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1 Introduction

We present a method for deriving automatically the set of allowed infinitesimal motions
of a polyhedron in contact with a polyhedral assembly without breaking the established
basic contacts. The result is obtained, under the frictionless assumption, by describing
each basic contact by means of the Grassmann-Cayley algebra and using cycle conditions
over closed kinematic chains between the polyhedron and the assembly. Although, in
practice, assemblies need to be separated completely and not only infinitesimally, this
constitute a very useful information for an assembly sequence planner [Thomas et al.
1992], [Staffetti et al. 1998]. The proposed technique is also applied to solve infinitesimal
mobility analysis problems of general multiloop spatial mechanisms.

2 Background

In this section we give a general overview of the part of the Grassmann-Caley algebra
needed in subsequent developments without going into mathematical details. A deeped
insight can be found in [White 94] or [White 95].

2.1 Projective Space and Pliicker Coordinates

Let us consider the projective 3-space. A point ¢ in this space is represented by a non-zero
4-tuple ¢ = (q1, g3, g3, g2) whose elements are called the homogeneous coordinates of the
point. Two 4-tuples p and ¢ represent the same projective point if, and only if, p = A\q for
some A # 0. If g4 # 0 we say the point is finite and it can be represented by the 4-tuple
p = (p1,P2,P3, 1) where the first three components are the Euclidean coordinates of the
same point indicated with p. If g4 = 0 the point lies on the plane at infinity.

Given two points ¢ and b in homogeneous coordinates a line L through them can be
represented by the vector P, formed by the six 2 X 2 minors of the following 2 X 4 matrix:

a; Qa9 as 1
by by b3 1



called the Pliicker coordinates of the line. It can be proven that:

PL = (bl — a1 b2 — Q2 b3 — a3 CLng — a3b2 a3b1 — a1b3 CleQ — agbl) = (S, r X S)

where s = (b — a) and r is the Euclidean position of any point on L. This operations
corresponds to the exterior product of the Cayley algebra, a modern version of the Grass-
mann algebra [Dubilet et al. 1974], [White 1995]. In this algebra the subspace generated
by a and b is called the 2-extensor of ¢ and b and its symbolic Pliicker coordinates are
indicated by a V b. Thus the line L can be expressed as L = a V b.

The point at infinity on L is the vector
(bl—al b2_a2 b3—CL3 0)

Each 4-tuple of the form (ti,%s,3,0) # (0,0,0,0) represents a point at infinity. This
point can be thought as infinitely far away in the direction given by s. The same point
at infinity lies on every line parallel to L but non-parallel lines have distinct points at
infinity.

A line at infinity is determined by two distinct points at infinity:

S1 So S3 0
ty ty t3 0)°

which has the following vector of Pliicker coordinates
PL = (0 0 0 82t3 - 83t2 83t1 - Sltg Sltg — Sgtl) .

Likewise, the plane P determined by the three points a, b, and c is a 3-extensor indicated
by a V bV ¢ whose Pliicker coordinates are the four 3 x 3 minors of the following 3 x 4
matrix

a; a9 as 1
by by b3 1

Ci Co C3 1

It can be easily proven that the Pliicker coordinates vector of the plane P can be ordered
such that Pp = (n,—r - n), where n is the normal vector to P and r is the Euclidean
position vector of any point on P.

2.2 Projective Representation of Motions

Let u be the Euclidean velocity of an Euclidean point p. The motion of the projective
point p can be defined as M(p) = (u, —u - p), that is, the 3-extensor that represents the
plane through the point p perpendicular to u.

An instantaneous motion in projective 3-space, that is an assignment of motions M (p;) to
the projective points p;, is a rigid motion if the velocities preserve all distances in space.

In projective terms rigid motions can be expressed in a simple and effective way [White
1994].



If r and s are projective points, for each point p in space we define M(p) = rV sV p.
This assignment of motion preserves all distances and therefore it will correspond to a
rigid motion in space determined by the 2-extensor C' = r V s. This 2-extensor, that
represents the line through r and s, is called the center of the motion. Since M(r) =0
and M (s) = 0, this represents a rotation around the axis determined by r and s.

A translation can be described as a rotation about an axis at infinity. Let a = (a4, ao, as, 0)
and b = (by, b, b3, 0) be two points at infinity. Then, the extensor a Vb can be used as the
center of a motion M(p) = aVbVp. The corresponding velocity is v = (azb3 —asby, azhb —
a1bs, a1by — agby). Since it is independent from the point p, it will represent a translation.

By composing translations and rotations represented by its centers C; a more general
screw motion in space can be obtained. Instantaneously, this composition corresponds
to a simple addition of the motion centers Cj, that is, the equivalent motion is M(p) =

2:(Civp)=(22;Ci) Vp.
2.3 GR Graphs

Let us consider two bodies hinged along the line a V b then, for any instantaneous motion
of the bodies with centers S; and Ss, there is a scalar A such that S; —Ss = A(aVb). This
concept can be extended to any number of rigid bodies and hinges [Crapo et al. 1982].

An articulated structure is a set (B, A) where B is a finite collection of bodies (By, . . ., By,),
and A= (...,L;;,...) is a set of hinges represented by non zero 2-extensors in projective
space indexed by ordered pair of indices with L; ; = —L;;. An instantaneous motion of
the articulated structure (B, A) is an assignment of a center S; to each body B; such that
for each hinge L;; € A and for some choice of scalars w; ; we obtain S; — S; = w;;L; ;.
The scalars w; ; being rotational or translational velocities at the hinges L; ;.

In general, we accept that the same boby appears in different articulated structures. This
situation can be easily represented using a directed graph — called GR graph — whose
nodes will represent bodies and, if body B; is restricted in its motion with reference to
body Bj, there will be a directed arc going from node B; to node B; labeled with w; ;L; ;.

Now, consider that a GR graph has a cycle, for example By, wo1Lo,1, Bi, wi2l12, Bs,
..y By, wg oLk, By. Since the net velocity around a cycle must be zero, we obtain the
following loop equation:

wO,lLO,l + w1,2L1,2 + -+ wk,OLk,O =0. (1)

which constraints velocities wg 1, w12, ..., wgo. This can be done for any cycle in a GR
graph. As a consequence, velocities w;; must satisfy the set of loop equations resulting
from all possible cycles in the graph.

If for an arbitrary GR graph we obtain the loop equations resulting from all possible
cycles, we would find that many equations are linearly dependent from the others. This
is reason why, in practice, we only need to consider the loop equations resulting from a
complete set of basic cycles [Thomas 1992].

Ezample 1. Let us consider the single loop mechanism shown in fig. Za...



(a) (b)

Figure 1. A single loop mechanism (a), and its associated GR graph (b).

3 Motion of Polyhedra in Contact

(a) (b)

Figure 2. Infinitesimal motions that keep a type-A contact (a), and a type-B contact (b) between
two polyhedra.

Any contact between polyhedra can be expressed as the composition of two basic contacts;
namely: type-A and type-B contacts. A type-A contact occurs when a vertex v of a
polyhedron touches a face the other polyhedron, and a type-B contact occurs when an
edge of one polyhedron in contact with an edge of other polyhedron (see, for example,
[Thomas 1994]).

The motion constraints between two polyhedral bodies B; and B; under a type-A contact
can be thought as produced by a spherical and a planar joint between them. The spherical
joint can be modelled as three revolute joints whose axes intersect in the contact point
and the planar joint can be described with two prismatic joints that permit translations
along two non-parallel axes on the plane of the face. In this case S; and S;, the centers
of the motion of B; and B;, respectively, are related by the following expression:

_ A A Ao Ayra Ars T Ars At T Ata At 7 Ajta
Si=Sjtwii it +wi i L+ wi L i LT+ wi L (2)

where Lf 1 Lf} 7, LZ‘ /% are 2-extensors that define the centers of rotation and LZ‘ ]’-tl and
L™ are the axes at infinity that represent translations on the face plane (fig. 2a).
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Likewise, the motion of two polyhedral bodies B; and Bj;, constrained to maintain a
B-type contact, can be modelled by means of a composition of two cylindrical and one
revolute joints whose axes intersect in the contact point. Thus, we obtain the following
relation between the centers of motion:

L — 3 B7T1 Barl Bytl Bytl B;TQ B;”‘? BytZ Bat2 B;T3 By1'3
Si=0jtwii Lij twii Ly + w7 L i" w7 L+ w0 L (3)

where Lf]’-” and ij” are the 2-extensors that define rotations around the edges in contact,
whereas Lf ]’-tl and Lf ]’-t2 are 2-extensors that define translations along directions parallel
to each edge. Lf i
in contact (fig. 2b).

represents a rotation axis normal to the plane that contains the edges

(a) (b)

Figure 3. Two polyhedra in contact along an edge (a), and the equivalent representation in
terms of four basic contacts expressed in terms of a GR graph (b).

Example 2. Let us consider the two polyhedra in contact appearing in fig. 3a. They are
in contact along an edge. This contact can be expressed in terms of four basic contacts ...

(a) (b)

Figure 4. Four workpieces to be assembled (a), and the associated motion in contact constrains
expressed as a GR graph (b).

Ezxample 3. Now, consider the four workpieces to assembled shown in fig. 4 ....

4 Conclusions



Techniques to evaluate the number of degrees of freedom
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