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Abstract—This paper presents a 5-SPU platform whose base leg
attachments can be easily reconfigured, statically or dynamically,
without altering its singularity locus. This permits to adapt the plat-
form’s geometry to particular tasks without increasing the complexity
of its control. The allowed reconfigurations permit to reduce the risk
of collisions between legs, or even improving the stiffness of the
platform, in a given region of its configuration space. It is also shown
that no architectural singularities are introduced by the proposed
reconfigurations.

Index Terms—kinematics and dynamics of reconfiguration

1. INTRODUCTION

The Stewart-Gough platform is defined as a 6-DoF parallel
mechanism with six identical UPS legs [1], [2]. Although it
is certainly the most celebrated parallel mechanism, platforms
with a lower number of UPS legs are also of interest both from
the theoretical and practical point of view. Kong and Gosselin
refer to them ascomponentsas they can always be considered
as rigid subassemblies in a standard Stewart-Gough platform
[3].

A parallel platform with only five UPS legs is not architec-
turally singular, in general, if the attachments on the platform
are aligned. The resulting platform has obvious interest, for
example, as a robot manipulator with axisymmetric tool (a
5-axis milling machine is a good example).

Zhang and Song were the first to solve the forward kine-
matics of a general Gough-Stewart platform containing a five-
legged rigid subassembly with collinear attachments in the
platform and coplanar in the base [4]. They showed how the
line defined by the five attachments in the platform can attain,
in the general case, up to eight configurations with respect
to the base for a given set of leg lengths. Husty and Karger
studied the conditions for this subassembly being architec-
turally singular and found two algebraic conditions that must
be simultaneously satisfied [5]. Borràs and Thomas recently
showed that the location of the attachments determine a one-
to-one correspondence between points in the line and lines
in the base plane [6]. They showed that, if the attachments
on the plane are moved along their corresponding lines, the
singularities of the platform remain unaltered. This theoretical
result is exploited here in a design in which these lines are
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Fig. 1. A 5-DoF 5-SPU parallel manipulator with collinear attach-
ments in the platform and coplanar in the base.

radially arranged passing though the vertices of a regular
pentagon. The base leg attachments of such a robot can be
easily reconfigured so that its geometry can be modified to
adapt it to particular tasks. This includes the possibilityof
reducing the risk of collisions between legs, or even improving
the stiffness of the robot, in a given region of its workspace.
Moreover, if the possible locations for the attachments are
limited to the radii passing through the vertices of the pentagon
(that is, to semi-lines instead of the possible whole lines), it
is shown that no architectural singularities can be introduced.

The investment cost to purchase a parallel robot for a
particular task could be worth if there is the possibility to
reconfigure it for another task. Static and dynamic reconfigu-
rations can be distinguished [7], [8], [9]. Static reconfiguration
denotes a manual rebuilding of a robot which might lead to a
robot with new kinematic characteristics and a new workspace.
In this work, we follow the less radical approach in which
some leg attachments can be rearranged so that the geometry
of the robot is modified but its singularity locus remains
unaltered. This kind of reconfigurations can be carried out
not only statically but also dynamically without increasing
significantly the control of the platform because a singularity-
invariant reconfiguration guarantees the existence of a one-to-
one mapping between the leg lengths of the robot before and



Fig. 2. When two legs in a Stewart-Gough platform share an
attachment, the other two attachments can be reconfigured without
altering the singularities of the platform.

after the reconfiguration.

The simplest reconfiguration in the location of the at-
tachments of a Stewart-Gough platform without changing
its singularity locus arises when two legs share a multiple
spherical joint, as shown in Fig. 2. In this particular case,
the other two attachments can be displaced along the line
they define provided that both legs are not made coincident,
in which case a trivial architectural singularity is introduced
[10]. In more complex configurations, like the one considered
herein, the possible singularity-invariant reconfigurations, if
any, follow much more complex rules and the configurations
that lead to architectural singularities are non obvious.

This paper is divided into two main parts. In the first
one, the kinematics of a general 5-SPU parallel platform is
reviewed. Particular attention is paid to the characterization
of both those configurations of the attachments that leave the
platform singularity locus invariant and those that introduce
architectural singularities. In the second part, based on these
theoretical results, a particular reconfigurable architecture is
proposed an analyzed.

2. K INEMATICS OF THE 5-DOF 5-SPU PARALLEL

MECHANISM

Let us consider the 5-DoF 5-SPU parallel mechanism ap-
pearing in Fig. 1. We assume that no four attachments on the
plane are collinear, otherwise this subassembly would contain
a four-legged rigid subassembly that can be studied separately
[11].

The attachments on the plane have coordinatesai =
(xi, yi, 0), for i = 1, . . . , 5. The pose of the line with
respect to the plane can be described by the position vector
p = (px, py, pz) and the unit vectori = (u, v, w) in the
direction of the line. Thus, the coordinates of the attachments
on the line, expressed in the base reference frame, can be
written asbi = p + zii.

It has been shown that the singularities of this mechanism
correspond to those configurations in which the determinant
of the following matrix is zero [6]:

T =

















wpz wk1 wk2 −pzk1 −pzk2 −w2

z1 x1 y1 x2z2 y1z1 1
z2 x2 y2 x2z2 y2z2 1
z3 x3 y3 x3z3 y3z3 1
z4 x4 y4 x4z4 y4z4 1
z5 x5 y5 x5z5 y5z5 1

















, (1)

wherek1 = (pzu − pxw) andk2 = (pzv − pyw).
In other words, when

det(T) = C1wpz + C2w(pzu− pxw) + C3w(pzv − pyw)+

C4pz(pxw − pzu) + C5pz(pyw − pzv) − C6w
2 = 0, (2)

whereCi, for i = 1, . . . 6, is the cofactor of the elementi of
the first row ofT.

2.1. Singularity-invariant reconfigurations

Let us consider the multilinear equation

ax + by + cz + dxz + eyz + f = 0, (3)

which implicitly defines a hypersurface in the space defined
by (x, y, z) ∈ R

3. Let us assume that the attachments of
leg i of our platform define a point,(xi, yi, zi), in this
hypersurface. Since we have five legs (i.e., five points in this
hypersurface), the coefficientsa, b, c, e, and f are uniquely
determined. Actually, (3) can be explicitly expressed in terms
of these five points as:
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= 0, (4)

or, alternatively, as

C1z + C2x + C3y + C4xz + C5yz + C6 = 0 (5)

where Ci are the cofactors referred in the previous section,
i.e., the same coefficients appearing in (2).

Now, observe that, if we substitute one of the five points by
any other point in the hypersurface, the polynomial equation
(5) will have the same set of coefficients up to a scalar
multiple. Then, if we change the attachments of one leg so
that the coordinates of the new attachments satisfy (4), the
coefficients of the singularity polynomial in (2) remain the
same up to a constant multiple and, as a consequence, its root
locus remains invariant. This simple observation gives us the
clue to change the attachments locations without changing the
platform singularity locus.

Equation (4) implicitly defines a one-to-one correspondence
between points in the line and lines in the plane. Indeed, given
an attachment on the plane with coordinates(x, y, 0), we con-
clude from equation (4) that there is a unique corresponding
attachment on the line with coordinatez. On the way round,
given an attachment on the line, a line is defined in the plane.



Fig. 3. Three different views of the proposed 5-DoF 5-SPU parallel platform in the same configuration. The base attachments can be
independently moved along radial guides without altering the singularity locus of the platform.



It is important to realize that, asz varies, the generated lines
intersect at a single point whose coordinates are:

B =

(

C3C1 − C6C5

C2C5 − C4C3

,−
C2C1 − C4C6

C2C5 − C4C3

, 0

)

. (6)

Each line on the base passing throughB is called aB-line
(Fig. 1).

PointB is located at the origin of the reference frame if the
following design conditions are satisfied:

C3C1 = C6C5, C2C1 = C4C6, and C2C5 6= C4C3. (7)

Summing up, the coordinates of the attachments of legli
are given by(xi, yi, zi), where(xi, yi) are the coordinates of
the attachments on the base andzi the local coordinate of
the attachment on the line. Then, if the base attachments are
moved along their correspondingB-lines, the resulting new
attachments(x′

i, y
′

i, zi) satisfy (4), and the resulting singularity
polynomial is the same, up to a scalar factor, which does not
modify its zeros provided that this scalar factor is different
form zero.

2.2. Assembly modes

In order to obtain the assembly modes of a 5-SPU parallel
platform, it is possible to apply the procedure proposed in [4].
Next, the main steps of this procedure are summarized.

The leg lengths of the platform can be expressed as
l2i = ‖bi − ai‖, for i = 1, . . . , 5. If we subtract from these
expressions the equationu2 + v2 + w2 = 1, quadratic terms
in u, v andw cancel yielding

1

2
(p2

x + p2

y + p2

z) + zit − xipx − yipy − xiziu − yiziv

+ 1

2
(x2

i + y2

i + z2

i − l2i ) = 0,
(8)

for i = 1, . . . , 5, wheret = p · i. Subtracting the equation for
i = 1 from the others, quadratic terms inpx, py andpz cancel
as well, and the resulting equations can be written in matrix
form as:







x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1

x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1

x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1

x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1













px

py

u
v






=







(z2 − z1)t + N2

(z3 − z1)t + N3

(z4 − z1)t + N4

(z5 − z1)t + N5






, (9)

whereNi = 1/2(x2

i + y2

i + z2

i − l2i − x2

1
− y2

1
− z2

1
+ l2

1
).

The system determinant isC1, that is, the value of the
cofactor of the (1,1) entry ofT in (1). If this cofactor is zero,
we can always choose as parameter eitherpx, py, u or v to
reformulate the above linear system. Since not all cofactors
can be zero, otherwise the platform becomes architecturally
singular, we can always find a non-singular linear system by
choosing the right parameter.

The solution of the above system, using Crammer’s rule,
can be written in terms of the cofactors of the first row ofT

as:

{

px =
E2 − C2t

C1

, py =
E3 − C3t

C1

, u =
E4 − C4t

C1

, v =
E5 − C5t

C1

}

,

(10)

whereEi results from substituting the(i − 1)th column of
C1 by (N2, N3, N4, N5)

T .
Now, sincet = p · i,

(pzw)2 = (t − pxu − pyv)2. (11)

From equationu2 + v2 + w2 = 1, and equation (8) fori = 1,
we have

w2 = 1 − u2 − v2,

p2

z = 2(−z1t + x1px + y1py + z1y1v + z1x1u)

− p2

x − p2

y − x2

1
− y2

1
− z2

1
+ l2

1
.

(12)

Then, substituting the above expressions forw2 and p2

z, and
the values ofpx, py, u and v in (10), in equation (11), a
fourth-degree polynomial int is obtained. For each root of
this polynomial, when substituted in equations (11) and (12),
we obtain two values for{z, w}. Thus, a total number of eight
assembly modes is obtained.

3. ARCHITECTURAL SINGULARITIES

When a manipulator is architecturally singular, it is singular
in all the points of its configuration space [12]. It is important
to characterize architectural singularities to avoid themin
the design process but, when working with reconfigurable
robots, such characterization become crucial to design theleg
rearrangements.

Architectural singularities of the presented manipulator
were fully characterized in [13], where it was shown that this
kind of singularities arise either when
(a) four attachments in the plane are collinear, or
(b) a base attachment is located on the conic formed by the

other four base attachments and pointB.
When all base attachments are located on differentB-

lines (as in the proposed manipulator), no other architectural
singularities can arise (see [13] for details).

Let us consider the conic passing through any four base
attachments, with coordinates(xi, yi), (xj , yj), (xk, yk), and
(xl, yl), and pointB (in our case, the origin of the reference
frame). Its equation can be expressed as:
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= 0. (13)

Provided that no four attachments are collinear, the remain-
ing base attachment can be freely moved along its associated
line without introducing an architectural singularity if,and
only if, it is not located on this conic [13].

In the next section, it is shown that, by arranging the lines
radially and constraining the attachments locations to lieon
half of these lines, it is possible to completely avoid such kind
of singularities.
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Fig. 4. The base attachments in the proposed architecture can be independently moved along radial guides (shown in dotted lines) without
leading to architectural singularities because each attachment cannot belocated on the conic (shown in solid lines) defined by the other four
attachments and the origin. Moreover, no four attachments can be made collinear. If the attachments could move along their whole associated
B-lines, they could overpass the origin giving rise to the possibility of intersect the conic (shown in dotted circles) thus leading to architectural
singularities. Limiting the possible reconfigurations to radial guides, this possibility is totally excluded.

4. THE PROPOSED ARCHITECTURE

Let us consider the 5-SPU parallel mechanism in Fig. 3
whose attachments in their local reference frames are givenin
Table I. The value of the resulting cofactors for the elements
of the first row ofT are:

C1 = 0,

C2 = 1130.928486,

C3 = −532.2016037,

C4 = −665.2520496,

C5 = 66.52518034,

C6 = 0.

SinceC1 = C6 = 0, the design conditions in (7) are satisfied.
As a consequence, pointB, according to equation (6), is
located at the origin of the base reference frame, and the
relationship between the coordinates of the attachments given

by Eq. (4) simplifies to

(C4xi + C5yi)zi + C2xi + C3yi = 0. (14)

Likewise, the expression for the singularity locus, given by the
root locus of the polynomial in Eq. (2), can also be simplified
resulting in the set of configurations satisfying

(C4pz −C2w)(pxw− pzu)+ (C5pz −C3w)(pyw− pzv) = 0.
(15)

For fixed orientations, the singularity locus is a ruled
surface, and for fixed positions it is a quadratic curve on the
sphere (see Fig. 5 for two particular cases).

When moving the base attachments along their associated
B-lines, we must avoid possible architectural singularities. As
explained in the previous section, this is achieved by ensuring
that each base attachment does not lie in the conic defined by
the other four attachments and pointB (Fig. 4).

If the possible locations for the attachments are limited to
the radii passing through the vertices of a pentagon, any four
base attachments and the origin define, independently of the



TABLE I
COORDINATES OF THE ATTACHMENTS IN THEIR LOCAL

REFERENCE FRAMES(ai = (xi, yi, 0) AND bi = p + zii) FOR THE
PROPOSED ARCHITECTURE.

i (xi, yi) zi

1 (3, 0) 17
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3 cos

(

2π

5

)

, 3 sin

(

2π
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(

2π
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(

2π
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10 cos

(
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− sin

(
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−3 cos
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)
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)
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(
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− 8 sin
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)

10 cos
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)
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( π
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3 cos

(
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)
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(
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)) 8 sin

(
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5

)

+ 17 cos

(

2π

5

)
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(

2π

5

)

+ 10 cos

(

2π

5

)

location of the four attachments on their radii, a non-convex
planar set of points. As a consequence, the conic passing
through them all is a hyperbola that does not intersect the ra-
dius associated with the remaining attachment but at the origin
(Fig. 4). Thus, by allowing the attachments to independently
slide along radial guides, the obtained reconfigurations can
never be architecturally singular.

5. THE EFFECT OF RECONFIGURING

J-P. Merlet showed that non of the dexterity indices defined
for serial robots, such as the condition number or the manip-
ulability index, are appropriate for parallel robots [14].

In the example presented in [14], it is shown how the
determinant of the inverse Jacobian matrix can be used as a
measure of the maximal positioning errors. Therefore, herethe
value of det(T) can be taken as a valid index to analyze the
variation of the dexterity of the manipulator when performing
reconfigurations.

As it has been proved in Section 2.1, for any given pose
of the manipulator, when performing a rearrangement of the
leg attachments along their radial guides, the singularitypoly-
nomial (15) is multiplied by a constant factor. An analytical
expression for this factor is next obtained.

Consider as parameters the distances of each attachment to
the origin, sayλi = ‖B − ai‖ (see Fig.6). Using a symbolic
algebraic manipulator it can be checked that, when rearranging

x
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w
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Fig. 5. Singularity locus for(a) a fixed orientation (u =
√

3

3
, v =

√

3

3
, w =

√

3

3
), and(b) a fixed position (px = 1, py = −1, pz = −4).

leg attachments along their guides, (15) is multiplied by the
factor

ξ(λ1, . . . , λ5) =
1

135(2 cos(π

5
) − 3)

·

(

2(cos(π

5
) − 1)(λ1(λ2λ4 + λ3λ4 + λ3λ5) + λ2(λ3λ5 + λ4λ5))

−(λ1(λ2λ3 + λ2λ5 + λ4λ5) + λ3(λ2λ4 + λ4λ5))
)

.

It can be checked that this factor cannot be zero for any
positive value ofλi, i = 1, . . . , 5, which is consistent with
the fact that no architectural singularity can be attained with
the proposed reconfigurations.

In the initial location of the base attachments given by
the coordinates in Table I,λi = 3, for i = 1, . . . , 5. Then,
ξ(λ1, . . . , λ5) = 1. When moving one attachment along its
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Fig. 6. The value of det(T) is multiplied by a constant that only
depends on the distances of the attachments to the origin.

guide, the value of this factor increases linearly with the
distance of the attachment to the origin.

In conclusion, for a given pose of the manipulator, the
influence of a reconfiguration on the variation of the dexterity
can be measured usingξ. Thus, for a given position of the
base attachments, the global dexterity of the workspace can
be improved by reconfiguring the robot.

6. CONCLUSION

This paper presents a 5-SPU platform whose attachments on
the base can be independently displaced radially without modi-
fying the singularity locus of the platform. This permits chang-
ing the geometry of the platform, statically or dynamically, to
adapt it to different tasks and, as a consequence, increasing
its flexibility. The resulting reconfigurations would permit to
avoid some leg collisions, thus enlarging the workspace of the
platform, or even to modify the stiffness of the robot in a given
region of its workspace.

Since the resulting reconfigurations do not modify the
singularity locus of the platform, it is possible to guarantee
that there will always be a one-to-one mapping between the
leg lengths of the robot before and after the reconfiguration.
This obviously simplifies the control of the robot even when
the reconfigurations are performed dynamically.
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