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Abstract—This paper presents a 5-8Pplatform whose base leg
attachments can be easily reconfigured, statically or dynamically,
without altering its singularity locus. This permits to adapt the plat-
form’s geometry to particular tasks without increasing the complexity
of its control. The allowed reconfigurations permit to reduce the risk
of collisions between legs, or even improving the stiffness of the
platform, in a given region of its configuration space. It is also shown
that no architectural singularities are introduced by the proposed
reconfigurations.

Index Terms—kinematics and dynamics of reconfiguration

1. INTRODUCTION

The Stewart-Gough platform is defined as a 6-DoF parallel
mechanism with six identical U legs [1], [2]. Although it Fig. 1. A 5-DoF 5-SP parallel manipulator with collinear attach-
is certainly the most celebrated parallel mechanism, quliait$ ments in the platform and coplanar in the base.
with a lower number of UB legs are also of interest both from
the theoretical and practical point of view. Kong and Gassel
refer to them asomponentsis they can always be considered radially arranged passing though the vertices of a regular
as rigid subassemblies in a standard Stewart-Gough platfor pentagon. The base leg attachments of such a robot can be

[3]. easily reconfigured so that its geometry can be modified to
A parallel platform with only five UB legs is not architec- adapt it to particular tasks. This includes the possibitify
turally singular, in general, if the attachments on thefptat reducing the risk of collisions between legs, or even impgv

are aligned. The resulting platform has obvious interest, f the stiffness of the robot, in a given region of its workspace
example, as a robot manipulator with axisymmetric tool (a Moreover, if the possible locations for the attachments are
5-axis milling machine is a good example). limited to the radii passing through the vertices of the pgah
Zhang and Song were the first to solve the forward kine- (that is, to semi-lines instead of the possible whole linés)
matics of a general Gough-Stewart platform containing a five is shown that no architectural singularities can be intoedu
legged rigid subassembly with collinear attachments in the The investment cost to purchase a parallel robot for a
platform and coplanar in the base [4]. They showed how the particular task could be worth if there is the possibility to
line defined by the five attachments in the platform can attain reconfigure it for another task. Static and dynamic reconfigu
in the general case, up to eight configurations with respectrations can be distinguished [7], [8], [9]. Static reconfajion
to the base for a given set of leg lengths. Husty and Karger denotes a manual rebuilding of a robot which might lead to a
studied the conditions for this subassembly being architec robot with new kinematic characteristics and a new workepac
turally singular and found two algebraic conditions thatsthu  In this work, we follow the less radical approach in which
be simultaneously satisfied [5]. Basg and Thomas recently some leg attachments can be rearranged so that the geometry
showed that the location of the attachments determine a one-of the robot is modified but its singularity locus remains
to-one correspondence between points in the line and linesunaltered. This kind of reconfigurations can be carried out
in the base plane [6]. They showed that, if the attachmentsnot only statically but also dynamically without increagin
on the plane are moved along their corresponding lines, thesignificantly the control of the platform because a singtytar
singularities of the platform remain unaltered. This tletical invariant reconfiguration guarantees the existence of a@ne
result is exploited here in a design in which these lines are one mapping between the leg lengths of the robot before and
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wherek; = (p.u — pyw) andke = (p,v — pyw).
Fig. 2. When two legs in a Stewart-Gough platform share an In other words, when
attachment, the other two attachments can be reconfigured without
altering the singularities of the platform.

1)

—_ = =

detf(T) = Chwp, + Cow(p.u — pyw) + Csw(p,v — pyw)+
Cup:(pew — pou) + Csp.(pyw — pzv) — Cew® =0, (2)

after the reconfiguration. whereC;, fori =1,...6, is the cofactor of the elementof

The simplest reconfiguration in the location of the at- the first row of T

tachments of a Stewart-Gough platform without changing 2.1. Singularity-invariant reconfigurations
its singularity locus arises when two legs share a multiple
spherical joint, as shown in Fig. 2. In this particular case,
the other two attachments can be displaced along the line ax + by +cz+dxz +eyz+ f =0, (3)

they define provided that both legs are not made coincident, = = | ) ) )

in which case a trivial architectural singularity is inteaed ~ Which implicitly %efmes a hypersurface in the space defined
[10]. In more complex configurations, like the one considere PY (#,v,2) € R”. Let us assume that the attachments of
herein, the possible singularity-invariant reconfigunasi, if leg i of our platform define a point{z;, yi, zi), in this
any, follow much more complex rules and the configurations hypersurface. Since we have five legs (i.e., five points is thi

that lead to architectural singularities are non obvious. hypersurface), the coefficients b,c,e, and f are uniquely
determined. Actually, (3) can be explicitly expressed imig

of these five points as:

Let us consider the multilinear equation

This paper is divided into two main parts. In the first
one, the kinematics of a general 5\$Parallel platform is

reviewed. Particular attention is paid to the charactéona Z xr Yy xz yz 1

of both those configurations of the attachments that leage th z1 1 y1 1z yr1zr 1

platform singularity locus invariant and those that introd Z2 Ty Y2 222 Yoz2 1 _ 0 (4)
architectural singularities. In the second part, basedhesd z3 T3 Y3 T3z3 Yszg 1 ’

theoretical results, a particular reconfigurable architecis 24 T4 Y4 TaZa YaZa 1

proposed an analyzed. Z5 Ts Y5 X5z Yszs 1

or, alternatively, as

2. KINEMATICS OF THE 5-DOF 5-SPU PARALLEL Crz + Com + Cay + Cazz + Cryz + Cs = 0 ©)
MECHANISM where C; are the cofactors referred in the previous section,

i.e., the same coefficients appearing in (2).

Now, observe that, if we substitute one of the five points by
any other point in the hypersurface, the polynomial equatio
(5) will have the same set of coefficients up to a scalar
multiple. Then, if we change the attachments of one leg so
that the coordinates of the new attachments satisfy (4), the

Let us consider the 5-DoF 5-8Pparallel mechanism ap-
pearing in Fig. 1. We assume that no four attachments on the
plane are collinear, otherwise this subassembly wouldadont
a four-legged rigid subassembly that can be studied segarat

[11]. coefficients of the singularity polynomial in (2) remain the
The attachments on the plane have coordinaies= same up to a constant multiple and, as a consequence, its root

(zi,9:,0), for i = 1,...,5. The pose of the line with  |ocus remains invariant. This simple observation givesheas t
respect to the plane can be described by the position vectorc|ye to change the attachments locations without changieg t

P = (ps,py,p-) and the unit vectod = (u,v,w) in the  piatform singularity locus.

direction of the line. ThUS, the coordinates of the attaatime Equation (4) |mp||c|t|y defines a one-to-one Corresponéenc
on the line, expressed in the base reference frame, can between points in the line and lines in the plane. Indeedrgiv
written asb; = p + zi. an attachment on the plane with coordinatesy, 0), we con-

It has been shown that the singularities of this mechanism clude from equation (4) that there is a unique corresponding
correspond to those configurations in which the determinantattachment on the line with coordinate On the way round,
of the following matrix is zero [6]: given an attachment on the line, a line is defined in the plane.



Fig. 3. Three different views of the proposed 5-DoF 3JSparallel platform in the same configuration. The base attachments can be
independently moved along radial guides without altering the singularityslo€ihe platform.



It is important to realize that, as varies, the generated lines
intersect at a single point whose coordinates are: { Ey — Cot B3 — Cst Ey — Cyt E5 — Cst
Pz = = u = v =
1

7py ) bl
g (CsCi=CiCs _CaCi—CiCy © < @ “ @
T\ Gals — iy Cals — CuCs )

Each line on the base passing throuhs called aB5-line
(Fig. 1).

Point B3 is located at the origin of the reference frame if the (p.w)? = (t — ppu — pyv)2. (12)
following design conditions are satisfied:

0)
where E; results from substituting thé& — 1)th column of
Cl by (N27 N37N4a N5)T'

Now, sincet = p - i,

From equation:? 4 v? +w? = 1, and equation (8) foi = 1,
0301 = 06C5, OO = C4C6, and CyCs 75 C4C3. (7) we have
2 2

2

Summing up, the coordinates of the attachments oflleg w2 =1-u" =
are given by(z;, y;, z;), where(x;,y;) are the coordinates of p: = 2(=21t + 21px + Y19y + 21510 + 21710) (12)
the attachments on the base andthe local coordinate of —pr-py - -y — 2+
the attachment on the line. Then, if the base attachments ar
moved along their corresponding-lines, the resulting new
attachmentsz?, y/, z;) satisfy (4), and the resulting singularity
polynomial is the same, up to a scalar factor, which does not
modify its zeros provided that this scalar factor is diffdre

“rhen, substituting the above expressionsfdrand p?, and
the values ofp,, p,, v and v in (10), in equation (11), a
fourth-degree polynomial it is obtained. For each root of
this polynomial, when substituted in equations (11) and,(12
we obtain two values fofz, w}. Thus, a total number of eight

form zero. assembly modes is obtained.
2.2. Assembly modes 3. ARCHITECTURAL SINGULARITIES
In order to obtain the assembly modes of a_8JS#arallel When a manipulator is architecturally singular, it is siragul
platform, it is possible to apply the procedure proposedn [  in all the points of its configuration space [12]. It is import
Next, the main steps of this procedure are summarized. to characterize architectural singularities to avoid tham
The leg lengths of the platform can be expressed asthe design process but, when working with reconfigurable
2 = |b; —a||, for i = 1,...,5. If we subtract from these  robots, such characterization become crucial to desigtethe
expressions the equatiarf + v? + w? = 1, quadratic terms  rearrangements.
in u, v andw cancel yielding Architectural singularities of the presented manipulator
1,2 2 9 were fully characterized in [13], where it was shown thas thi
3(p% + Py +pz) + 2t — inIl’x - Z/ipr_ 371'221'“ N YiEU(g) kind of singularities arise either when
+a(@i +yi +27 1) =0, (a) four attachments in the plane are collinear, or
fori=1,...,5 wheret = p - i. Subtracting the equation for ~ (0) a base attachment is located on the conic formed by the
i = 1 from the others, quadratic terms;n, p, andp. cancel other four base attachments and pdt
as WeII,_and the resulting equations can be written in matrix \yhen all base attachments are located on differBnt
form as: lines (as in the proposed manipulator), no other architattu
To—T1 Y2 — Y1 Toze —T121  Yaze — Y121\ [/Pa singularities can arise (see [13] for details).
T3 —T1 Y3 — Y1 T3zz—T1z1 Y3zz —Yiz1 | | Py | _ Let us consider the conic passing through any four base
Ty — X1 Ya Y1 TaZa — T121 YaZa — Y121 u attachments, with coordinat€s;, v;), («;,v;), (zx,yx), and
Ts =T Ys —Y1 Tszs A Yszs Yz \U (x7,1), and pointB (in our case, the origin of the reference
(22 = z1)t + N2 frame). Its equation can be expressed as:
(2’3 — Zl)t + N3 (9)
(za —z1)t + Nu |’ 22wy y? or oy
(25 —21)t + Ns VR T T T
2 nr. 2 . =
whereN; = 1/2(z? +y? + 22 — 12 — 23 —y? — 23 + 13). ac% Z5Y;j 932 rj yj| =0. (13)
The system determinant i€, that is, the value of the Tk kYR Yo Tk Uk
rr o Ty Yy T U

cofactor of the (1,1) entry dI" in (1). If this cofactor is zero,

we can always choose as parameter eifherp,, u or v to Provided that no four attachments are collinear, the remain

reformulate the above linear system. Since not all cofactor ing base attachment can be freely moved along its associated

can be zero, otherwise the platform becomes architeqqurall line without introducing an architectural singularity #énd

singular, we can always find a non-singular linear system by only if, it is not located on this conic [13].

choosing the right parameter. In the next section, it is shown that, by arranging the lines
The solution of the above system, using Crammer’s rule, radially and constraining the attachments locations tootie

can be written in terms of the cofactors of the first rowIof half of these lines, it is possible to completely avoid suctdk

as: of singularities.
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The base attachments in the proposed architecture can be iddefl)grmoved along radial guides (shown in dotted lines) without

Fig. 4.
leading to architectural singularities because each attachment cantatabed on the conic (shown in solid lines) defined by the other four
attachments and the origin. Moreover, no four attachments can be robidear. If the attachments could move along their whole associated
B-lines, they could overpass the origin giving rise to the possibility of intértsecconic (shown in dotted circles) thus leading to architectural
singularities. Limiting the possible reconfigurations to radial guides, thisilpiity is totally excluded.

4. THE PROPOSED ARCHITECTURE by Eqg. (4) simplifies to

Let us consider the 5-&P parallel mechanism in Fig. 3
whose attachments in their local reference frames are gjiven
Table I. The value of the resulting cofactors for the elerment
of the first row of T are:

(Cyzi 4 Csyi)zi + Coxy + Cay; = 0. (14)

Likewise, the expression for the singularity locus, giverthe
root locus of the polynomial in Eq. (2), can also be simplified
resulting in the set of configurations satisfying

Cr1=0, (Capz — Cow)(pew — pou) + (Csp. — C3w) (pyw — p.v) = 0.

Ca = 1130.928486,
Cs = —532.2016037,
Cy = —665.2520496,
Cs = 66.52518034,
Cs = 0.

(15)

For fixed orientations, the singularity locus is a ruled
surface, and for fixed positions it is a quadratic curve on the
sphere (see Fig. 5 for two particular cases).

When moving the base attachments along their associated
B-lines, we must avoid possible architectural singulesitiés
explained in the previous section, this is achieved by engur
that each base attachment does not lie in the conic defined by

SinceC; = Cs = 0, the design conditions in (7) are satisfied. the other four attachments and poisit(Fig. 4).

As a consequence, poir, according to equation (6), is

If the possible locations for the attachments are limited to

located at the origin of the base reference frame, and thethe radii passing through the vertices of a pentagon, any fou

relationship between the coordinates of the attachmewméengi

base attachments and the origin define, independently of the



TABLE |
COORDINATES OF THE ATTACHMENTS IN THEIR LOCAL
REFERENCE FRAMESa; = (z;,¥i,0) AND b; = p + 2;i) FOR THE
PROPOSED ARCHITECTURE

L4 | (i, yi) | Zi
1 (3,0) 1L

2| (s (25 sum (20 (%) -5 (%)
(seos (%) 3 (%)) e (2] ()

3| (-3cos (%) ,3sin (%)) 10 cos (g) +sin (f))

o] (Ceon(Z)o-sm (D)) ”“’S(%)—Ssm(g%)

R 2 27
8sin| — ) +17cos | —
2 . 2 5 5
5 3cos| — ) ,—3sin( —
5 5 2 2m
5

location of the four attachments on their radii, a non-canve v
planar set of points. As a consequence, the conic passing

through them all is a hyperbola that does not intersect the ra

dius associated with the remaining attachment but at thggnori

(Fig. 4). Thus, by allowing the attachments to indepengent! =
slide along radial guides, the obtained reconfigurations ca

never be architecturally singular. (b)

5 THE EFFECT OF RECONFIGURING Fig. 5. Singularity locus foKa) a fixed orientation« = ? v =
' Y3 4w = ¥3), and(b) a fixed position f. = 1, p, = —1, p. = —4).
J-P. Merlet showed that non of the dexterity indices defined
for serial robots, such as the condition number or the manip-

ulability index, are appropriate for parallel robots [14]. leg attachments along their guides, (15) is multiplied by th
In the example presented in [14], it is shown how the factor

determinant of the inverse Jacobian matrix can be used as a 1

measure of the maximal positioning errors. Therefore, tee Es e 5) = 135(2cos(Z) —3)

value of detT) can be taken as a valid index to analyze the i
variation of the dexterity of the manipulator when perfanmi (2(‘308(5) — D12 da + AsAa + A3ds) + A2(Asds + Aads )
reconfigurations. (A1 (A22A3 + X2As + Aads) + Az (A2 Aa + )\4)\5))>~

As it has been proved in Section 2.1, for any given pose
of the manipulator, when performing a rearrangement of the It can be checked that this factor cannot be zero for any

leg attachments along their radial guides, the singulgxity- positive value of);, i = 1,...,5, which is consistent with
nomial (15) is multiplied by a constant factor. An analytica the fact that no architectural singularity can be attainétth w
expression for this factor is next obtained. the proposed reconfigurations.

Consider as parameters the distances of each attachment to In the initial location of the base attachments given by
the origin, say\; = ||B — a;|| (see Fig.6). Using a symbolic the coordinates in Table I\; = 3, for i = 1,...,5. Then,
algebraic manipulator it can be checked that, when reaimgng  £(\1,...,A5) = 1. When moving one attachment along its



Fig. 6. The value of d¢t') is multiplied by a constant that only
depends on the distances of the attachments to the origin.
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guide, the value of this factor increases linearly with the
[13]

distance of the attachment to the origin.

In conclusion, for a given pose of the manipulator, the
influence of a reconfiguration on the variation of the deggeri
can be measured usirgg Thus, for a given position of the
base attachments, the global dexterity of the workspace can
be improved by reconfiguring the robot.

6. CONCLUSION

This paper presents a 5-8Blatform whose attachments on
the base can be independently displaced radially withowli-no
fying the singularity locus of the platform. This permitsaciy-
ing the geometry of the platform, statically or dynamicatty
adapt it to different tasks and, as a consequence, incgeasin
its flexibility. The resulting reconfigurations would petntd
avoid some leg collisions, thus enlarging the workspacéef t
platform, or even to modify the stiffness of the robot in aegiv
region of its workspace.

Since the resulting reconfigurations do not modify the
singularity locus of the platform, it is possible to guaemt
that there will always be a one-to-one mapping between the
leg lengths of the robot before and after the reconfiguration
This obviously simplifies the control of the robot even when
the reconfigurations are performed dynamically.
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