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ABSTRACT
It has been recently shown that the singularity locus of a 3R

robot, and in particular its nodes and cusps, can be algebraically
characterized in terms of nested determinants. This neat and
structured formulation contrasts with the huge and often mean-
ingless formulas generated using computer algebra systems. In
this paper we explore further this kind of formulation. We present
two new results which we think are of interest by themselves.
First, it is shown how Chrystal’s method, used to obtain the resul-
tant of two quadratic polynomials, can be formulated as nested
determinants. Second, it is also shown how the coefficients of the
harmonic conic of two given conics, can also be expressed in the
same form. These results lead to new formulations for the inverse
kinematics of 3R robots, their singularity loci, their nodes, and
some of their high-order singularities.

INTRODUCTION
The regional part of most wrist-partitioned robots is based

on a 3R robot meeting some geometric conditions to make its
inverse kinematics reduce to the solution of quadratic equations.
One important consequence of this simplification is that these
robots have to pass through a singularity to change their work-
ing mode (change from one inverse kinematic solution to an-
other). Nevertheless, it has been shown how generic 3R robots
can change their working modes without meeting any singular-
ity, if at least one point in its workspace has exactly three inverse

∗Address all correspondence to this author.

kinematic solutions (corresponding to a cusp point in its singu-
larity locus). Actually, the number of cusps provides a lot of
information about the topology of the singularity locus and, as a
result, about the global properties of the manipulator suchas the
existence of voids and of 4-solution regions [1–3]. This obser-
vation reveals that a precise understanding of the nature ofthe
singularity loci of generic 3R robots can assist in the design of
industrial robots [4].

Despite what it might seem at first glance, the analysis of the
singularities of generic 3R robots is a huge task. This is whythis
analysis has been limited to 3R robots whose consecutive joint
axes are mutually orthogonal (usually known as orthogonal 3R
robots). The first attempt to classify 3R manipulators with or-
thogonal joints was presented in [5]. Five surfaces were found
to divide the manipulator parameter space into cells with con-
stant number of cusp points. The equations of these surfaces
were derived as polynomials in the DH-parameters using Groeb-
ner bases. A physical interpretation of this theoretical work was
conducted in [6] where the existence of extraneous surface equa-
tions was detected, and where additional features in the classi-
fication such as genericity [7] and the number of aspects were
took into account. The complete classification of orthogonal 3R
manipulators was established for the first time on the basis of the
number of cusps and nodes in the singularity locus in [2,8].

The use of algebraic geometry methods applied on alge-
braizations of the problem based on DH parameters thus has
important limitations. This motivated our quest for findingal-
ternative formulations that could be used to study general 3R
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robots. As a result, we proposed a distance-based formulation
in [9]. One important feature of this formulation is that that
the nodes and cusps in the robots’ singularity loci can be alge-
braically characterized in terms of nested determinants. In this
paper we explore further this kind of formulation. At a pure the-
oretical level, it is shown how the coefficients of the resultant of
two quadratic polynomials, and the coefficients of the harmonic
conic of two given conics, can be both formulated as nested de-
terminants. These results lead to new formulations for the inverse
kinematics of 3R robots, their singularity loci, their nodes, and
some of their high-order singularities.

The rest of this paper is structured as follows. In the next
section, we briefly review the results presented in [9] that are
expressible as nested determinants. They refer to the robot’s sin-
gularity locus, and its nodes and cusps. Then, we show how
the coefficients of the closure polynomial of generic 3R robots
can also be expressed as nested determinants using Chrystal’s
method. This result leads to a new formulation for the singularity
locus as the discriminant of this closure polynomial, and a sim-
ple way to detect swallowtail higher-order singularities.All ob-
tained necessary and sufficient conditions are also expressed as
nested determinants. Then, we show how the coefficients of the
harmonic conic of two given conics can be expressed as nested
determinants. This result permits to have a new way to charac-
terize the nodes of the singularity locus of 3R robots. Finally, we
present two examples to clarify some of the presented results.
Finally, we conclude with some prospect for future research.

SUMMARY OF KNOWN RESULTS EXPRESSED AS
NESTED DETERMINANTS

Consider the 3R robot depicted in Fig. 1. We have placed
in each revolute axis two points. Their exact location alongthe
revolute axes is irrelevant as long as they are far apart to avoid
numerical instabilities. Let us denote these points defining the
joints locationsP1, . . . ,P7. Now, observe that the distances be-
tween the points between two consecutive axes do not depend on
the robots’ configurations.

According to the notation used in Fig. 1, the distances be-
tween the set of points{P1,P2,P3,P4,P7} or {P3,P4,P5,P6,P7}
are not independent because they are embedded inR

3. This
dependency, using the theory of Cayley-Menger determinants,
translates into the following algebraic conditions:
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FIGURE 1. A GENERAL 3R ROBOT AND ASSOCIATED NOTA-
TION.
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wheresi, j stands for the squared distance betweenPi andPj . The
above two equations are quadratic forms in the unknown dis-
tancess3,7 and s4,7. They actually represent two real ellipses,
A : xAxT = 0 andB : xBxT = 0, wherex = (s3,7,s4,7,1) and

A =





a1 c1 d1

c1 b1 e1

d1 e1 f1



 and B =





a2 c2 d2

c2 b2 e2

d2 e2 f2



 . (3)

The entries ofA and B can, in turn, be expressed in terms of
determinants (see Table I).

A 3R robot is in a singularity if, and only if, the following
discriminant vanishes

∆1 =
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and
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∣

∣

∣

∣

∣

∣

a1 c1 d1

c1 b1 e1

d1 e1 f1

∣

∣

∣

∣

∣

∣

= det(A), (6)

3l2 =

∣

∣

∣

∣

∣

∣

a2 c1 d1

c2 b1 e1

d2 e1 f1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a1 c2 d1

c1 b2 e1

d1 e2 f1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a1 c1 d2

c1 b1 e2

d1 e1 f2

∣

∣

∣

∣

∣

∣

(7)

3l1 =

∣

∣

∣

∣

∣

∣

a1 c2 d2

c1 b2 e2

d1 e2 f2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a2 c1 d2

c2 b1 e2

d2 e1 f2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a2 c2 d1

c2 b2 e1

d2 e2 f1

∣

∣

∣

∣

∣

∣

(8)

l0 =

∣

∣

∣

∣

∣

∣

a2 c2 d2

c2 b2 e2

d2 e2 f2

∣

∣

∣

∣

∣

∣

= det(B). (9)

The robot is in a cusp singularity if, and only if,δ2 = 0 and
δ3 = 0.

Finally, using Silvester’s criterion, the robot is in a nodesin-
gularity if, and only if, the following overconstrained system of
equations has a root





p1 q1 r1

p2 q2 r2

p3 q3 r3
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 = 0 (10)
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OBTAINING A CLOSURE POLYNOMIAL
If we eliminate, for example,s3,7 from the system formed by

Eqns. (1) and (2), a quartic closure polynomial ins4,7 is obtained.
The result, in its expanded version, cannot be included herefor
space limitation reasons, but it can be easily reproduce using a
computer algebra system. Next, we show how this quartic clo-
sure polynomial can be compactly expressed using nested deter-
minants by following the little known Chrystal’s procedure[10,
pp. 416-417].

Let us define the matrix

W =

(

a1 b1 2c1 2d1 2e1 f1
a2 b2 2c2 2d2 2e2 f2

)

(14)

andwi j , i 6= j, the minor ofW containing its columnsi and j.

For example,w31 = 2
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. Then, tediously following by hand

Chrystal’s procedure, it is possible to prove that the resultant of
Eqns.(1) and (2) can be expressed as:

As4
4,7 +4Bs3

4,7+6Cs2
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The roots of Eqn. (15) determine the inverse kinematics so-
lutions of the analyzed 3R robot. In general, this equation will
have four different roots but, when some roots coincide, thefol-
lowing possibilities arise:

1. If two roots coincide, the robot is in a standard singularity.
2. If there are two pairs of coincident roots, the robot is in a

node of its singularity locus.
3. If three roots coincide, the robot is in a cusp of its singularity

locus.
4. If four roots coincide, the robot is in a so-called swallowtail

singularity, a kind of high-order singularity.

In the following two sections, we derive a new characteriza-
tion of standard singularities, as well as swallowtails, using the
resultant polynomial in Eqn. (15).

AN ALTERNATIVE FORMULATION FOR SINGULARI-
TIES

Using the results presented in [11, pp. 264-267], the dis-
criminant of Eqn. (15) can be expressed as:

∆2 =
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(16)
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TABLE 1. COEFFICIENTS OF THE ELLIPSESA AND B EXPRESSED AS DETERMINANTS OF SQUARED DISTANCES BETWEEN
P1, . . . ,P7. OBSERVE THAT THE ORIGINAL PRESENTATION IN [9] CONSTAINS A TYPO IN THE DEFINITIONS OFf1 AND d2.
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∣

∣

. (17)

Then, the robot will be in a singularity if, and only if,∆2 van-
ishes. This is an alternative formulation to that given, as ex-
plained above, by∆1 = 0.

Although∆1 = 0 and∆2 = 0 are equivalent for our purposes,
the former is preferable because it is obtained from the discrim-
inant of a polynomial of order three, instead of order four. The
interest of the latter condition comes from the fact that allthe
entries of∆2 vanish in a swallowtail singularity, as explained be-
low.

SWALLOWTAIL SINGULARITIES
In [9], it is said that higher-order singularities correspond to

those cases in which the inverse kinematics of a 3R robot has four
repeated solutions. Nevertheless, this is only a necessaryand suf-
ficient condition for a kind of higher-order singularities to occur
known as swallowtail singularities. Two other kinds of higher-
order singularities can occur in the root loci of 3R robots, known
as beaks and lips, which do not satisfy this condition (see [12]
for details). Since a swallowtail (four coincident roots) can be
seen as the coincidence of a cusp (three coincident roots) and a
node (two pairs of coincident roots), we can readily character-
ize them using the criteria presented above. However, we can
take advantage of the explicit expression we have just derived
for the resultant polynomial in Eqn. (15) and its discriminant in
Eqn. (16). Indeed, when the inverse kinematics of the 3R robot
has four coincident solutions, the polynomial in Eqn. (15) be-
comes a perfect quartic. That is, it can be expressed as:

(s4,7 + λ )4 = s4
4,7 +4λ s3

4,7 +6λ 2s2
4,7 +4λ 3s4,7 + λ 4 = 0. (18)
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Then, identifying the coefficients of this polynomials withthose
of the polynomial in Eqn. (15), we conclude that

A
B

=
B
C

=
C
D

=
D
E

=
1
λ

(19)

where−λ is the root of the perfect quartic. Therefore, in a per-
fect quartic allωi ’s vanish, but observe that they are not indepen-
dent. Actually, they should satisfy, for example, the syzygy [11,
p. 266]

ω1ω5−ω2ω4 + ω0ω3 = 0. (20)

As a consequence, out of the total six, only three need to vanish.
This is a much more convenient condition than imposing, at the
same time, the conditions for a node and a cusp. This will be
exemplified in the second example given below.

AN ALTERNATIVE FORMULATION FOR NODES

In our previous work [9], it is said that Salmon gave, in 1848,
the necessary and sufficient condition for a node to occur in our
singularity loci but this condition was not expressible as nested
determinants [13]. This lead us to use a formulation derivedfrom
a little known result presented by Sylvester in 1850 [14]. How-
ever, a deeper analysis of Salmon’s condition has revealed that,
as it is explained below, it can indeed be expressed in terms of
nested determinants.

Two arbitrary conics define what is known as their harmonic
conic [15, p. 157-8]. This conic is the locus of a point such that
the tangents from it to two given conics form an harmonic pencil.
Although not explicitly referenced by this name, this conicwas
introduced by Salmon in his treatise on conic sections [13, Art.
334]. The important result for us is that, if the harmonic conic
defined by the two conics given by the two matrices in Eqn. (3)
is in the pencil defined by these two conics, then the robot is in a
node of its singularity locus. This condition is next expressed as
nested determinants.

Using somewhat tedious manipulations, it can be verified
that the harmonic conic defined by the two conics with the matri-
ces given in Eqn. (3) can be expressed asH : xHxT = 0 where

H =





a h g
h b f
g f c



 (21)

and

a=

∣

∣

∣

∣

B1 F2

F1 C2

∣

∣

∣

∣

+

∣

∣

∣

∣

B2 F1

F2 C1

∣

∣

∣

∣

, b=

∣

∣

∣

∣

A1 G2

G1 C2

∣

∣

∣

∣

+

∣

∣

∣

∣

A2 G1

G2 C1

∣

∣

∣

∣

,

c=

∣

∣

∣

∣

A1 H2

H1 B2

∣

∣

∣

∣

+

∣

∣

∣

∣

A2 H1

H2 B1

∣

∣

∣

∣

, f=

∣

∣

∣

∣

A1 H2

G1 F2

∣

∣

∣

∣

+

∣

∣

∣

∣

A2 H1

G2 F1

∣

∣

∣

∣

,

g=

∣

∣

∣

∣

H1 B2

G1 F2

∣

∣

∣

∣

+

∣

∣

∣

∣

H2 B1

G2 F1

∣

∣

∣

∣

, h=

∣

∣

∣

∣

H1 F2

G1 C2

∣

∣

∣

∣

+

∣

∣

∣

∣

H2 F1

G2 C1

∣

∣

∣

∣

.

and

Ai =

∣

∣

∣

∣

bi fi
fi ci

∣

∣

∣

∣

, Bi =

∣

∣

∣

∣

ai gi

gi ci

∣

∣

∣

∣

, Ci =

∣

∣

∣

∣

ai hi

hi bi

∣

∣

∣

∣

,

Fi =

∣

∣

∣

∣

ai gi

hi fi

∣

∣

∣

∣

, Gi =

∣

∣

∣

∣

hi bi

gi fi

∣

∣

∣

∣

, Hi =

∣

∣

∣

∣

hi gi

fi ci

∣

∣

∣

∣

.

Now, let us define the matrix

X =





a1 b1 c1 f1 g1 h1

a2 b2 c2 f2 g2 h2

a b c f g h



 (22)

ξi, j ,k, 1≤ i < j < k ≤ 6, the minor ofX containing the columns
i, j, andk.

Finally we conclude thatC1, C2 andH are on a pencil of
conics if, and only if,X is not full rank. In other words, in a node
of the singularity locusξi, j ,k = 0 for all possible values ofi, j,
andk.

1 EXAMPLE I: PARADOXICAL NODES IN ORTHOGO-
NAL 3R ROBOTS
Let us consider an orthogonal 3R robot with the following

DH parameters

θi di ai αi

θ1 0 1 π/2
θ2 3 3 π/2
θ3 0 9 0

The singularities of this robot plotted both in the(s1,7,s2,7)
plane and in the robot’s workspace appear in Fig. 2(a) and
Fig. 2(b), respectively. Besides the nodes located on thez-axis
of the workspace, which are obtained when mapping from the
distance space to the workspace [9], this singularity locushave
4 nodes and 4 cusps. If we apply the condition derived from
Sylvester’s criterion, which reduces to the computation ofthe
intersection between two pairs of a conic and a line, the result
appears in Fig. 2(c) and Fig. 2(d). Two nodes are real (Fig. 2(c))
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FIGURE 2. PRESENCE OF PARADOXICAL NODES IN THE SINGULARITY LOCUS OF THE 3R ROBOT ANALYZED IN EXAMPLE I. (A)
SINGULARITY LOCUS IN THE DISTANCE SPACE. (B) SINGULARITY LOCUS MAPPED ONTO THE WORKSPACE. (C) AND (D) NODES
DETECTED USING SYLVESTER’S CRITERION. (E) NODES DETECTED USING SALMON’S CRITERION. (F) THE UNDETECTED NODES
ARE ACTUALLY HIGHER-ORDER SINGULARITIES WHICH DESAPPEAR WHEN INTRODUCING A PERTURBATION IN THE ORTHOG-
ONALITY OF THE ROBOT.
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and the other two are imaginary (Fig. 2(c)). If we apply the con-
dition presented here, derived from Salmon’s criterion, the result
appears in Fig. 2(e). In this case, we have plotted the curves
defined byξ1,2,3 = 0, ξ2,3,4 = 0, ξ3,4,5 = 0, andξ4,5,6 = 0. These
four curves intersect at the same two points. That is, both meth-
ods detect the same two nodes while the other two remain un-
detected. The problem with these undetected nodes is that they
behave as nodes as long as the robot is orthogonal. If we per-
turb the orthogonality of the robot —for example, if we setα2

to π/2.05 instead ofπ/2— the new singularity locus appears
in Fig. 2(f). Observe how the previously undetected nodes have
disappeared, but we know that standard nodes are stable withre-
spect to “small perturbations”. The explanation to this apparent
paradox is that the undetected nodes are not standard nodes but
higher-order singularities. Moreover, we can also say thatthey
are not swallowtail singularities because a swallowtail appears as
the coincidence of a node and a cusp and we have just seen that
they are not detected as nodes.

What seem to be stable nodes and cusps in a given subspace
are not necessarily so in the ambient space of all possible 3R
robots. This seems to be a flaw in some previous analyses of
orthogonal 3R robots. As a consequence of this, not all appar-
ent nodes in the singularity locus of an orthogonal 3R robot be-
have in the same way. While some nodes are stable and they are
detected by either using Sylverter’s or Salmon’s criterion, some
others are unstable as they disappear under small perturbations
in the robot’s orthogonality. Actually, they must be classified as
higher-order singularities. In the light of this, the examples pre-
sented in [12], for the three kinds of higher-order singularities in
the singularity locus of orthogonal 3R robots, should be revisited.

2 EXAMPLE II: SWALLOWTAILS
Let us consider an orthogonal 3R robot with the following

DH parameters

θi di ai αi

θ1 0 1 π/4
θ2 1/2 4/5 π/2
θ3 5/3 1 0

The singularities of this robot, plotted in the(s1,7,s2,7) plane,
appear in Fig. 3(center). On the same drawing we have plotted
the curves defined byδ2 = 0 (in red) andδ3 = 0 (in green). Both
curves intersect at four points: the cusps of the singularity locus.
To better understand what happens at these four points, we have
plottedA (in blue) andB (in red), as well as the harmonic conic
they define (in green) at each of them. The two close cusps are
so close as to almost form a swallowtail. In a swallowtail the
four points of intersection betweenA andB coincide in single
point. In this caseA andB are said to have an hyper-osculating
contact.

CONCLUSION
In this paper we have explored a bit further the kinematics of

generic 3R robots using nested determinant formulations. New
results concerning closure polynomials, singularity loci, nodes,
and swallowtail higher-order singularities have been presented.
However, in order to give a complete characterization of thesin-
gularities of 3R robots in terms of nested determinants, it re-
mains to obtain such a kind of characterization for beaks and
lips higher-order singularities. Our current efforts are aimed at
this.

The characterization of higher-order singularities have been
revealed much more important than initially suspected, as we
have proved through a simple example. Classifying 3R robots
in terms of the number of nodes and cusps in their singularity
loci seemed meaningful because nodes and cusps are assumed to
be stable features of these loci, in the sense that small variations
in the parameters defining the robot lead to small perturbations in
their locations, but they still remain there. This was the standard
approach when analyzing orthogonal 3R robots. Nevertheless,
perfect orthogonality cannot be guaranteed in practice andsome
of the nodes in the singularity locus behave as higher-ordersin-
gularities when orthogonality errors exist. As a result, taking into
account higher-order singularities seems to be unavoidable when
characterizing the singularity loci of 3R robots with some kind
of constraint in their geometry.
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