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Abstract

The resection problem consists in finding the location of an observer by measuring the angles sub-

tended by lines of sight from this observer to three known stations. Many researchers and practitioners

recognize that Tienstra’s formula provides the most compact and elegant solution to this problem. Un-

fortunately, all available proofs for this remarkable formula are intricate. This paper shows how, by using

barycentric coordinates for the observer in terms of the locations of the stations, a neat and short proof

is straightforwardly derived.
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1 Introduction

The resection problem can be formally defined as follows (see Fig. 1). Given the coordinates of three stations

(p1, p2, and p3), the problem consists in determining the coordinates of a point, p4, from the angles, α1 and

α2, between the lines connecting p4 and the three stations.

Bock (1959) reports more than 500 different procedures to solve the resection problem. Nevertheless,

it is worth noting that these procedures were designed before the computer advent. Hence, most of them

are graphical in nature, or numerically adapted to be applied with the aid of tables. Still nowadays new

procedures for solving this problem appear from time to time (Font-Llagunes and Batlle, 2009). Descriptions
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of the most relevant ones are typically provided in surveying textbooks (Allan et al., 1982), where the

procedure derived from the direct application of Tienstra’s formula is usually recognized as the simplest one.

Tienstra’s formula reads as follows

p4 =
f1 p1 + f2 p2 + f3 p3

f1 + f2 + f3
, (1)

where

fi =
1

cot(ai) − cot(αi)
=

sin(αi) sin(ai)

sin(αi − ai)
. (2)

J. M. Tienstra (1895-1951) was a professor of the Delft University of Technology where he taught the use

of the barycentric coordinates in solving the resection problem. As pointed out by Greulich (1999), it seems

most probable that his name became attached to the procedure for this reason. Nevertheless, precisely when

and by whom this formula was first proposed is an open question. According to Greulich (1999), the earliest

recorded occurrence is a 1889’s paper by Neuberg and Gob (1889).

To the best of our knowledge, all the derivations of Tienstra’s formula available in the literature are

intricate. The most recent proof we are aware of is that by Hu and Kuang (1997, 1998) that involves 20

pages, divided in two papers, with algebraic manipulations that even requires the use of a computer algebra

system at some steps. In this note, a straightforward and neat derivation is presented. The key point has

been to express the observer location using barycentric coordinates in terms of oriented areas, as originally

introduced by Möbius (1827).

2 A Concise Proof of Tienstra’s Formula

In the n-dimensional Euclidean space, the barycentric coordinates of a point with Cartesian coordinates pn+1

are the weights w1, . . . , wn to be assigned to the Euclidean coordinates of the vertexes of a given reference

simplex, {p1, . . . ,pn}, so that their normalized weighted sum is pn+1 (Coxeter, 1969; Bradley, 2007). For

the planar case (see Fig. 2), the Cartesian coordinates of the vertexes of a planar simplex (i.e., a triangle)

can be denoted by pi = (xi, yi)
⊤ with the indexing i = 1, 3 proceeding in a counterclockwise fashion around
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the triangle starting from an arbitrary vertex. Then, the Cartesian coordinates of an arbitrary point in the

plane, p4 = (x4, y4)
⊤, can be expressed as

x4 =
w1 x1 + w2 x2 + w3 x3

w1 + w2 + w3
, (3)

y4 =
w1 y1 + w2 y2 + w3 y3

w1 + w2 + w3
, (4)

where w1, w2, and w3 correspond to masses that, when placed at the vertexes of the reference triangle

{p1,p2,p3}, give p4 as the center of mass. Observe that barycentric coordinates are not unique since they

can be arbitrarily scaled yielding the same result. For the special planar case, and when the weights are

normalized, the barycentric coordinates are also called areal coordinates, since their values correspond to the

areas of triangles {p2,p3,p4}, {p1,p4,p3}, {p1,p2,p4}, normalized with respect to the area of the reference

triangle. Observe that the weights are all positive only when p4 is inside the reference triangle and, thus, for

the general case, oriented areas have to be considered.

Barycentric coordinates provide elegant proofs of geometric theorems such as Routh’s theorem, Ceva’s

theorem, and Menelaus’ theorem (Coxeter, 1969) and we will exploit them here to provide a simple proof of

Tienstra’s formula.

According to the above, for three non-aligned stations with coordinates p1, p2, and p3, as depicted in

Fig. 2, the position of the observer, p4, can be expressed as

p4 =
∆(2, 3, 4) p1 + ∆(3, 1, 4) p2 + ∆(1, 2, 4) p3

∆(1, 2, 3)
(5)

=
∆(2, 3, 4) p1 + ∆(3, 1, 4) p2 + ∆(1, 2, 4) p3

∆(2, 3, 4) + ∆(3, 1, 4) + ∆(1, 2, 4)
(6)

=
1

1 + ∆(3,1,4)
∆(2,3,4) + ∆(1,2,4)

∆(2,3,4)

p1 +
1

∆(2,3,4)
∆(3,1,4) + 1 + ∆(1,2,4)

∆(3,1,4)

p2 +
1

∆(2,3,4)
∆(1,2,4) + ∆(3,1,4)

∆(1,2,4) + 1
p3 (7)

where

∆(i, j, k) =
1
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is the oriented area of the triangle defined by {pi,pj ,pk}.

Since the triangles {p1,p5,p3} and {p5,p2,p3} have the same height, then

∆(1, 5, 3)

∆(5, 2, 3)
= D(1, 5, 2), (9)

where

D(i, j, k) = ζijk

‖pj − pi‖

‖pk − pj‖
, (10)

ζijk being the sign of the dot product (pj −pi) · (pk −pj). Note that D(i, j, k) is a signed ratio of distances.

Likewise,

∆(1, 5, 4)

∆(5, 2, 4)
= D(1, 5, 2), (11)

and, as a consequence,

∆(3, 1, 4)

∆(2, 3, 4)
=

∆(1, 5, 3) − ∆(1, 5, 4)

∆(5, 2, 3) − ∆(5, 2, 4)
=

D(1, 5, 2) ∆(5, 2, 3) − D(1, 5, 2) ∆(5, 2, 4)

∆(5, 2, 3) − ∆(5, 2, 4)
= D(1, 5, 2). (12)

Repeating the same reasoning for ∆(1, 2, 4)/∆(3, 1, 4) and ∆(2, 3, 4)/∆(1, 2, 4), we obtain

p4 =
1

1 + D(1, 5, 2) + 1
D(3,7,1)

p1 +
1

1
D(1,5,2) + 1 + D(2, 6, 3)

p2 +
1

D(3, 7, 1) + 1
D(2,6,3) + 1

p3. (13)

Next, we show how all the signed distance ratios in the above equation can be expressed in function of the

interior angles (a1, a2, and a3) of the triangle defined by the three stations, and the angles measured from

the observer (α1, α2, and α3 = 2π − α1 − α2).

Consider the first ratio in Eq. (13). Applying the sinus rule to the triangles {p1,p5,p3} and {p5,p2,p3}

we get

D(1, 5, 2) = ζ152
‖p5 − p1‖

‖p2 − p5‖
=

‖p3 − p5‖
sin(δ)
sin(a1)

‖p3 − p5‖
sin(λ)
sin(a2)

=
sin(δ) sin(a2)

sin(λ) sin(a1)
. (14)
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Since a1 + (π − θ) + δ = π and a2 + θ + λ = π then

sin(δ) = sin(θ − a1), (15)

sin(λ) = sin(θ + a2), (16)

and taking into account that the three stations are not aligned (i.e., sin(θ) 6= 0) we have

D(1, 5, 2) =
sin(θ − a1) sin(a2)

sin(θ + a2) sin(a1)
=

sin(θ−a1)
sin(θ) sin(a1)

sin(θ+a2)
sin(θ) sin(a2)

=
cot(a1) − cot(θ)

cot(a2) + cot(θ)
. (17)

On the other hand, applying the sinus rule to triangles {p1,p5,p4}, and {p5,p2,p4} we get

D(1, 5, 2) = ζ152
‖p5 − p1‖

‖p2 − p5‖
=

‖p4 − p5‖
sin(δ′)
sin(a′

1
)

‖p4 − p5‖
sin(λ′)
sin(a′

2
)

=
sin(δ′) sin(a′

2)

sin(λ′) sin(a′

1)
. (18)

Now, since δ′ = π − α2, λ′ = π − α1, a′

1 + (π − θ) + δ′ = π, and a′

2 + θ + λ′ = π then

sin(δ′) = sin(α2), (19)

sin(λ′) = sin(α1), (20)

sin(a′

1) = sin(θ − δ′) = − sin(θ + α2), (21)

sin(a′

2) = sin(θ + λ′) = − sin(θ − α1), (22)

and we have,

D(1, 5, 2) =
sin(α2) sin(θ − α1)

sin(α1) sin(θ + α2)
=

sin(θ−α1)
sin(θ) sin(α1)

sin(θ+α2)
sin(θ) sin(α2)

=
cot(α1) − cot(θ)

cot(α2) + cot(θ)
. (23)

Finally, eliminating cot(θ) from Eqs. (17) and (23), we get

D(1, 5, 2) =
cot(a1) − cot(α1)

cot(a2) − cot(α2)
. (24)

Repeating the same reasoning for D(2, 6, 3) and D(3, 7, 1), Tienstra’s formula is straightforwardly obtained.
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3 Conclusions

In this paper, we provided a concise proof of Tienstra’s formula. The key point to derive it was to departure

from the very definition of the barycentric coordinates of a point. Previous proofs that only rely on the use

trigonometric identities get rapidly involved, to the point of requiring the use of computer-aided algebraic

manipulation.
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