622

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 6, DECEMBER 1988

A Group-Theoretic Approach to the Computation
of Symbolic Part Relations

FEDERICO THOMAS ano CARME TORRAS

Abstract—When a set of constraints is imposed on the degrees of
freedom (d.o.f.) between several rigid bodies, finding the configuration
or configurations that satisfy all these constraints is a matter of special
interest. The problem is not new and has been discussed, not only in
kinematics, but also more recently in the design of object level robot
programming languages. In this last d several languages have been
developed, from different points of view, that are able to partially solve
the problem. A more general method than those previously proposed
based on the symbolic manipulation of chains of matrix products is
derived using the Theory of Continuous Groups.

I. INTRODUCTION

TRUE AUTOMATION of design and manufacturing

processes will not be attained until man-machine
interaction is drastically reduced and simplified, as compared
to current standards. A high-level object level robot program-
ming language is of no use if the burden of specifying the
object models and their spatial relationships outweights the
effort of programming robot motions in detail.

In the assembly domain, it does not suffice to make the
workpiece models (possibly produced by a CAD system)
available in the programming environment, but a description
of the way the different pieces should be fitted together is also
required. This description can be provided in full detail by
either the designer or the programmer, or be automatically
inferred from constraints derived from both the shapes of the
workpieces involved in the assembly and the mechanics of the
assembly operations themselves.

The method we have developed consists of propagation,
combination, and satisfaction of three types of constraints:
shape-matching constraints between the mating parts of
workpieces, constraints on the degrees of freedom (d.o.f.)
between workpieces, and nonintersection constraints [16]. In
this paper, we will confine ourselves to the detailed descrip-
tion of the procedure developed to deal with constraints on the
d.o.f.

Let us look at an example that illustrates the sorts of
problems to be solved. According to Fig. 1 and imposing that
face P, be against P, and P, against Pj3, is there any
configuration satisfying both constraints? If the answer is yes,
how many d.o.f. remain between the box and the cube? Which
are they? Which are the values of the constrained d.o.f.?
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Fig. 1. Example used to illustrate the sorts of problems to be solved.

Previous work to solve these problems within the robotics
domain has been carried out by Taylor [15], Popplestone and
his colleagues [2], [3], [9], [12], [13], and Mazer [10].

Taylor deals with both constraints on the d.o.f. (equalities)
and nonintersection constraints (inequalities), and applies a
linear programming methodology to solve the resulting equa-
tions numerically. Because of the linearization procedure
used, his method can only deal with one rotational d.o.f. that is
confined to envolve within the union of narrow ranges. Taylor
himself points out that his method is better suited for tackling
problems involving only small inaccuracies in the positioning
of objects, rather than those involving complete indeterminacy
along several d.o.f. As possible applications, he suggests the
determination of the most critical tolerances between work-
pieces during the design phase and the construction of
appropriate fixtures.

Popplestone and his colleagues have only dealt with
constraints on the d.o.f. They have explored two methodolo-
gies for chaining and merging constraints of this type: A
system of rewriting rules [12] and a table look-up procedure
[31, [9]. The slowness of the former methodology led to the
development of the second one, whose worst shortcoming
derives from the non-closeness of the set of constraints on the
d.o.f. considered under the composition operation and, thus,
not all combinations of constraints can be tabulated. Their
procedures have been implemented as part of the RAPT
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interpreter—an object level robot programming system—and
their aim has not been to infer feasible assembly configura-
tions, but to derive the relative positions and orientations of
the workpieces and the robot through the different stages in the
performance of a task.

Mazer [10] has followed a different approach in the
development of the LM-Geo interpreter—another object level
robot programming system. The main difference between his
and the former systems is the use of vector equations as
description of the problem.

This paper is structured as follows. In Section II the notion
of displacement is introduced, as well as some of its basic
properties and the notation used throughout this paper. In
Section I1I, a classification of the subgroups of displacements
into conjugation classes is presented allowing us to represent—
in Section IV—spatial relationships as compositions and
intersections of subgroups, an idea already sketched by
Popplestone [13]. Finally, a simple symbolic procedure to
obtain numerical values for the constrained d.o.f. is given in
Section V.

II. HoMOGENEOUS TRANSFORMATIONS: GENERALITIES AND
NOTATION

The representation of objects in an n-dimensional space
using homogeneous coordinates needs a space of dimension
n + 1 from which the original space is recovered by
projection. For example, the vector v = x,i + yj + z;k,
where i, j, k are unit vectors along the Cartesian coordinate
axes, is represented using homogeneous coordinates as a
column vector

X
v= y
Zz
t
so that
x1=x/t
y=y/t
n=z/t

Henceforth we will normalize = 1.

A transformation H is a4 X 4 matrix so that, the image of a
given point v under this transformation is represented by the
matrix product # = Hv.

A. Translations

A transformation H representing a translation by a vector d
= ai + bj + ck will be

1 0 0 a
H=Trans (d)=Trans (a, b, ¢)= 8 (1) (1) Ic)
00 01

Thus given a vector v = (x, y, z, 1), its image & under H

623

will be

x+a

y+b

z+c
1

u=Hv=

It is easy to demonstrate that the set of all translations
constitutes a group under the matrix product operation, which
will be denoted by T.

B. Rotations

The transformations representing rotations about the x, y,
and z axes by angles ¥, 0, or ¢, respectively, are

1 0 0 0
10 cosy —siny 0
Rot (x, ¥)= 0 siny cosy O
0 o0 0 1
[cos 6 0 —sinf 0]
_ 0 1 0 0
Rot (5, 6)= sind 0 cosd 0
i 0 0 0 IJ
cos¢ —sing 0 0]
Rot (z, ¢)= | %7 ¢ cos ¢ (1) g
0 0 01

Each element ij of the 3 X 3 upper left submatrix is equal to
the cosine of the angle between the i-axis of the original
coordinate frame and the j-axis of the rotated one.

These matrices, as well as their products, are orthogonal
matrices with determinants equal to + 1. They also constitute a
group under matrix multiplication which will be denoted by
S,.

C. Displacements

The transformations representing rotations and translations
can be composed and the resulting matrices are said to
describe displacements. The set D of all displacements has the
characteristic properties of a continuous group of dimension 6.

The following properties must be emphasized:

® Decomposition of a displacement: Every displacement
H can be decomposed into the product of a translation and a
rotation, so that

H=Trans (d)H=Trans (a, b, )H, VvHE D (1)
where H is the rotation component of the displacement H or,
in other words, is the matrix resulting from setting the first
three elements—a, b, and c—of the last column of H to zero.

® Composition of n displacements:

Hl PR Hi ...1]’l

=Trans (d,)H, - - Trans (d,)H,
=Trans (d,+ H,d,+---+HH, --- H,_,d,)

-HH, - A, vH, --- H, € D. [¥))



624

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 6, DECEMBER 1988

TABLE 1
CLASSIFICATION OF THE SUBGROUPS OF D INTO CONJUGATION CLASSES

Dimension Geometric Elements Associated
(d.o.f.) Notation Constraint of Definition Direct and Inverse Symbolic Displacements Lower Pair
1 ,  rectilinear a direction of translation Trans (x, 0, 0) (P) Prismatic
translation given by a vector v Trans (—x, 0, 0)
R,  rotation around an axis of Twix () (R) Revolution
an axis revolution u Twix (—y)
H,, helicoidal an axis of revolution u Trans (x, 0, 0) Twix ( px) (H) Screw
movement and a thread pitch p Trans (—x, 0, 0) Twix (- px)
2 Tp  planar a plane P Trans (0, y, 2)
translation Trans (0, —y, —2)
C, lock an axis u Trans (x, 0, 0) Twix (y) (C) Cylindrical
movement Trans (—x, 0, 0) Twix (—y)
3 T spatial Trans (x, y, 2)
translation Trans (—x, —y, —2)
Gp  planar a plane P Trans (0, y, z) Twix (¥) (E) Plane
sliding Trans (0, —y cos y —zsiny, ysin ¢ —z cos ¥) Twix (—y)
S, spheric a point 0 in Twix (¥) XTOY Twix (¢) XTOY Twix (3) (S) Spherical
rotation the space Twix (=9 — 7) XTOY Twix (~£) XTOY Twix (—y)
Y., Y movement a direction of revolution v Trans (x, y, z) Twix ( px)
and a thread pitch p Trans (—x, —ycos ¥ —zsin ¢, y sin y —z cos y) Twix (—px)
4 X, X movement a direction of Trans (x, y, z) Twix (¢)
revolution v Trans (—x, —y cos ¢ —zsin y, y sin ¢ —z cos ¢) Twix (— )
Since H,, H,, -+ and H, belong to S,, their product still III. SuBGROUPS OF THE GROUP OF DISPLACEMENTS AND

represents a spheric rotation.

If a transformation is postmultiplied by another transforma-
tion, the latter is applied with respect to the transformed frame
described by the former. Conversely, if a transformation is
premultiplied by another one, the latter is applied with respect
to the reference frame [11]. Other authors [12], in using the
transposes of the above defined transformations, adhere to the
inverse rule.

e Inverse displacement: Because of the properties of
orthogonal matrices, the inverse displacement of H is

H-'=HA'Trans (-a, -b, —¢), VHED (3)

where H' denotes the transpose matrix of H.

D. Symbolic Operators
Let us define three symbolic operators [2] that will allow us
to describe any displacement.

e Trans (a, b, ¢). As it was stated above.

* Twix (). It is equivalent to transformation Ret (x, ¥).

* XTOY. This operator rotates the x-axis in such a way
that it becomes the y-axis. It is equivalent to Rot (z, 7/2).

Any displacement can be described using only these three
operators. Actually,
H=Trans (a, b, c) Twix () XTOY Twix (¢)
- XTOY Twix (9), vH € D. (4)

If the vector (1, 0, 0, 0)’ is an eigenvector of H, there is no
single solution for y and 8 (see Section V-B3). Then we can
take, as a convention, § = 0. Thus for example, we have

Rot (y, ) =Twix (1) XTOY XTOY. )

CONSTRAINTS ON THE d.0.f

A group is a set of elements closed under an associative
operation with an identity and inverse elements, as is the group
D of displacements. A subgroup S C D is a subset of D
which is itself a group under the same operation. The
composition of elements of D can be extended to the
composition of elements and subgroups. If S € D and D €
D, then the right coset S*D is the set {H-D|H € S}. The
left coset D-S and the two-sided coset D,-S-D, can be
similarly defined [8]. More generally, the composition of two
subgroups S-S, is defined as {D,-D,|D, € S|, D, € S,}.

Definition 1. Conjugation classes of subgroups of D.
Every such class is an equivalence class with respect to the
relation

S|~S2 e 1D € DISZ=DS1D‘1 (6)
S; and S; being subgroups of D.

An exhaustive classification of the subgroups of D into
conjugation classes can be carried out using classic methods of
analysis of finite dimension continuous groups {6]. A list of the
classes thus obtained is shown in Table I. Note that most of
those classes are associated with lower pair couplings [1].!

The chains of products of symbolic operators appearing in
the table represent the conjugation classes. These chains are
obtained, as in the RAPT system, assuming the following
conventions for the local coordinate frames of the geometric
elements of definition:

! When two bodies with possibility of relative movement keep contact along
a surface, it is said in kinematics that there exists a lower pair coupling
between them.
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TABLE II
CONDITIONS OF INCLUSION OF ONE SUBGROUP OF D INTO ANOTHER
(Adapted from Hervé [6].)

T, R, H,, Tr C, T G, So Y., X,
Tr ullP
Cu ullu’ uxiu ulxu’
T Yu vP
Gp u| P’ ul P P|P’
S, 0 € axis u
) ulv u=v,p=p' P 1L
Xy vu ullv’ ullv’ vP ullv’ yes P L v’ ullv’
D vu vu vu yes VP Yo Yu, Vp vu

vu, vp vP

u 1 P = u perpendicular to P.
u’ IXiu = u’ and u collinear.
ullv = u and v parallel.

¢ The origin of the local coordinate frame of a vertex
coincides with the vertex.

® The local coordinate frame of an edge has its x-axis
aligned with the edge.

® The local coordinate frame of a plane has its x-axis
normal to the plane and its origin on it.

Definition 2. Constraints on the d.o.f. Given a reference
frame, we call constraint to the chain of matrix products
resulting from premultiplying and postmultiplying the chain
representation of a conjugation class by constant displace-
ments.

In this paper we will only consider the limitations of
movement between two bodies which can be expressed as a
constraint or a product of constraints.

The set of all displacements obtained by assigning values to
the variables in a constraint constitutes a subgroup of D
belonging to the conjugation class whose chain representation
coincides with the constraint up to a premultiplication and
postmultiplication by constant displacements. If R is a
constraint, we denote the subgroup thus obtained by R¢ and
refer to it as the subgroup associated with R. Note that two
different constraints can have the same associated subgroup,
for instance (R~1)¢ = RO,

Many of the subgroups appearing in Table I are in turn
subgroups of other subgroups appearing in the same table. The
conditions of inclusion of one subgroup into another are stated
in Table II.

Table III shows the results of the operations of intersection
and composition of subgroups, for all the subgroups in Table I
whose intersection is neither the identity displacement nor any
of the two subgroups. The results of the composition are
expressed in regular form, i.e., as products of subgroups
whose intersection is the identity displacement.

The composition of subgroups of D is not, in general,
commutative, but $,-S, = S;-S iff S;-S; is also a subgroup
of D. For instance, R, T, = T,"R, = C, iff v|lu.

IV. GrarH OF SPATIAL RELATIONSHIPS: OPERATIONS OF
COMPOSITION AND INTERSECTION

In our system, each body is described by means of its parts
(volumetric primitives) and elements (faces, edges, and

vertices). Thus we have a set of bodies, parts, and elements, as
well as the constraints between them, represented by chains of
matrix products, constituting what is called a directed graph of
spatial relationships (g.s.r.), a hierarchical graph with four
levels (Fig. 2).

In order to simplify the treatment, all constraints between
either the elements or the parts of the bodies will be translated
into constraints between the reference frames of the bodies
themselves by premultiplying and postmultiplying by the
appropriate displacements. Moreover, since we are only
interested in the relationships between the bodies, the refer-
ence to the world are eliminated. This simplified directed
graph, whose nodes are bodies and whose edges are con-
straints, will be called a GR graph.

The basic operations to be carried out on the GR graph will
be the intersection and the composition of two constraints.
Both operations appear schematized in Fig. 3.

A. Composition and Intersection of Constraints

Let us assume a universe of three bodies—®,, ®,, and
®;—linked by two constraints—R,, and R,;—which, in
general, will have different associated subgroups. We want to
find out the dimension of R\3 = R,*R,; or, in other words,
the number of d.o.f. of the body ®; with respect to ®,. Since
an element of a group with a subgroup can be expressed as the
product of an element of the subgroup by another element, we
can write

Riy=Pyp My,  Ryu=My - Ny )
where MY, and M¢, is the same subgroup. Therefore, M,
where M, = M, My, still is the same subgroup and, if this
subgroup has the biggest dimension for which (7) are satisfied,
then

MZ=Rf, N R, ®
Moreover

Ri3=Ry; - Ry;=Py; - M, - Ny )]

Definition 3. Independence between constraints. Two
constraints are said to be independent if the intersection of the
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TABLE III
INTERSECTION AND REGULAR REPRESENTATION FOR THE COMPOSITION OF ALL PAIRS OF SUBGROUPS OF D WHOSE
INTERSECTION IS DIFFERENT FROM THE IDENTITY DISPLACEMENT

Conditions on the ~ Conditions on the

Groups to be Geometric Linking
Composed Elements Displacement Intersection Regular Representation
T Tp T,v=PNOP T
Tp-Gp: T,v=PNP X,v.LP
Gp:Gp T,v=PNP R, TR, ul Pu LP
Yoo T viP h # x1 T, v'|P,v Lv X,
Y,, G viIP I # 1 T, v'|P,v L X, R, u L P
Y, Yo, viv h # 21 T,-v” Lvv” L R, TR, ullv) u'llv’
Y, Cu ulv hi=0 T, Y., Ru :
C,Cy uflu’ I = x1 T, C,'R,

Ly #0orbhy #0
Tp-Cy u||P =0 Tu Tp R,
T-C, T, X, v|u
Gp:C, u||P L =0 T. Gp*R,
X, C, ufv h # 1 T, X,'R,
Y, Cy ullv Ih = 1 H,, X,
GpC, ulP Iy = 1 R, X,v1P
S, C, 0 € axisu I = z1 R, So-Tu

by =0

Ly =0
S,"Gp R,0€ axisu,u L P So'Tp
S, X, R, 0 € axis u, ul|v D
S50 S, R, u = 00'/|o0’| So'Ry Ry,

o' € axisu, 0’ € axisu’
Yoo Yop v|v’ h = =1 Tp P Ly X,
(p#p)
Yo Xo viv I # 1 Tp P L X,)R, u’|v’
Gp Yy, v.iP = 1 Tp X,
Gp X, vIP I # 1 Tr R, T-R,-ul P u'v
Gp'T Tr X,vl1P
Yoo T T X,
X, X, vfv I # 1 T R, TR, ullv, u'flv’
Ry Ry R;-R;
o e ™o => o wo
B By B3 By By
(a)
Ry RiNR;
B e =D Bo b
R;
(b)
Fig. 3. Operations on the GR graph. (a) Composition of constraints. (b)

w

Fig. 2. Graph of spatial relationships (g.s.r.) between two bodies with four
levels of hierarchy: World (W), bodies (® 4, ®p), parts (4;, A,, * -+, An,
By, B;, -+ -, By), and elements (ayy, * -, @15y, ***, Dty ***, Bmoy,)- The
arrows stand for spatial relationships, not for dependencies.

subgroups associated with each of them is the identity
displacement.

Definition 4. Regular representation. A composition of
constraints is said to be regular if it is the composition of
independent constraints.

Definition 5. Dimension of a constraint or composition

Intersection of constraints.

of constraints. The dimension of a constraint or composition
of constraints is the number of variables appearing in any of its
regular representations.

Notice that (9) is a regular representation for R;. It can be
also stated that

dim (R3)=dim (P;;) +dim (M;)+dim (N;)  (10)

and

dim (R)3)=dim (R;) +dim (Ry;)~dim (M;). (11)

If body ®,, still in the same example above, is rigidly linked
to B, forming a closed kinematic chain, the intermediate body

®, will only have the possibilities of movement given by
R N RS,
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B. Examples ‘

Example 1. The composition Gp-X,: The composition
of these subgroups, in terms of composition of constraints, can
be expressed as

R.=Trans (0, y, z) Twix ()L
- Trans (x’, y’, z’) Twix (¥) (12)

where L is the linking displacement between both con-
straints. On the other hand, Gp and X, can be decomposed

into subgroups as follows:
Gp=Tp " R,=R, - T,
[4 P u u P} (13)
X,=T R, =R, - T

withu L Pand u’|v.
When v L P, I;; # +1 (see Table II) and the only
possible simplification of R, is the following:

R.=Trans (x”, y”, z”) Twix ()L Twix (). (14)

The simplified term, Trans (0, y, z), corresponds to the
intersection of Gp and X,. Therefore, as can be checked in
Table III,

Gp- X,=X, " R,=R, - T R, =R, - X (15)

Gp N X,=Tp (16)

with 4 1 P. Notice that regular representations are not
unique.

Whenv L P, ullv, l;; = %1, and Gp is a subgroup of X,
(Table II). Here, the linking displacement is invariant with
respect to the x coordinate axis.? Consequently, R, can be
expressed as

R.=Trans (x”, y”, z") Twix (9)L’ Twix ()
=Trans (x”, y”, z") Twix (0+1{,/ )L’ 17)

where
L=L' Trans (0, 124, 134).

Notice that the necessary and sufficient condition for equality

Twix (8,)L Twix (6,) =Twix (y)L (18)
to hold it that /;; = *1, L,y = 0, and /54 = 0. In this case
¢=91—11102- 19

Example 2. Insertion of a clamp. According to Fig. 4 and
imposing that the axes of the cylinders be aligned with the axes
of their corresponding holes, the following expressions for
both constraints will be obtained:

R;=A, Trans (x;, 0, 0) Twix (6,)A4,,,

RY=C, (20)
R23 =A21 Trans (Xz, O, 0) Twix (02)A22,
RS=C,.. @1

% According to the convention relative to the local coordinate frames
associated with the geometric elements of definition.
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Fig. 4. Insertion of a clamp: g.s.r. and geometric elements of definition.

The composition of both constraints yields
R|2R23=A” Trans (Xl, O, 0) Twix (GI)L

- Trans (x,, 0, 0) Twix (0,)4,, (22)

where
L=A,A,.

Since u and u’ are parallel, and according to Table II, /|, =
+ 1; therefore, the composition of both constraints can be
simplified leading to

R12R23=A11 Trans (xl +luX2, 0, O) Twix (01)L

- Twix (6,)A.  (23)

If, in addition to /;; = =1, by = 0,and /3, = O (u X/ u’),
a further simplification could be carried out and the resulting
constraint would be associated with C,. Actually, C, and C,
would then stand for the same subgroup.

Expression (23) is a regular representation for the composi-
tion of both constraints. It is easy to check that Trans (x; +
l11x,, 0, 0) Twix (8;) corresponds to C, and Twix (6;) to R,,.
The simplified term, Trans (x;, 0, 0), which corresponds to
Rf N R§, = C, N C,, encompasses the remaining d.o.f. of
body ®, with respect to ®;, when ®; is kept rigidly linked, as
in this case, to ®,.

This last example seems to be easy to generalize. Let us
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suppose an open kinematic chain of dimension d relating n
bodies, then

dim (Ry;)<d, dim (R;,)<d, vi=2, -+, n—1

and

where f would be the number of d.o.f. of body ®; with respect
to body ®;, if @, and @, are rigidly linked together.
Nevertheless, this reasoning is not strictly true in all cases. It
is only true if the number of assignments of variables,
resulting from solving the matrix equations (see Section V),
equals the dimension of the regular representation.

Although the previous ideas provide a theoretical frame-
work within which it is easy to justify, for instance, when the
composition of two constraints can be simplified, they must be
complemented with an algorithm to obtain numerical values
for the constrained d.o.f. in order to solve problems in
practice.

V. OBTAINING NUMERICAL VALUES FOR THE CONSTRAINED
d.o.f.

Let us consider two bodies, 8,4 and Bp, with only one part
each (A; and B,, respectively). We are only going to take into
account two elements for each of these parts, ay,, @), by;, and
by,. With the aim of simplifying the notation, all transforma-
tions representing the locations of either parts or elements will
be denoted with the same name, of the part or element, in bold
capital letters. If two constraints, R, and R,, are imposed and
the resulting g.s.r. is the one in Fig. 5(a), from any cycle in the
graph, it is possible to obtain a matrix equation as the
following one:

B=AAA\RB|'B;'=AAAxRB B!, (24)

Likewise, from the associated GR graph (Fig. 5(b)) one
obtains

AR B['ByR;'A L =ARLR;'A L =1, (25)

The decomposition of each displacement into its transla-
tional and rotational components leads to

Trans (a;)A;, Trans (d;)R, Trans (HLR;
- Trans (—d,)A', Trans (—a,)=1 (26)
hence
Trans (@, + A, d, + A, Ri
~AnR\LR,d,- A, \R LR, A' ,a,)
- AyRLR,A',=1 N

Equating the rotational and translational components of both
sides of (27) yields

AR LR,AY,=1 (28)
a +A‘11d1 +A|1R|i—A11RA1iR\;d2
-AuR,LR:A!,a,=0. (29)
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AuRBy!

Bi,Ry'AD
(b)

Fig. 5.

(a) Example of g.s.r. and (b) its associated GR graph.

Notice that the rotational component can be extracted
directly from the original equation, but not the translational
component whose expression contains rotational components.
The method applied to solve such equations is based on the
following fact: first, the rotational component is solved and
then also the translational one. This sequencing strategy is the
same as that followed in [2]. The procedure derived is
powerful enough for solving most assembly problems.

In solving both equations, with the aim of obtaining
assignments for the variables (d.o.f.) in constraints R and R,,
one of the following four possible situations will arise:

® There is no solution. In Section V-B some sufficient
conditions for the identification of these situations will be
given.

® One or several discrete sets of possible values for the
d.o.f. are obtained. In other words, one or more configura-
tions satisfy the constraints (Fig. 6).

® One or several discrete sets of possible values for some
d.o.f. are obtained. The remaining d.o.f. are linearly related
(Fig. 7). A sufficient condition for this situation holds when it
is not possible to simplify the rotational component of the
regular representation, and this representation does not include
more than three Twix operators.

e The d.o.f. do not appear linearly related so that a
continuous set of physical configurations satisfying the
constraints is obtained. The study of these situations re-
quires, in general, the use of Mobility Charts [5] that represent
the ranges of possible values for each d.o.f. as a function of
the values of the others. However, the analysis of these
situations is beyond the objectives pursued in solving most
common assembly problems. Several examples can be found
in [7] (Fig. 8).

Therefore, the problem of finding values for the variables
(d.o.f.) associated with constraints can be reduced to the
problem of obtaining the cycles appearing in the GR directed
graph and solving their corresponding matrix equations. This
process allows us to assign values to variables (d.o.f.), to
obtain relations between them, or to find inconsistencies.

The algorithm for extracting cycles follows a search
procedure that identifies ¢ — b + 1 cycles, ¢ being the
number of constraints and b the number of bodies.

A set C of cycles in a graph is said to be complete if every
cycle in the graph can be expressed as a ring sum of cycles in
C, and no cycles in C can be expressed as a ring sum of other
cycles in C [4]. Thus the matrix equations corresponding to



THOMAS AND TORRAS: COMPUTATION OF SYMBOLIC PART RELATIONS

629

N
~N

Fig. 6. A Unimate PUMA/560 robot has two discrete possible solutions (flip/noflip configurations) for the three joint angles of its
wrist.
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Fig. 7. Assembly with discrete possible values for some d.o.f. The remaining ones are linearly related.

the cycles in a complete set of cycles of a GR graph are
independent and no more independent equations can be found.
Given an arbitrary connected GR graph, a spanning tree can be
easily obtained. Then, when one of the c — b + 1 edges in the
graph not included in the spanning tree is added to the tree, a
unique cycle results. Such cycles are called fundamental
cycles, and it can be demonstrated that fundamental cycles
always constitute a complete set of basic cycles [4]; the
converse is not always true.

Unfortunately, there is no theory to guide us in obtaining the

simplest set of ¢ — b + 1 equations, but in [14] some
heuristics can be found.

A. Generated Matrix Equations

The edges of a GR graph are, as stated before, symbolic
matrix products premultiplied and postmultiplied by displace-
ments, which are, in general, the product of the transformation
from the coordinate frame of a body to one of its parts and
from there to one of its elements or the other way around. In
order to use the symbolic chains of matrix products in Table I,
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Fig. 8. Assembly with a continuous set of physical configurations satisfying
the constraints. The d.o.f. are limited to ranges of possible values.

the local coordinate frames of the geometric elements of
definition (vertices, edges, and planes) are chosen according
to the convention established in Section III.

The displacement from any coordinate frame to a vertex and
its inverse are obvious.

1) Transformation to an Edge: If an edge is represented
by a vector v = @i + bj + ck indicating its direction,
together with its nearest point (d;, da, ds) to the origin of the
coordinate frame, we have (refer to Fig. 9(a))?

a=atan2(c, a)

B=atan2(b, +Va?+c?).
The resulting displacement is

H,=Trans (d,, d,, d;) Rot (», —a) Rot (z, 8). (30)

2) Transformation to a Plane: If a plane is represented by
its unit normal vector (a, b, c) and its distance d to the origin
of the coordinate frame of the body to which it belongs, we
have (refer to Fig. 9(b))

H,=Trans (da, db, dc) Rot (y, —a) Rot (z, 8). (31)

B. Resolution of the Rotational Component

After obtaining a matricial equation, its rotational compo-
nent is extracted and simplified before solving it. This
procedure is carried out by applying the following steps:

1) Eliminate all the Trans operators.

2) Carry out all possible matrix products.

3 The function atan2 in the following equation is used instead of arctan in
order to avoid the problem of ambiguity in the angle.
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a = atan2(c,a)

B = atan2(b,Va? +¢?)

(di, dz, dy)

a = atan2(c,a)

B = atan2(b,Val+2)

(b)

Fig. 9. (a) Transformation to the coordinate frame of an edge. (b)

Transformation to the coordinate frame of a plane.

3) Find out the first couple Twix (¢) A, starting at the
rightmost extreme of the chain, where A is a constant matrix.
If 4 is x-axis invariant, the vector (1, 0, 0, 0)’ is an
eigenvector of this transformation. In such case, the following
rewrite rule is applied:*

Twix (¢)A4 = A Twix (a;;¢) (32)

where a,; is the element (1, 1) of the matrix A. If, after this
substitution, two Twix operators appear together, the follow-
ing rule is also applied:

Twix (¢;) Twix (¢) = Twix (¢, + ¢2). (33)

4) Go to point 2 if the rules in the preceding step have been
applied.
5) The matrix equation at this point is of the form

A, Twix (1) A, Twix () -+ A, Twix (I,)A,.1=1 (34)

where A; are constant matrices and /; are linear combinations
of variables (d.o.f.). If the product 4, , | A, is x-axis invariant,
(34) is substituted by

A; Twix (b) -+ A, Ay Ay Twix (al,+1)=1 (35)

where a;; belongs to the matrix resulting from the product
A, 1A4;. Since A, - - - A, are not x-axis invariant, the process
is finished.

4 As a convention, the x-axis invariant transformations are propagated
backward.
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Now, the matrix equation to be solved is

Twix (/,)B, Twix () -+ B,_, Twix (/,)=B,.

(36)

We will next see that a discrete closed-form solution exists
for matrix equations with up to three Twix operators. For
n > 3, a necessary and sufficient condition for (36) to be

solvable will be given.
1) Case n = I: The equation to be solved is

Twix (0)=A.
A solution exists iff @;; = 1, and the solution is
0 =atan2(as;, ax).
2) Case n = 2: The equation to be solved is
Twix (0)A Twix (¢)=B.
A solution exists iff @;; = b;; and the solution is
¢=atan2(a;3b12— apbi3, apbyy+aiby).
3) Case n = 3: The equation to be solved is
Twix (6) A Twix (¢)B Twix (y)=C
from which the following equation can be deduced:
acos ¢+bsingp=c
where
a=apnby +a;3by
b=a13b;1~ay; b3,
c=cy—anby.
A solution exists iff
( —0%1)(1 —bfl)—(cu —a; by)?=0
and the solutions are

¢, =atan2(ch — aw, ac+ bw)
¢, =atan2(cb + aw, ac - bw)

where

w=+V(1-a2)(1-b2)-(c;,—ayby)’.

4) Case n = 4: The equation to be solved is

Twix ()A Twix (¢)B Twix (y) C Twix (y)=D

from which the following equation can be deduced:
acos ¢p+bsind+c=dcosy+esiny+f
where
a=apb; +a;b;y,
b=ay;3by —ap by,

c=a; by

(37

(38)

(39

(40)

(41)

42)

43)

44

45)

(46)
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d=cpdp+cpdy
e=cpdp—Cpd;
Sf=cdy.

Equation (46) has solution iff there exists a 6 such that
(I1-a?)+(1-b2)—-(0—anb,)*=0
(A-c2)+1-d?)-(—cndn)*=0 47

and the solutions are
¢r=atan2(b|d—c| —awy, a|d—c| + bw,)
¢r=atan2(b|6—c| +aw,, a|6—c|— bw;)
yi=atan2(e|8 - f| — dw,, d|8—f| +ew,)
v2=atan2(e|d —f| + duw,, d|6—f| - ew,) 48)

where

W= +\/(1—af1)+(1 =b%)—6-anby)’

wy = +\/(1 —C%l)"f'(l —-dfl)—(é—-c”d”)z.
5) General Case:

Theorem: For n > 3, the matrix equation
Twix (0,)A, Twix (6,)A, -+ A,_, Twix 8,)=A4, (49)

has solution iff there exist values for 8, 8,, ***, §,_3 so that
(1-a})+(1-a2)- (6 —aya;)? =0
(1-a})+(1-581)— (6, —a36,)? =20
(1-03)4—(1—6;)—(52—0483)2 =0

(=25 )+ (=82 )~ @n-a=an28,-3)* =
(-a}_D)+(1-a))~(@r-3~a,-1a,)> =0 (50)

i
(=)

where g; is the element (1, 1) of the matrix A;.
Proof. It is true for n = 4. Let us suppose it is also true
for the case n — 1 and let us demonstrate the case n.
The matrix equation for the case n can be expressed as

Twix (6,)A; Twix (0,)4, - -+ TWix (6,_,) =
A, Twix (=6,)A'_ =4, 5. (51)

According to the left-hand side of (49), a solution for 6, 6,,

-+, 0,_y exists iff there are values for &, &,, **-, 8,_3
satisfying
(1-ad)+(1-a2)- (5, —a,a,)? >0

(1-“%)-‘-(1-6%)*(61—(1362)2 =20

(l_af,-g)'*'(l_éiv‘;)_(an—S—aﬂ—San—oz =0
(1= )+ (182 )= (Bys—an_26,_3) =0 (52)

where 8,,_1 is the element (1, 1) of the matrix A, _ ;. Therefore,
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according to the rightmost part of (51)

5n~3=an*l,llan,l] +(an——l,]20n,12+an—l,l3an,13) cos 0n
+(@n-1,1380,12—= @y _1,128513) sin 0, (53)

where @, ; stands for the element ij of A,.
Equation (53) has solution for 6, iff

(1-a}_ )+(1-a2)~ Gy 3-a,-1a,)2=0.

This inequality, together with (52), lead to (50).

A very simple effective procedure exists for checking the
existence of values for 6;, 8,, * -, 8,_; in (50). The process
starts by finding a range of possible values for 8,, according to
the first inequality. This range is then used for finding a range
for &;. This process is repeated until the last inequality is
reached where, if there exists a value for §,_; within the
corresponding range satisfying the inequality, the matrix
equation in (49) has a solution.

If §;; and §; , are the lower and upper bounds of the range for
d;, respectively, the process for finding the range for 6, , takes
into account that §;.,, and §&;,,, have a minimum and a
maximum, respectively, at §; = —a;,; and §; = a;,,.

C. Resolution of the Translational Component

If it was impossible to solve the rotational component
because it contained more than three Twix operators, the
translational component is not extracted, and the problem is
assumed to be weakly constrained. Only the condition in the
statement of the theorem is tested.

The extraction of the translational component is carried out
starting at the rightmost extreme of the equation and storing, in
a vector of three components, the partial results. Let (x, y, x)
be the vector of partial results, the following computations are
carried out depending on what the next matrix in the chain is

Trans (a, b, ¢) : (x+a, y+b, z+¢)
Twix () : (x, y cos ¢—2z sin ¢, y sin ¢ +7 cos ¢)
A:A(x, y, z, 1)

Simultaneously, in order to simplify the expressions, the
following rules are applied:

(+0X) \ (*1 x) = x
(+x0) V(1) = x
0x)V(xx0) = 0
(*z(+yx)) = (+(* z2y)(* 2 x))
(+z(+yx) = (+zyx)
(*z(xyx)) = (xzyx).
These rules, as well as the obtained equations, are formu-
lated in LISP style Cambridge Polish notation.
In general, several solutions may appear when solving
cycles of constraints, as it was shown to happen in solving the

rotational component of a chain with three Twix operators. A
solution is described by means of a GR graph, a list of
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Fig. 10. Simple assembly problem used to show how the implemented
system works.

equations (as sums of products equated to zero), and a table of
binded variables (only needed in the intermediate stages of the
process).

D. Example

Let us consider the simple assembly example in Fig. 10. It
deals with the problem of inserting one piece into another and,
next, fixing the resulting subassembly by means of a third
piece. Let us suppose that the constraints generated by the
planner, when reasoning about the compatibilities between the
parts of the bodies, are the alignment of the axes (E,, Ey), (E,,
E;), and (E3, Eg). Once the three constraints are inserted into
the GR graph, a cycle of length three is extracted. In the
corresponding equation, a symbolic operator Trans (x, 0, 0)
can be simplified. Therefore, one translational d.o.f. will
remain in the assembly. In terms of composition of subgroups,
the resulting equation can be simplified because C, N C,. is
different from the identity displacement—as in example 2 in
Section IV-B—since u||u’. Next, the rotational component is
extracted and the resulting equation can be also simplified by
merging two Twix operators, so that an equation with two
Twix operators is obtained. Afterwards, one angle is directly
assigned and the other two are linearly related. The assign-
ments obtained are stored in an associative (variable-value)
list and the equations relating the d.o.f. not yet assigned are
included, as sums of products equated to zero, in a separate
list. The original equation is simplified with the obtained
assignments and, finally, the three translational equations are
extracted and the problem is reduced to four very simple
equations, two of which are nonlinear but easy to solve. Fig.
11 shows the output listing of the program.
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CYCLE LENGTE = 3

((TRAES VARD1 O 0)
(TVIX VAR1)
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((-1000) (0100) (00-10) (000 1))
((0-100) (1000) (0010) (0001))

(TRANS VARD3 0 0)
(TVIX VAR3)

((-1 000) (0100) (00-10) (000 1))
((1 00 0) (0 -4.371139¢-8 ~1.0 0) (0 1.0 -4.371139¢-8 0) (0 0 0 1))
((1000) (0100 (001 -6) (0001))
((1000) (0100) (001 -6) (000 1))
({1 00 0) (0 -4.371139-8 -1.0 0) (0 1.0 -4.371139-8 0) (0 0 0 1))

(TRANS (¢ -1 VARD2) 0 0)
(TVIX (s -1 VAR2))

(0 ~-100)(1000) (0010) (0001)))

PRESINPLIFIED EQUATION

(((1t000) (0100) (0010) (000 1))

(TRANS VARDL O 0)
(TVIX ViR1)

((0100) (1000) (00-10) (0001))

(TRAES VARD3 0 0)
(TVIX VAR3)

((-1.0 0.0 0.0 0.0) (0.0 -1.0 8.742278¢-8 10.0)
(0.0 8.742278¢-8 1.0 -4.371139¢-7) (0.0 0.0 0.0 1.0))

(TRANS (¢ -1 VARD2) 0 0)
(TVIX (¢ -1 ViR2))

((0-100)(1000) (0010) (0001)))

ROTATIONAL COMPOEENT

(((1000) (0100) (0010) (0001)

(TVIX VAR1)

((0.0 -1.0 8.7422784-8 10.0) (-1.0 0.0 0.0 0.0)
(0.0 -8.742278¢-8 -1.0 4.371139-7) (0.0 0.0 0.0 1.0))

(TVIX (+ (» -1 VAR2) (e VAR3 -1)))

((0-100) (1000) (0010) (000 1))

SIMPLIFIED EQUATION

(((1000) (0100) (0010) (0001))

(TRAES VARD1 0 ©)

(01 00) (1.0 0.0 0.0 0.0) (0.0 0.0 -1.0 0.0) €0 0 0 1)) (TRANS VARD3 0 0)

(TVIX VAR3)

((-1.0 0.0 0.0 0.0) (0.0 ~1.0 B.742278¢-8 10.0)
(0.0 8.742278e-8 1.0 -4.371139e-7) (0.0 0.0 0.0 1.0))

(TRAES (s -1 VARD2) 0 0)
(TVIX (» -1 VAR2))

((0-100) (1000) (0010) (0001)))

ASSIGHMENTS

((VAR1 . 0.0))

EQUATIONS GENERATED

(+ (+ -10.0 (SIN V4R3)))

(+ VARD3 (* 1.0 VARD2))

(+ VARD1 (+ 10.0 (COS VAR3)))

(+ ~3.141593 (¢ -1 VAR2) (* VAR3 -1))

Fig. 11. Output listing of the program for the assembly in Fig. 10.

VI. CONCLUSIONS

We have presented a procedure for dealing with constraints
on the d.o.f. of a set of bodies to be assembled. This procedure
is'embedded in a general method capable to deal also with two
other types of constraints: shape-matching constraints and
constraints of nonintersection [16]. This embedding in a
broader context imposes certain requirements on the represen-
tation of both the objects and the constraints themselves, which
in turn give the procedure a wider range of applicability than
that characteristic of previous approaches. In this direction,
the hierarchical geometric representation used for objects, in
terms of parts which are further decomposed into its constitu-
ent elements (planes, edges, and vertices) provides a natural
link to interference detection procedures. Furthermore, some
spatial relationships—such as fits in RAPT or grasped in a
grasp planning procedure—need not to be explicitly introduced

into the system, but can be automatically inferred by an
adequate treatment of shape-matching constraints.

A systematization of the possible spatial relationships
between bodies (subgroups of the group of spatial displace-
ments), as well as a tabulation of the outcomes of their
combination (intersection of subgroups) and chaining (compo-
sition of subgroups) is given. The theoretical foundation for
this systematization has been taken from the work of Hervé
[el.

An algorithmic symbolic procedure, essentially based on
that proposed by Ambler and Popplestone [2], but conven-
iently simplified to increase its efficiency and refined to permit
a uniform treatment of some special cases, is explained.
Moreover, a theorem that permits eliminating some situations
without solution is proved with no commitment in the number
of rotational d.o.f.
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The procedure to deal with constraints on the d.o.f.
described in this paper has other possible applications. For
instance, since sensory data often give information which
constrains the d.o.f. of objects, the procedure could be used
either to determine the positions and orientations of objects or
to guide the acquisition of further sensory information to
disambiguate between several possibilities.
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