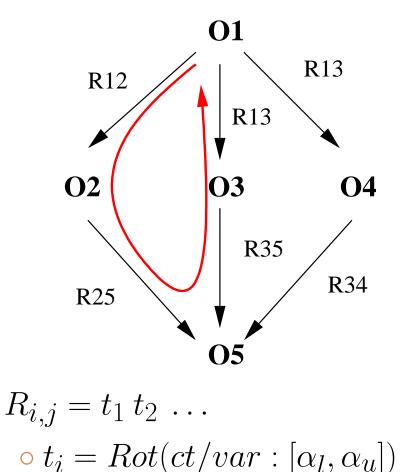


Solving Multi-Loop Linkages by Iterating 2D Clippings The Cuik Algorithm

J. M. Porta, L. Ros, F. Thomas and C. Torras

Institut de Robòtica i Infomàtica Industrial

Problem Definition



 $\bullet t_i = Trans(ct/var : [l_l, l_u])$

Equations

- Loops in the graph:
 *R*12 *R*25 *R*35⁻¹ *R*13⁻¹ = *Id*
- Solution: Assignment of values to variables.
- Obtain a basis of loops.
- One matrix equations per loop in the basis.
- 12 scalar equations per matrix equation.

To solve the system of equations

Algebraic Geometry

To solve the system of equations

Algebraic Geometry

Homotopy

To solve the system of equations

Algebraic Geometry

Homotopy

Interval-based Methods

To solve the system of equations

Algebraic Geometry

Homotopy

Interval-based Methods

 \Box Interval arithmetics

To solve the system of equations

Algebraic Geometry

Homotopy

Interval-based Methods

Interval arithmeticsSubdivision

To solve the system of equations

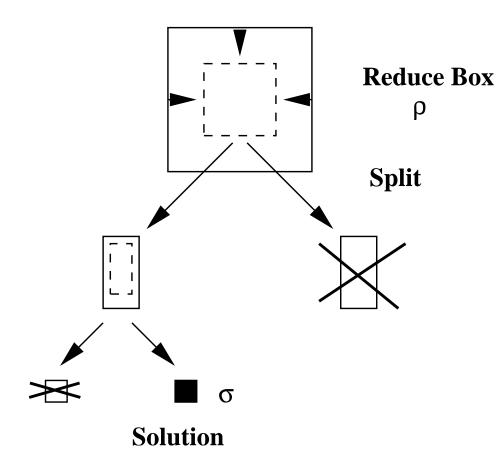
Algebraic Geometry

Homotopy

Interval-based Methods

- \Box Interval arithmetics
- \Box Subdivision
- \Box 2-D Clippings (CUIK)

Interval-Based Methods



Interval-Based Methods



A trivial mechanism with 1 rotational dof

 $Rz(\alpha) = M$

A trivial mechanism with 1 rotational dof

$$Rz(\alpha) = M$$
$$Rz(\alpha) M^{-1} = Id$$

A trivial mechanism with 1 rotational dof

$$Rz(\alpha) = M$$
$$Rz(\alpha) M^{-1} = Id$$

In homogeneous coordinates

$\int \cos \alpha$	$-\sin \alpha$	0	0 0	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	$m_{1,4}$		$1 \ 0$	0 0
$\sin \alpha$	$\cos lpha$	0	0	$m_{2,1}$	$m_{2,1}$	$m_{2,3}$	$m_{2,4}$		$0 \ 1$	0 0
0	0			$\left \begin{array}{c c} m_{3,1} & m_{3,1} & m_{2,3} & m_{3,4} \end{array} \right ^{-1}$		0 0	1 0			
0	0			0			1		0 0	0 1

A trivial mechanism with 1 rotational dof

$$Rz(\alpha) = M$$
$$Rz(\alpha) M^{-1} = Id$$

In homogeneous coordinates

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,1} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,1} & m_{2,3} & m_{3,4} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\cos(\alpha) \ m_{1,1} - \sin(\alpha) \ m_{2,1} = 1 \\ \sin(\alpha) \ m_{1,1} + \cos(\alpha) \ m_{2,1} = 0$$

• • •

A trivial mechanism with 1 rotational dof

$$Rz(\alpha) = M$$
$$Rz(\alpha) M^{-1} = Id$$

In homogeneous coordinates

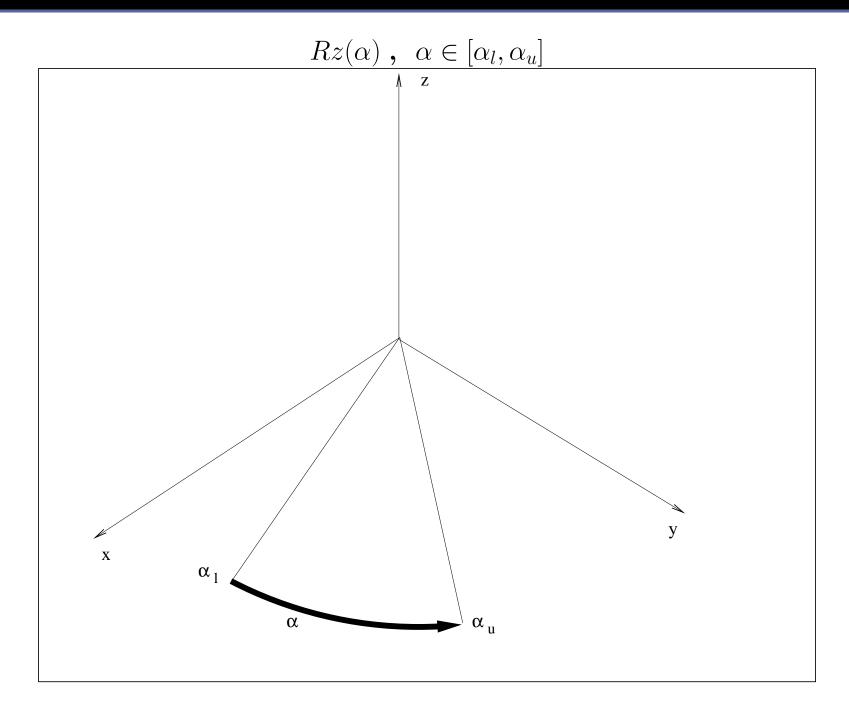
$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,1} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,1} & m_{2,3} & m_{3,4} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\cos(\alpha) \ m_{1,1} - \sin(\alpha) \ m_{2,1} = 1 \\ \sin(\alpha) \ m_{1,1} + \cos(\alpha) \ m_{2,1} = 0$$

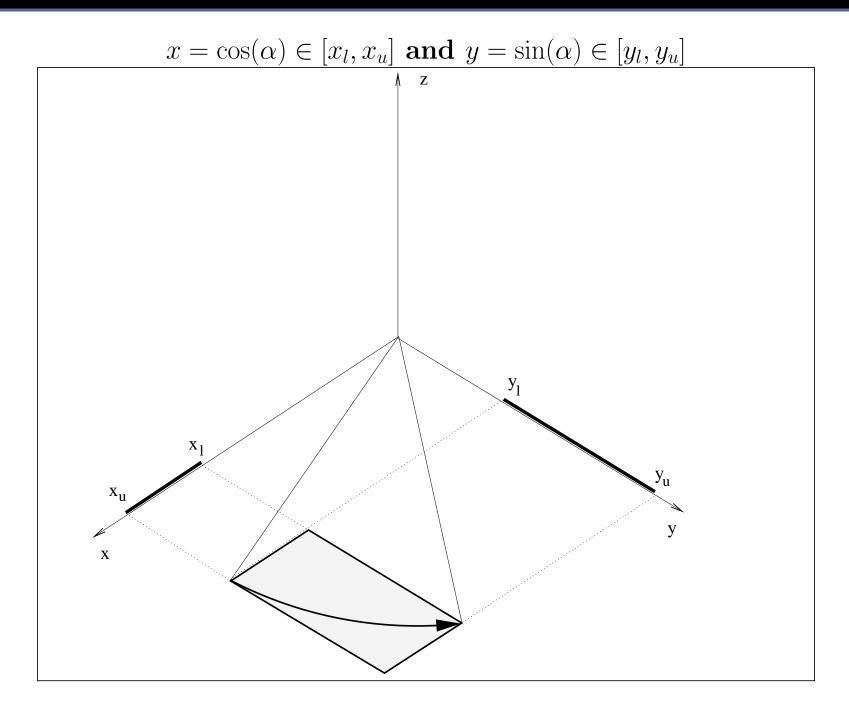
. . .

Variable substitution: $x = cos(\alpha), y = sin(\alpha)$

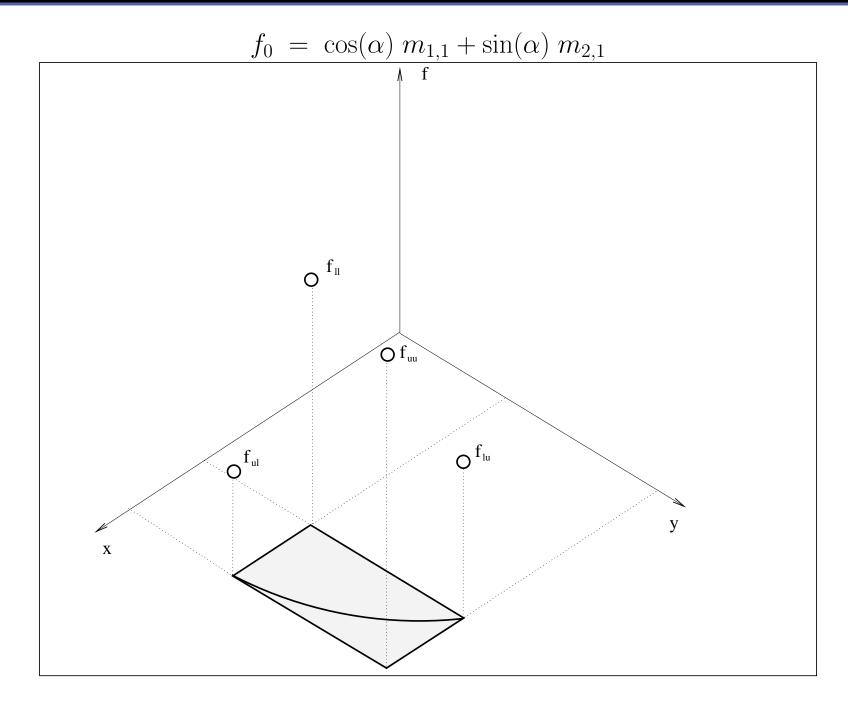
Box Reduction (I)



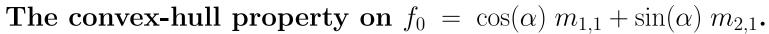
Box Reduction (II)

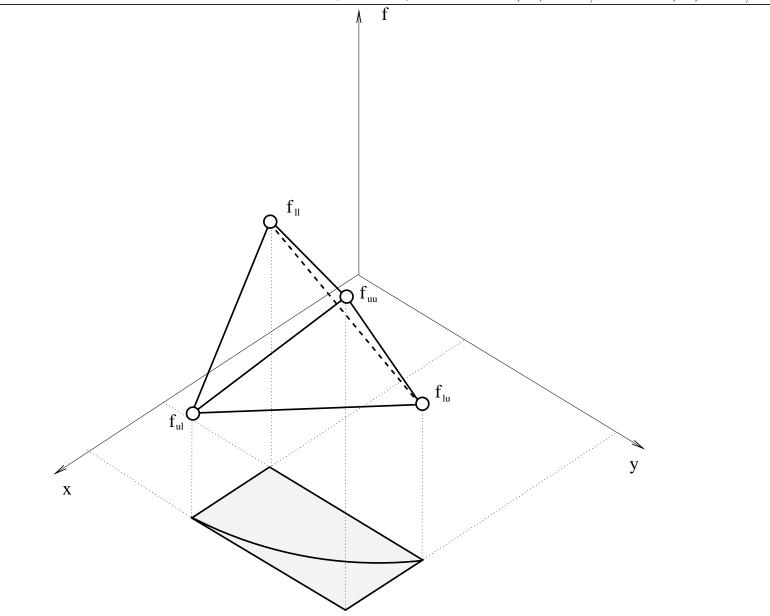


Box Reduction (III)



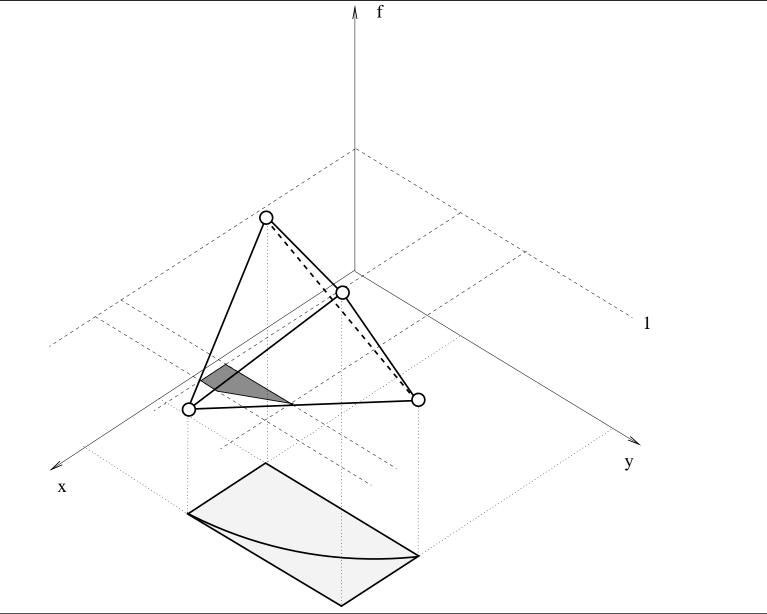
Box Reduction (IV)



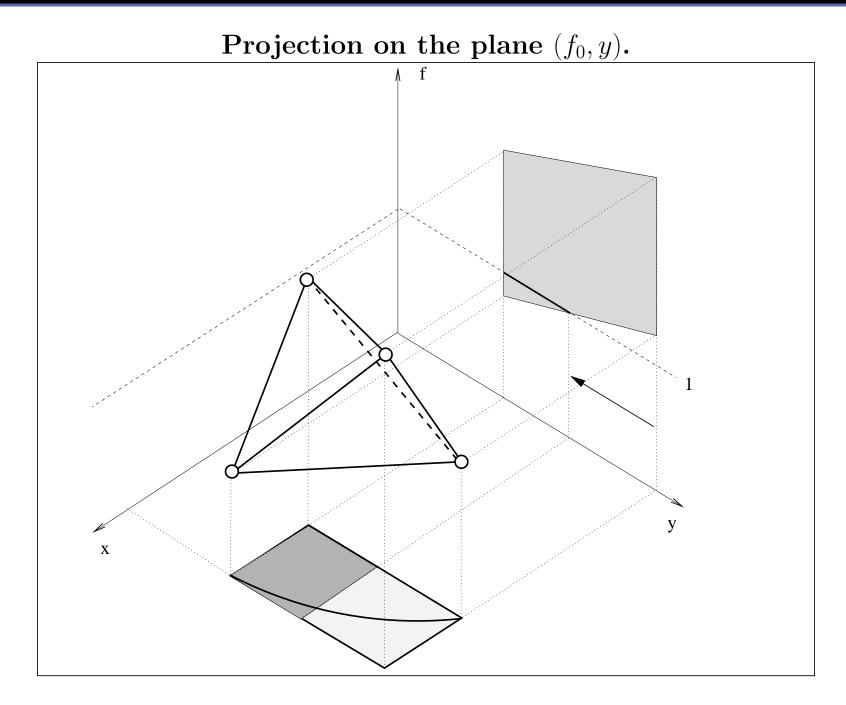


Box Reduction (V)

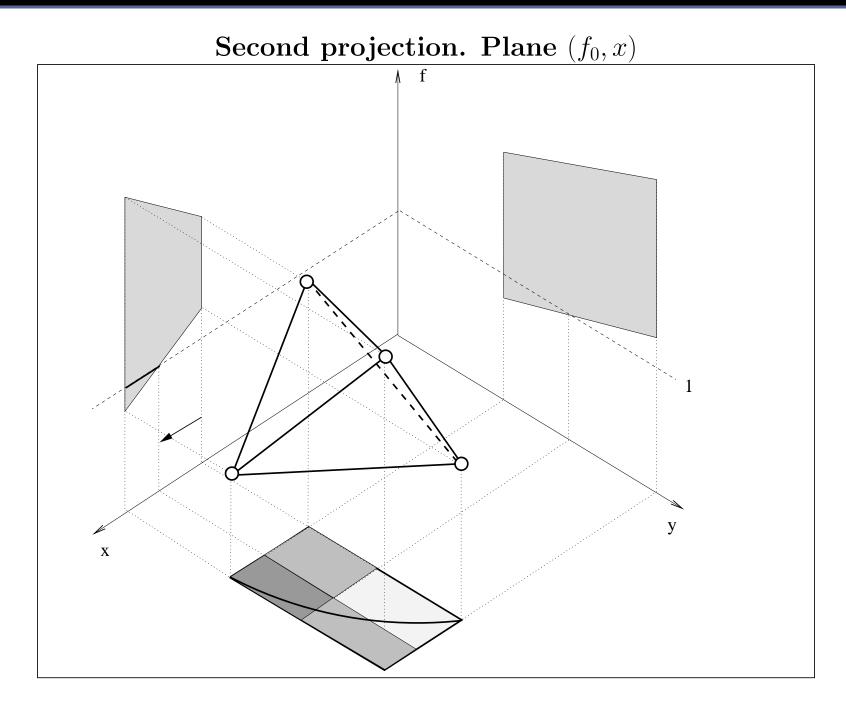
Intersection with the plane $f_0 = 1$ ($x m_{1,1} + y m_{1,1} = 1$).



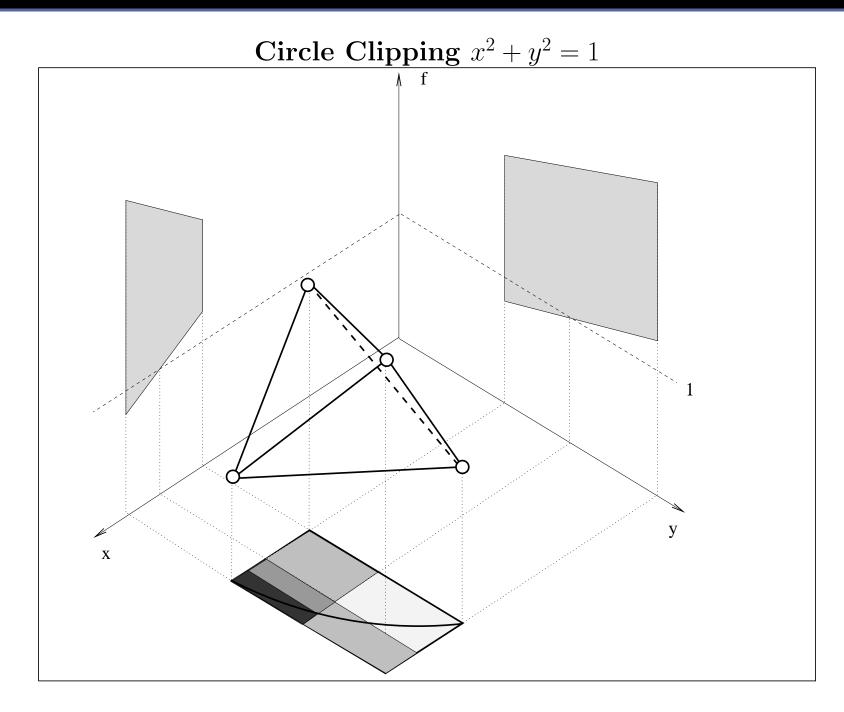
Box Reduction (VI)



Box Reduction (VII)



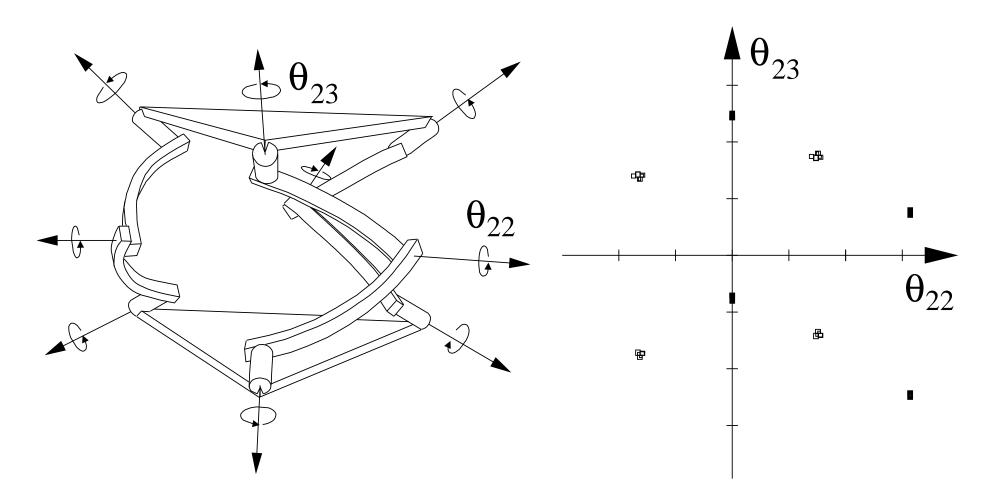
Box Reduction (VIII)



The Cuik Algorithm

```
Compute a cycle basis of the graph
S \leftarrow \emptyset
L \leftarrow Initial \ list \ of \ boxes
while not empty(L)
      \mathcal{B} \leftarrow first \ box(L)
      do
                 s \leftarrow size(\mathcal{B})
                 Reduce_Box(\mathcal{B})
       Until empty(\mathcal{B}) or size(\mathcal{B}) < \sigma or size(\mathcal{B})/s > \rho
      if not empty(\mathcal{B}) then
              if size(\mathcal{B}) \leq \sigma then
                     S \leftarrow S \cup \{\mathcal{B}\}
              else
                     Split \mathcal{B} into two sub-boxes: \mathcal{B}_1, \mathcal{B}_2
                     Add \mathcal{B}_1 and \mathcal{B}_2 to L
              endif
       endif
endwhile
```

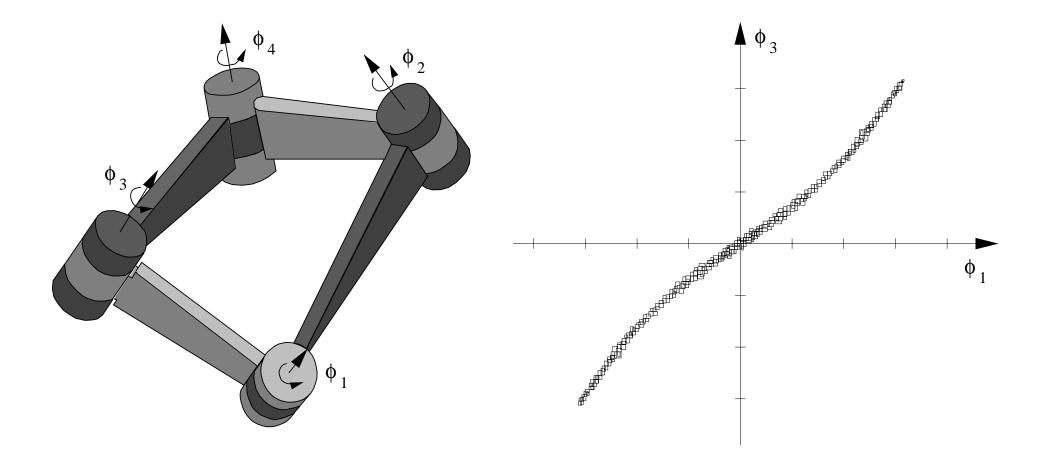
The Gosselin Platform



Results

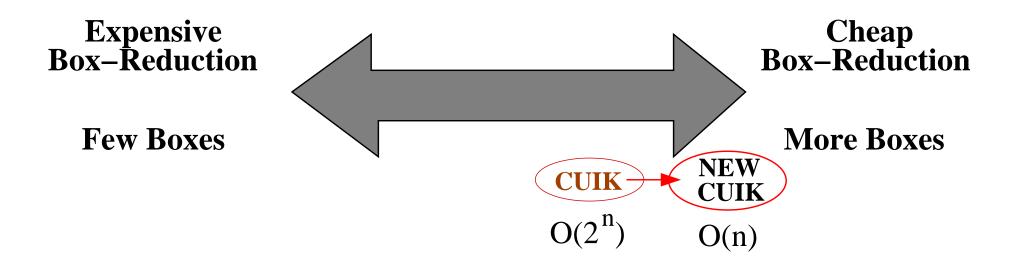
Time: 2 secSolution Boxes: 58 (8 clusters)

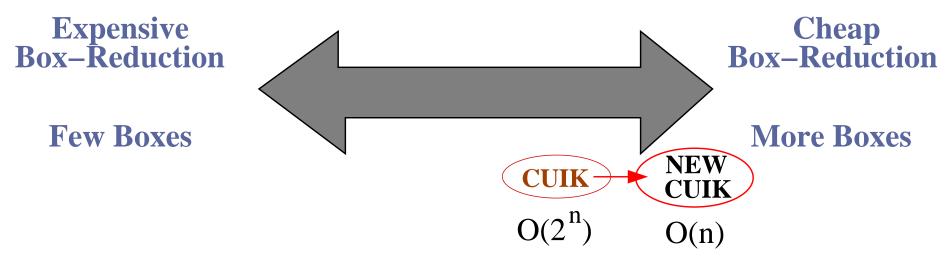
The Bennett Linkage



Results

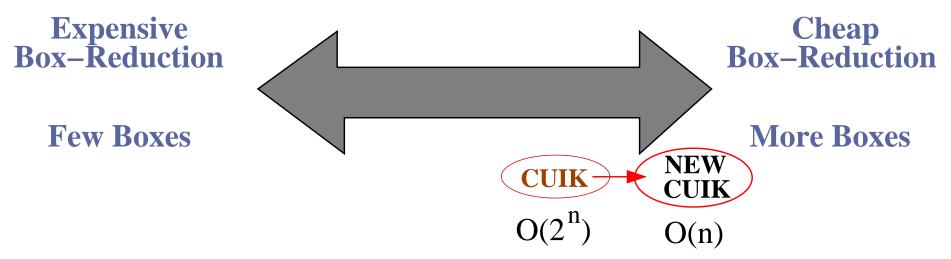
Time: 1 secSolution Boxes: 300



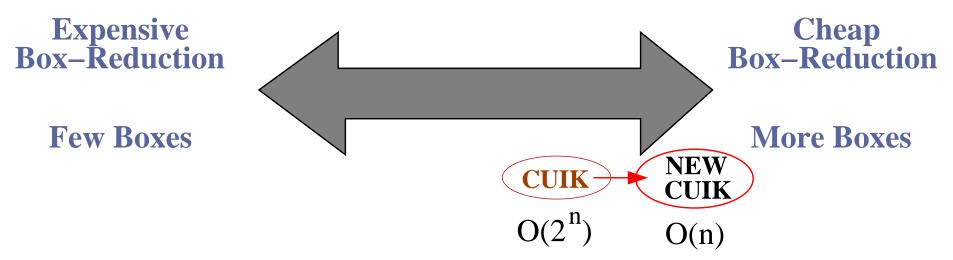


The Puma case:

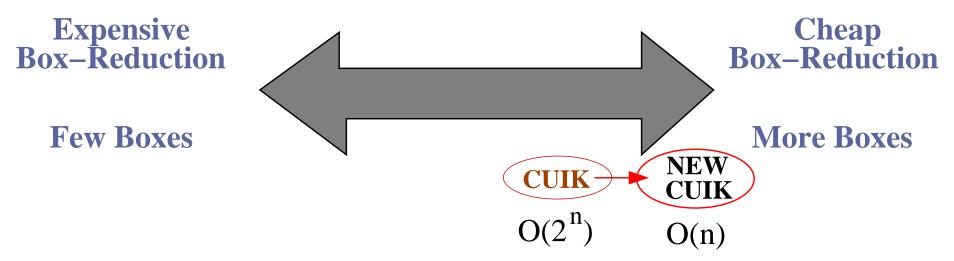
• Bezier Method: Days



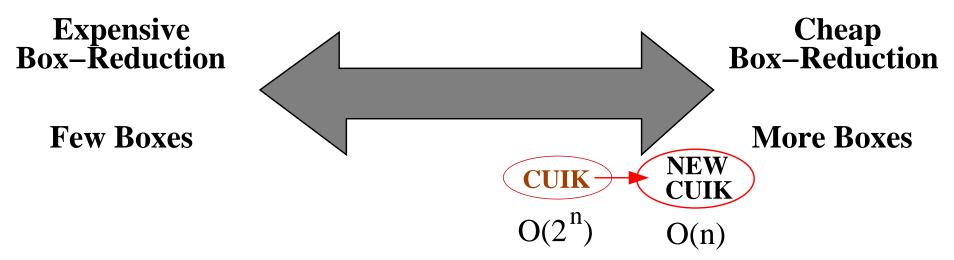
- Bezier Method: Days
- December 2001: 10 hours



- Bezier Method: Days
- December 2001: 10 hours
- January 2002 (ARK): 1 hour



- Bezier Method: Days
- December 2001: 10 hours
- January 2002 (ARK): 1 hour
- March 2002: 20 min



- Bezier Method: Days
- December 2001: 10 hours
- January 2002 (ARK): 1 hour
- March 2002: 20 min
- May 2002 (New Cuik): 30 seg

General algorithm based on simple 2D clippings.

General algorithm based on simple 2D clippings.

Promising results.

- General algorithm based on simple 2D clippings.
- Promising results.
- Many research lines open:

- General algorithm based on simple 2D clippings.
- Promising results.
- Many research lines open:
 - Cycle basis (Redundancy).

- General algorithm based on simple 2D clippings.
- Promising results.
- Many research lines open:
 - Cycle basis (Redundancy).
 - Shared variables.

- General algorithm based on simple 2D clippings.
- Promising results.
- Many research lines open:
 - Cycle basis (Redundancy).
 - Shared variables.
 - Box splitting process.

- General algorithm based on simple 2D clippings.
- Promising results.
- Many research lines open:
 - Cycle basis (Redundancy).
 - Shared variables.
 - Box splitting process.
 - Global methods.

- General algorithm based on simple 2D clippings.
- Promising results.
- Many research lines open:
 - Cycle basis (Redundancy).
 - Shared variables.
 - Box splitting process.
 - Global methods.
 - Algebraic methods.

Typesetting Software: TEX, Textures, IATEX, hyperref, texpower, Adobe Acrobat 4.05 ARK. Caldes de Malabella. July 2002 The Geometry and Kinematics Group IRI IATEX Slide Macro Packages: Wendy McKay, Ross Moore