1b, we define
\[A_{b_i,f_j}=<e_i \times e_j, b_m - a_k >, \text{ where } e_i = \partial^+ e_i, b_m = \partial^- e_j. \] (3)
Thus, if the line supporting edge \(e_i \) meets the line supporting edge \(e_j \), then \(A_{b_i,f_j} = 0 \). We also define predicate \(B_{e_i,e_j} \), associated with the function \(B_{e_i,e_j} \), which is true when \(B_{e_i,e_j} > 0 \), and false otherwise. As we see, only sign changes of these functions are relevant for our purposes.

Algorithm for interference detection

An edge intersection of two plane-faced objects occurs if and only if an edge of one object intersects a face of the other. For an edge \(e_0 \) to intersect a face \(f_1 \) it is necessary that its two endpoints lie on different sides of the plane supporting face \(f_1 \), i.e.
\[\left(A_{e_0 < e_j, f_0} \oplus A_{e_0 > e_j, f_0} \right) \] (4)
is true, \(\oplus \) being the exclusive or operator (XOR, for short) defined as \((a \oplus b) = (a \cap \overline{b}) \cup (\overline{a} \cap b)\).

Assuming that the above predicate holds, let us refer to fig. 2 for further discussion. Let \(\Pi_0 \) be a plane containing edge \(e_0 \) which, for convenience, we will assume to be the plane supporting a face \(f_0 \), such that \(f_0 \in e_0 \). The line supporting \(e_0 \) divides \(\Pi_0 \) into two half planes, \(\Pi_0^- \) and \(\Pi_0^+ \). Now the number of edges of the face piercing each of these half planes (which determines whether the edge intersects the face) can be obtained as follows.

Let \(\mathcal{E}^+ \) be the set of edges piercing plane \(\Pi_0 \) and pointing **upwards** and \(\mathcal{E}^- \), those piercing the same plane and pointing **downwards**. So that
\[\mathcal{E} = \mathcal{E}^+ \cup \mathcal{E}^- = \{ e_j \in \partial f_1 | A_{\partial^+ e_j, f_0} \oplus A_{\partial^- e_j, f_0} \}. \] (5)

Then, the function \(B_{e_0,e_j} e_j \in \mathcal{E}^+ \), is positive if the intersection of \(e_j \) and \(\Pi_0 \) is located on \(\Pi_0^- \), and negative if it is located on \(\Pi_0^+ \). Likewise, the function \(B_{e_0,e_j} e_j \in \mathcal{E}^- \), is positive if the intersection of \(e_j \) and \(\Pi_0 \) is located on \(\Pi_0^- \), and negative if it is located on \(\Pi_0^+ \). This can be easily seen by considering that \(a, b, c \) is a right-handed coordinate system.

Thus, the number of edges piercing half plane \(\Pi_0^+ \) (or half plane \(\Pi_0^- \)) is odd iff
\[\bigoplus_{e_j \in \mathcal{E}^+} \left[(A_{\partial^+ e_j, f_0} \cap B_{e_0,e_j} \oplus A_{\partial^- e_j, f_0} \cap B_{e_0,-e_j}) \right] = \bigoplus_{e_j \in \mathcal{E}^+} (A_{\partial^+ e_j, f_0} \oplus B_{e_0,e_j}) \] (6)
is true, or in other words,
\[\bigoplus_{e_j \in \mathcal{E}^-} (A_{\partial^+ e_j, f_0} \oplus A_{\partial^- e_j, f_0}) \cap (A_{\partial^- e_j, f_0} \oplus B_{e_0,e_j}) \] (7)
2 Detecting the intersection between face f_1 and edge e_0. Thus, the conjunction of (4) and (7) leads to a necessary and sufficient condition for edge e_0 to intersect f_1, which can be expressed as:

$$\left(A_{a+e_0,f_1} \oplus A_{a-e_0,f_1} \right) \cap$$

$$\bigoplus_{e_j \in \delta f_1} \left(A_{a+e_j,f_0} \oplus A_{a-e_j,f_0} \right) \cap \left(A_{a-e_j,f_0} \oplus B_{e_j,e_j} \right).$$

Notice that basic predicates are always combined through XOR operators and, since $(a \oplus b) = (\overline{a} \oplus \overline{b})$, sign changes of the basic predicates are relevant to detect intersections.

Let us now move from surface intersection detection to object intersection detection. Two polyhedra intersect if and only if one of the following situations arises: (1) an edge of one polyhedron is piercing a face of another polyhedron; or (2) a vertex of one polyhedron is inside the other polyhedron. A necessary and sufficient condition to detect the first situation can easily be refined by iterating the application of predicate (8) for edges of one polyhedron and all faces of the other, vice-versa.

The detection of the second situation can be reduced to the problem of checking whether the number of faces pierced by an edge determined by the considered vertex is a point far enough from the polyhedra is odd or not, thus the treatment is exactly the same as for the first situation. The predicate that becomes true when v_0 is inside the polyhedron P is then:

$$\bigoplus_{f_j \in \delta P} \left(A_{v_0,f_j} \oplus A_{v_0-f_j} \right) \cap$$

$$\left(A_{a+e_j,f_0} \oplus A_{a-e_j,f_0} \right) \cap \left(A_{a-e_j,f_0} \oplus B_{e_j,e_j} \right)$$

where v_0 is a point far from the two polyhedra, e_0 is the edge with endpoints v_0 and v_2, and f_0 is a fictitious face containing edge e_0.

Therefore, we can obtain a necessary and sufficient condition to detect the second situation by applying the predicate (9) for all vertices of the two polyhedra.

Of course, a careful implementation must take care of degenerate situations, i.e., those in which one of the chosen planes H_i contains a vertex of the face against which it is tested. This issue is addressed in Section 6. Another practical issue to consider is the development of pruning strategies to cut down the number of predicates evaluated in most practical situations. Some of these strategies are briefly outlined in Section 7.

5 Detailed complexity

Many basic functions share the same operations and this fact must be taken into account to obtain a tight complexity bound. Common operations can be obtained by redefining basic functions in terms of the locations of vertices of both polyhedra. Actually, type-B functions, B_{e_i,e_j}, can be redefined as (see fig. 1b):

$$B_{e_i,e_j} = \begin{vmatrix} a_l & a_l & a_l & a_l & a_l & | & a_k & a_k & a_k & a_k \hline a_l & b_l & b_l & b_l & b_l & | & a_l & a_l & a_l & a_l & a_l \hline a_l & b_l & b_l & b_l & b_l & | & a_l & a_l & a_l & a_l & a_l \hline a_l & b_l & b_l & b_l & b_l & | & a_l & a_l & a_l & a_l & a_l \hline \end{vmatrix}$$

or, in other words,

$$B_{e_i,e_j} = a_k \times b_n > a_k \times b_n,$$

$$< a_l \times a_k, b_n > - < a_l \times a_k, b_n >,$$

where all determinants involve an edge of one polyhedron and a vertex of the other. On the other hand, type-A basic functions, A_{b_i,f_j}, can be redefined as (see fig. 1a):

$$A_{b_i,f_j} = \begin{vmatrix} a_l & 1 & a_l & 1 & a_l & 1 & a_l & 1 & a_l & 1 \hline a_k & 1 & a_k & 1 & a_k & 1 & a_k & 1 & a_k & 1 \hline b_l & 1 & b_l & 1 & b_l & 1 & b_l & 1 & b_l & 1 \hline \end{vmatrix}$$

$$< a_l \times a_k, b_l > + < a_n \times a_k, b_l > + < a_n \times a_k, a_l - b_l >,$$

which only introduces an extra determinant per function.

All determinants involving an edge of one polyhedron and a vertex of the other require the computation of $(E_P + E_Q)$ cross products, plus $(V_P E_Q + V_P V_Q)$ dot products, where E_P and V_P are respectively the number of edges and vertices of polyhedron P. In addition,
B functions require $3E_P E_Q$ additions to combine
terminants, and type-A functions require the compu-
tion of the extra determinants, that is, one cross pro-
duct face, three additions and one dot product for
type face-vertex pairing, plus $2(V_P F_Q + F_P V_Q)$ ad-
ditions to combine determinants, where F_P is the num-
ber of faces of polyhedron P. Since a cross product entails
multiplications and 3 additions and a dot product en-
tails 3 multiplications and 2 additions, the total number
of multiplications and additions required are:

$$6(E_P + E_Q) + 3(V_P E_Q + E_P V_Q) +$$

$$6(F_P + F_Q) + 3(F_P V_Q + V_P F_Q);$$ (13)

$$3(E_P + E_Q) + 2(V_P E_Q + E_P V_Q) +$$

$$3E_P E_Q + 2(F_P + F_Q) + 7(F_P V_Q + V_P F_Q),$$ (14)

actively.

Assuming that both the number of vertices and the
number of faces are approximately half the number of
vertices, the dominating quadratic term for multiplications
is $m n$ and that for additions is $5.5 m n$, m and n being
number of edges in one and the other polyhedron.

Distance bounds and collision
detection

The simplest approach to detect collisions between move-
ment objects is timeslicing, that is checking for interference
at fixed time intervals. Unfortunately, collisions are
arbitrarily brief and may begin and end between two timeslices. Thus, this approach has an implicit
off cost between efficiency (number of timeslices) and
speed, which can be a disadvantage in the validity of collision detection.

Alternative approaches to collision detection through
sliding are the swept volume approach and four-
dimensional interference detection [5].

Another approach arises when distances between the
objects involved are available. Separation distances are
useful both as guiding heuristics for search-based path
planning algorithms [11] and for obstacle avoidance al-
gorithms based on potential functions [14]. Even if the
computed distance between two given objects is smaller
than the actual distance but has the cor-
sign, then a spatial interval where no collision can
occur is obtained. Using an inexpensive lower
bound which requires more timeslices along a path may
be more efficient than using an accurate but expensive
[26] separation distance which requires less timeslices.

This is the approach taken in [8], in which the
distance between enclosing solids is a lower bound on
the distance between the enclosed solids, and also the
bound taken here.

The usual way of computing distances between non-
convex polyhedra relies again on a decomposition into
convex pieces [12], and then optimization techniques are
used to find the distance between the convex pieces [4].

It would be desirable to compute separation distances, or
distance bounds, directly from the representation of
general polyhedra used in typical solid modelling sys-
tems. In what follows we derive this capability from the
predicate for interference detection presented in the
preceding section.

When the goal is motion planning, and not just static
interference detection, the original real-valued forms
that led to the predicates for basic contacts (refer to
equations (2) and (3)) become of great interest. They
can be easily converted into functions of the relative
configuration of the two polyhedra. This configuration
consists of a relative position $x \in \mathbb{R}^3$ and a relative or-
orientation $q \in SO(3)$, where $SO(3)$ is the group of
three-dimensional rotations. Thus, from (2) and (3), we get
two real-valued functions $A_{b_1 f_1}(x, q)$ and $B_{e_1 e_2}(x, q)$.

Note that if f_j in (2) is taken to be a normalized
vector, then the function $A_{b_1 f_1}$ provides the euclidean
distance between vertex b_1 and the plane supporting face
f_j. Analogously, if $e_1 \times e_2$ in (3) is a normalized vector,
then the function $B_{e_1 e_2}$ provides the euclidean distance
between the lines supporting edges e_1 and e_2.

Now, as was pointed out in [7, § 5.1.1], more com-
plex predicates built upon the two basic ones above can also
be transformed into functions by just replacing logical
AND by the min function and logical OR by the
max function. The XOR functional form, i.e. that corresponding to $(a \oplus b)$ is therefore:

$$
\max(\min(a, -b), \min(-a, b)) =
\min(\max(a, b), -\min(a, b)) =
\begin{cases}
+\min(\lvert a \rvert, \lvert b \rvert), & \text{if } a \cdot b < 0 \\
-\min(\lvert a \rvert, \lvert b \rvert), & \text{otherwise}
\end{cases}
$$

Thus, the functional form corresponding to predicate
(4) - which evaluates the **interference between an
edge e_0 and the plane supporting a face f_1** is:

$$
\min(\max(A_{b_1 e_0 f_1}, A_{b_1 e_0 f_1}(-e_0 f_1)), -\min(A_{b_1 e_0 f_1}, A_{b_1 e_0 f_1}(-e_0 f_1))) =
\begin{cases}
+\min(\lvert A_{b_1 e_0 f_1} \rvert, \lvert A_{b_1 e_0 f_1}(-e_0 f_1) \rvert), & \text{if } e_0 \text{ intersects} \\
\text{the plane supporting } f_1 \\
-\min(\lvert A_{b_1 e_0 f_1} \rvert, \lvert A_{b_1 e_0 f_1}(-e_0 f_1) \rvert), & \text{otherwise}
\end{cases}
$$

where the dependency on (x, q) has been dropped to ease the notation.

The geometric interpretation of this function is that
it is positive when the edge and the plane intersect and
negative otherwise. Moreover, provided f_1 is a normalized
vector, the absolute value of function (16) is the eu-
clidean distance from the plane to the closest endpoint.
A lower bound instead of the actual euclidean distance is obtained due to the fact that type-A functions provide vertex-plane distances which are lower bounds on the actual vertex-line distances (from vertices δ^*e_j, δ^*e_j to the line supporting edge e_0) as well as the fact that type-B functions provide line-line distances which are lower bounds on the actual line-edge distances (from the line supporting edge e_0 to edges e_j). The minimum of all vertex-line distances and line-edge distances would be the actual euclidean distance between a line and a face.

In sum, the functional form corresponding to predicate (8) is:

$$\min (\ smin(A_{00+e_0,f_1}, A_{00-e_0,f_1}),$$
$$smin_{e_j \in \partial f_1}(\min (\ smin(A_{00+e_j,f_0}, A_{00-e_j,f_0}),$$
$$smin(A_{00-e_j,f_0}, B_{e_0,e_j}))).$$

(19)

Analogously, the functional form corresponding to predicate (9) is:

$$smin_{f_1 \in P}(\min (\ smin(A_{00+e_j,f_1}, A_{00-e_j,f_1}),$$
$$smin_{e_j \in \partial f_1}(\min (\ smin(A_{00+e_j,f_0}, A_{00-e_j,f_0}),$$
$$smin(A_{00-e_j,f_0}, B_{e_0,e_j})))).$$

(20)

Therefore, by taking the maximum of function (19) over all edges of one polyhedron and all faces of the other and vice-versa, and then taking the maximum again of the value just obtained and that resulting from evaluating function (20) over all vertices of both polyhedra, a lower bound on the amount of intersection between two non-convex polyhedra is obtained.

A lower bound on the distance between two objects is well-behaved if it takes the value zero only when the two objects are in contact, and it grows as fast as possible with the distance. The lower bound we have derived can be tuned to satisfy both conditions.

Note that the lower bound can take the value zero only when the plane supporting face f_0 in (18) contains a vertex of the other polyhedron. The other degenerate situation in which the line supporting edge e_0 meets the line supporting an edge e_j of face f_1, leading to $B_{e_0,e_j} = 0$, does not nullify the whole function because $smin(A_{00+e_j,f_0}, A_{00-e_j,f_0})$ must be non-zero if we are not in the preceding case. Of course, this situation would never arise if general position is assumed.

Anyway, the quality of the lower bound can be improved (i.e. the lower bound can be made higher and, in particular, non-zero but at a point) by appropriately choosing the plane Π_0 containing edge e_0 (refer to Section 4). In fact, this plane has been taken arbitrarily to be the plane supporting a face of the polyhedron (face f_0 in (7)) leading to somewhat arbitrary absolute values of the type-A functions in (18).
by choosing P_0 to be the plane containing e_0 that maximizes the distance to the closest vertex of face f_1, the derived lower bound would be well-behaved in the sense above. Depending on the trade-off between the cost of computing this plane and the accuracy needed for the lower bound, the plane can be computed always or only when the value of the lower bound is below a given threshold distance. There are also procedures for approximating this plane instead of computing it exactly. These obtained bounds lead to collision-free translation paths. If the moving object is required to rotate, and rotation is expressed with respect to an axis of rotation, the rotation bound can be derived using the transformation on the vertex of the moving object most distant from the axis.

7 Implementation

The described algorithm has been implemented within the frame of the robot simulator presented in [23], not for interference detection, but also to pick out geometric elements from the screen. It currently runs on a Siemens Graphics workstation using GL as graphics library. In this library (like in most others, such as CORE P3), a face is a contour in 3D filled with a given color. Thus, a face with holes must be described as a single contour by adding as many edges as needed. Note that the above algorithm also works in these situations without any change.

Space limitations prevent us from elaborating on the different pruning strategies we have developed to cut down the computing time when the simplicity of the situation permits. Just to provide a flavor of what these strategies are, let us mention that they belong to three classes: logical, functional and geometrical. Logical pruning is to stop evaluating an AND predicate (alternative, an OR predicate) when one of the clauses is false (altern., true). Functional pruning is an adaptation of $\alpha - \beta$ pruning to the particular type of XOR graphs we have. Finally, the most particularized type of pruning is that relying on geometric constraints. An example is the extension of the applicability constraints developed in [10] for convex polyhedra, to some non-convex situations.

Figure 4 displays a scene where a manipulation task, involving all the workpieces shown (which in total contain 2388 edges), is simulated. All workpieces are enclosed within spheres to reduce computational overhead when trying to detect interferences. The simulation of the whole task takes 16.95 seconds of CPU. 11.19 % of this time, that is 1.90 seconds, is devoted to detect possible interferences. In the actual implementation this involves 102407 calls to the routine that detects intersections between an edge and a face (corresponding to our key predicate (8)). This routine is executed in an average time of approximately 20 μs.

8 Conclusions and further research

In CAD-CAM and off-line robotic applications requiring high precision, the need to detect interferences between objects as accurately as possible often arises. Then, efficient algorithms to do so result in a substantial reduction in the overall time required by such applications.

Since non-convex polyhedra are often used to model industrial workpieces, the aim of this work has been to speed up the detection of interferences between such polyhedra. The speed-up is three-fold: 1) No auxiliary geometric entities are computed, contrary to the usual way of decomposing the polyhedra (or their faces) into convex entities. 2) The number of additions and multiplications performed is kept as small as possible by considering cross products as primitives and repeatedly using them in subsequent calculations (e.g. no product of two coordinates is computed twice). 3) Pruning strategies can be readily incorporated into the algorithm to avoid superfluous interference tests when the scene allows to do so.

The speed of the algorithm has not only been proved theoretically, but also tested experimentally. In our