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Chapter 1

Introduction

1.1 Motivation and background

Any computer vision application requires the selection of adequate features of the image.
Since the information contained in these features is used in successive processing steps,
their selection, for a specific task, is a relevant problem [120]. Image features can be local
or global. Local features provide pixel-based information, that is, knowledge about the
behavior of any pixel into its neighborhood. On the other hand, global features provide
region-based information, that is, information about all the pixels inside a given region.
Choosing either local or global features is task-dependent. Local features are commonly
used in those processes requiring contour or region extraction while global features are
used to identify and distinguish one region from another.

Deciding which is the appropriate set of global features is not a trivial task. It depends
on the specific application; however, common feature requirements can be summarized in
two points. On one hand, they have to provide enough task-oriented information. For
instance, in pattern recognition, these features should be sufficient to identify and distin-
guish one region of the image from the others. In other applications, such as compression,
they should allow to reconstruct the most significant parts of the image from a reduced set
of them. On the other hand, they have to be computable using fast and memory-efficient
algorithms, mainly in real-time applications.

The extraction of linear global features consists of projecting the image, defined as a
bidimensional function, onto a set of basis functions. A specific type of global features,
the geometric moments, sometimes also called standard moments, have been commonly
used in computer vision applications [6, 8, 25, 32, 51, 63, 84, 90, 97]. They are obtained
as the projection of the image onto a set of monomial functions. Most of the times, their
use is motivated either by their straightforward geometrical interpretation or by the fact
that some non-linear combinations of them yield invariant parameters to changes of scale,
translation, rotation and reflection [2, 5, 9, 14, 21, 31, 40, 60, 83, 91, 92, 96, 99, 111,
112, 118]. Typical examples of applications involving moments are pattern recognition,
edge detection, orientation determination, image normalization, image reconstruction,



2 Introduction

and texture classification (see [89] for a survey).

However, the geometric interpretation of the so-called geometric moments is limited
to moments up to second order, from which most invariants are defined. Hence, no formal
interpretation of the information contained in higher order moments has been previously
stated and no a priori criteria exist to decide which is the appropriate number of useful
moments. Some empirical results can be found in [81] and [108], where the number of
useful moments is related to the signal-to-noise ratio of the image.

The interpretation of higher order moments and their use in many applications has
led to the analysis of the inverse problem, that is, the reconstruction of the image from a
finite set of its moments. In all its instances, the inverse moment problem is universally
recognized as a notoriously difficult inverse problem which often leads to the solution of
very ill-posed systems of equations that do not have a unique solution [4, 46, 48, 93, 105].

In computer tomography, the X-rays of an object can be used to estimate the moments
of the underlying mass distribution and, from these, the distribution itself. Recently, the
relationship between the geometric moments of an image and those of its Radon transform
has been stated in [70]. The relevance of this relationship is that Radon transform coef-
ficients are physically obtained through tomography, which encompasses a wide variety
of applications in such diverse areas as medical imaging, geophysical and oceanographic
signal processing, computer vision and astronomy. The reconstruction of an image from
its Radon coefficients is an active research field since the very beginning of tomographic
applications.

In geophysical applications, the measurements of the exterior gravity field of a region
can readily be converted into moment information, and from these, the mass density can
be determined. In radiation field applications, an analog relation allows to obtain the
moments of an electric charge distribution, and from these, the distribution itself.

Due to the finite number of bytes that any computer uses to represent a number,
some numerical restrictions arise with regard to the largest and smallest value able to
handle, as well as to the resolution able to handle. Although the former restriction does
not normally constitute a problem in moment computation since the computer numerical
range — defined as the ratio between its largest and smallest possible value — is large
enough for common applications, resolution generates roundoff errors causing numerical
instabilities. Because of these numerical instabilities the reconstruction process becomes
ill-conditioned [13, 29, 47].

Hence, given the relevance of geometric moments, there has been an active interest
in finding efficient algorithms for their computation either for binary [18, 42, 52, 53, 54,
56, 75, 85, 114, 115, 117] or gray-level images [16, 55, 68, 119]; even some hardware
implementations have been proposed for real-time applications [33, 16, 103]. Likewise,
two methods to solve the inverse problem have been proposed that are based either on
Legendre polynomials [106, 61, 81, 82, 108] or on variational techniques [71, 73, 79]. A
new approach is introduced in [65] that allows to reconstruct a band-limited or resolution-
limited image. Ill-conditioning issues are addressed in [108], where it is experimentally
shown for different kinds of noisy functions that, although the approximation error is



1.2 Accumulation moments 3

supposed to diminish as the number of known moments increases, there exists a limit in
the number of useful moments in the reconstruction process.

1.2 Accumulation moments

Besides geometric moments, a number of other moments have been proposed in recent
years. In general, any set of coefficients obtained by projecting an image onto a 2D
discrete polynomial basis has generally been accepted as moments. Some examples are
Legendre, Zernique, rotational and complex moments. These moments exhibit different
degrees of noise sensibility, information redundancy, and discrimination power [108].

This thesis introduces a new set of moments to the above family: the accumulation
moments [67]. The introduction of this new set of moments is motivated by the following
fact. Let us assume a signal, f(t), time-limited to the interval 0 < ¢ < 7. Then, using
the Laplace transform [87], it can be easily proved that its n-th order moment can be
calculated as follows:

/OTtnf(t) = ﬁ/j /Otn"'/oh /Otl F(T = to)dtodty . .. dtn_ydt,. (1.1)

Roughly speaking, the result of integrating a signal n + 1 times is directly related
to its n-th order geometric moment. Also, from this formulation, it seems possible to
compute moments of higher order using the intermediate steps required to obtain those
of lower order, at least in part. Based on this possibility, a simple iterative algorithm for
the efficient computation of grey-level image moments could be envisaged [66, 69], in the
same way it was done in the binary domain in [42].

The thesis is essentially devoted to obtain the 2D discrete counterpart of (1.1); use it to
reduce the computational complexity of some applications involving geometric moments;
and, reconstruct an approximated image from them.

The discrete counterpart of (1.1) leads us to the introduction of what we call accumu-
lation moments. We show how these moments can be obtained as projection coefficients
onto a polynomial basis for which reason they can be properly called moments. We prove
that this new global features are

e fast and easy to compute,
e easily related to commonly used features,

e interpretable in terms of commonly used image parameters such as bandwidth and
spatial resolution, and

e allow the reconstruction of a bandwidth or resolution-limited image from a finite
set of them.
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The later aspect can be expressed into the more general framework of inverse problems
[62, 64, 105] and we will show that it requires:

e solving its ill-posedness and

e solving its ill-conditioning.

1.3 Organization of the thesis

The thesis is structured in two parts. The first part encompasses the accumulation mo-
ment definition and their advantageous use, instead of geometric moments, in some ap-
plications. The second part refers to the inverse problem, that is, the reconstruction of
an image from a reduced set of accumulation moments.

The first part is organized as follows. Chapter 2 introduces the concept of accumulation
moments, both direct and reverse, and how they are connected to geometric moments. It
is shown that they are obtained by simply accumulating image values along its rows or
columns and, subsequently, accumulating the values of the resulting vector to yield a single
number. If these accumulations are repeated several times on the already accumulated
matrix or vector, the result is a set of numbers that are called accumulation moments.
It is proved that sets of geometric and accumulation moments are related through a one-
to-one linear transformation. Therefore, the information provided by a set of geometric
moments up to a given order is preserved in the same amount of accumulation moments.
In chapter 3, real-time computation aspects are considered. A hardware implementation
scheme that only requires bit-serial adders and shift registers is proposed. In chapters
4 and 5, the connection between geometric and accumulation moments is exploited to
provide computational advantages in three different applications. In particular, chapter
4 analyzes the use of accumulation moments to speed up the computation of geometric
moments and their associated invariants. In chapter 5, accumulation moments are used
as description parameters in sliding window applications. In general, description vectors
obtained in a particular window location can be related to those in previous locations of the
window if overlapping occurs. It is shown how the actualization cost drops from O(m?) to
O(m?), where m refers to the amount of moments, when accumulation moments are used
instead of geometric moments. Therefore, any application of this kind that traditionally
required geometric moments can benefit from the use of accumulation moments. Finally,
in chapter 6, a generalization of the presented concepts and results to higher dimensions
is developed.

The second part is organized as follows. In chapter 7, the reconstruction of an image
from a finite set of accumulation moments is carried out by accumulated subtractions.
This is the most intuitive reconstruction method since it involves the inverse operations
used to obtain accumulation moments from an image, using a process that we call backpro-
jection. In chapter 8, the reconstructing problem is expressed in terms of a matrix-based
reformulation of the series approximation of an image from a set of projection coefficients.
This reformulation provides a geometric interpretation of both the least-squares approxi-
mation of the image and the so-called unitary approximation of the image from a reduced
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set of projection coefficients. Then, in chapter 9, image reconstruction from a finite set
of moments is set into this framework: moments are identified as projection coefficients.
[ll-conditioning and ill-posedness of the inverse problem is analized in this context. It is
shown how numerical instabilities of the reconstruction process can be explained in terms
of the projection basis functions and they can be quantified in terms of the condition
number of the Gram matrix, that is, the matrix containing the inner product between all
the elements of the basis set. In chapter 10, it is shown how former reconstruction meth-
ods, i.e. the Legendre and variational methods, are incorrect because they both assume a
continuous domain. The Legendre method is based on the use of orthogonal polynomials
to obtain a least-squares approximation of the image. However, the Legendre polynomials
are not orthogonal in the discrete domain as shown in this chapter. Variational methods
(maximum entropy and minimum divergence methods) rely on optimization. Using La-
grange multipliers it is possible to obtain an explicit form of the reconstructed image in
terms of an exponential function. However, this method implicitly assumes a continuous
domain of the function to be minimized because it involves continuous derivatives and this
is not the case. In chapter 11, two novel reconstructing methods are introduced. The first
one is a reformulation of the Legendre method for orthogonal polynomials of discrete vari-
able, that is, the Chebyshev polynomials. A least-squares approximated image is obtained
in this case. The second one is called the unitary transform method because it obtains an
approximation of the image using its truncated series expansion onto orthonormal basis
sets. Depending on particular properties of the chosen basis set, it is possible to obtain a
reconstructed image that satisfies some visual properties. In this sense, it allows to obtain
a low-pass approximated image, if Fourier coefficients are used, or a low-resolution one, if
Haar coefficients are used instead. In chapter 12, computational aspects are considered.
Algebraic methods that decompose the whole reconstruction problem into simpler ones,
thanks to the fact that the underlying basis functions that we are using are separable,
are proposed. Singular value decomposition and iterative algorithms are also proposed to
alleviate the ill-conditioning of required matrix inversion. In chapter 13, the particular
case of binary images is considered. In this case, the reconstruction problem fits into the
context of constraint satisfaction problems. Since the constraints involve all the variables,
obtaining a solution is, in most cases, computational unfeasible. Nevertheless, a partial
constraint satisfaction problem defined by moments up to first order has been efficiently
solved using a sequential algorithm that allows to introduce local constraints in a simple
way.

Finally, chapter 14 summarizes the contributions of this thesis, describes open prob-
lems and proposes several directions of future research.

1.4 Notation

A simple notation is used throughout this thesis to denote vectors and matrices. Lower
case bold letters denote vectors and capital bold letters, matrices. We always use sub-
scripts to denote their dimensions. For example, v, denotes a columnwise vector and
v, [l], one of its elements, where [ may range from 1 to n. Likewise, Z,,, denotes a matrix
and Z,,, [k, 1], its element (k,[), where £ and [ may range from 1 to m, and from 1 to
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n, respectively; Z,[:, (] refers to its column [ and Z,,,[k,:], to its row k. For simplicity,
square matrices will only have one subscript. Superscripts are also used to denote any
parameter on which a matrix depends.

Two unary matrix operations are used: (-)' denotes the transpose of a given matrix
and (-)7!, its inverse.

Given the vectors v,, and w,,, < v,,, w,, >= v’ w,, denotes their inner product. For

the general case of two matrices A,,, and B,,,, < A, By, > is defined as the inner
product of the vectors constructed by sequentially reading each row of both matrices. If
one of the matrices is separable, then < A, By >=< A, Xyl >=xt Ay, and,
if both are, < A, B >= < v W Xyl >=< v, X >< Wy, ¥ >.
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Obtaining the accumulation
moments of an image






Chapter 2

Direct and reverse accumulation
moments and how they are
connected to geometric moments

There exist different kinds of moments depending on the polynomial basis set used in their
definition (see [89] for a survey). In this chapter, we introduce a new set of moments:
the accumulation moments [67]; and we show how they are connected to the widely used
geometric moments. To this end, we start by defining what is a moment and its order.

Definition 2.0.1 (Moment). Given an image represented by matrix I, the coefficient
Jmn Obtained from:

9mn = Z me(x)QR(y)Iab[xa y], (2'1)

r=1 y=1

where p,,(z) and ¢,(y) are polynomials of order m and n, respectively, is defined as a
moment.

Definition 2.0.2 (Moment order). The order of moment g,,, is defined as the ordered
pair (m,n).

Note that this definition of moment order is different from the traditionally accepted
one. A set of moments up to order (m,n) encompasses all moments g, ranging from
k=0tom—1 and from [ = 0 to n — 1. Then, they can be arranged as the elements
of an m X n matrix. On the contrary, the traditional definition of order would refer to
moments up to order N = m + n as the ones contained in the upper-left triangular part
ofan (m+n+1) x (m+n+ 1) matrix.
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2.1 Geometric moments

Definition 2.1.1 (Geometric moment matrix). The geometric moment of order (m, n)
with respect to an arbitrary point (v, w) of a discrete image I, is defined as:

e = 303w = )y — w)"Tule, vl (22)

r=1 y=1

Then, the geometric moment matrix, M"Y | is defined as:

mn?

M [k, 1) = 1.

Theorem 2.1.1.

My = (T5)" (Vam)' L Vin Ty, (2.3)
where
- _ .
Tq[k' l] — (k_11) (_q)l k, Zf l > ka (24)
P , otherwise,

and V,q s a non-square Vandermode matriz of general term

Vlk, 1] = KL (2.5)

Proof. The decomposition of the binomials in (2.2) into adding terms leads to:

=333 (7)o () cor et

z=1 y=1 i=0 j=0

Then, expanding the summatories into a vector-matrix form, one obtains:

™o\ 1 1 1 11 ... 1 (5) (—w)"
- (7 3( v)m 1 2 a 1 2 on | | (7)(=w)*
um,n --------------- Iab -------------
(Z) 1 om am 1 b b ()

Finally, when moments up to order (m —1,n—1) are grouped into the geometric moment

matrix, vectors turn into matrices and equation (2.3) is obtained.
O
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Corollary 2.1.1.
an = (Vam)t Iab Vbn- (26)

Corollary 2.1.2 (Steiner theorem).
My = (T3,)" My Ty, (2.7)

Since T are triangular matrices, any geometric moment of an image positioned at
an arbitrary point can be obtained from the geometric moments of the same order and
lower of the image positioned at the origin. Note also that each matrix T accounts for a
translation along either x or y axes.

Property 2.1.1.
-1 _ m—
(T])~ =T," (2.8)

2.2 Direct accumulation moments

Definition 2.2.1 (Direct accumulation moment matrix). The direct accumulation
moment of order (k — 1,1 — 1) of matrix I, is the value of I [a, b] after top-down accu-
mulating its columns k times (i.e., after applying k times the assignment I[i + 1, j] <
Ipli + 1,4] + Ig[é, j], for i+ = 1 to @ — 1, and for j = 1 to b), and accumulating the
resulting last row from left to right | times (i.e., after applying [ times the assignment
Isla, 7+ 1] < Ipla, 7+ 1]+ Lupla, 4], for j = 1 to b—1). The direct accumulation moment
matrix is defined so that Ly, [k, [] is the direct accumulation moment of order (k—1,/—1).

This definition is better understood through an example.

Ezxample 2.2.1. Consider the matrix

02 3
10 8]. (2.9)
111

According to the definition, its direct accumulation moment of order (1, 2) is computed
by top-down accumulating its columns twice and then left-right accumulating the resulting
last row three times. The first and second columnwise accumulations lead to

0 2 3 0 2 3
1 2 11 )and |1 4 14,
2 3 12 3 7 26
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respectively, and the three accumulations of the last row to

(3 10 36), (3 13 49) and (3 16 65).

Then, it is said that the direct accumulation moment of order (1,2) of matrix (2.9) is
65.

Obviously, the same result would be obtained if the rows were accumulated from left
to right three times and the resulting last column, top-down accumulated twice.

Any set of coefficients obtained by projecting an image onto a 2D discrete polynomial
basis has generally been accepted as moments. Although it does not seem to be the
case for the set of values just introduced, this polynomial relationship will be proved in
chapter 9. Here, we prove that any complete set of accumulation moments up to a given
order can be obtained from a set of geometric moments up to the same order. Actually,
this property is satisfied by any set of moments.

It can be easily shown that the direct accumulation moment of order (kK —1,l—1) can
be expressed, in terms of the image, as

L[k, ] = Zzb: (“ - Zf’:_ 1>1a,,[7«, ] (b _Zfi_ 1). (2.10)

r=1 s=1

Then, we can write

Lmn = (Qam)t Iab ana (211)

where Q,, is an up-down-flipped non-square Pascal matrix of general term

p—k+1-1
Qpolk, 1] = ( bk > (2.12)
Theorem 2.2.1. Matriz Qpq can be factored as follows:
Qpg = Vi GF, (2.13)

where V4 is a Vandermonde matriz and GY an upper triangular matriz.

Proof. The combinatorial number in (2.12) can be decomposed into its multiplicative
terms as follows:
<p—k+l—1> p—k+1i-1! (=1)"!

) s e L U e ) )+ 2
(2.14)

where 7 = —p—i, withi=1,... (1 —1).
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If this expression is considered as a polynomial in &, it can be directly expressed in
terms of its coefficients instead of its roots (see [7] for details) leading to:

(k + ﬂfﬂ)(k + 5&2) e (k + 5{)) =K1 + Bf,lf1kl_2 +toot Blpfl,lfl’

where
-1
Y4 _ E P
Bl,l—l - i1
11=1
-1
Y4 _ P 2P
B2,l—1_ § : 111712
11,02=1
11 <i2
-1
Y4 _ E P 3P 2P
B3,l—1 - i1 M0 Mg (215)
i‘15i2.7i3:.1
11<22<13
P _ P ap P
Bl—l,l—l - ﬂ’il 12 ty_1?

and BY =1, either if r =0 or s = 0.

Then, in vector form,

B£1,zf1
(_1)1_1 Bf—Q,l—l
Qualk: = 775, Ok ... Y[
Bl
1

Considering all the elements of matrix Q,,, the above vector product turns into the
matrix product stated in equation (2.13), where

(GRO Y :
GPlk,l] = (=D By L2k, (2.16)
a 0, otherwise,
is a square upper triangular non-singular matrix.
O

Using theorem 2.2.1 and corollary 2.1.1, the following result is obtained.

Corollary 2.2.1. Direct accumulation moments can be expressed in terms of geometric
moments and vice versa as:

Ly = (G2)" M, G®, (2.17)
and
My = ((G%)™) Lonn (G2) 71, (2.18)

respectively.
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Corollary 2.2.2. Since G and G® are upper triangular matrices, the geometric moment
of order (m,n) of an image can be obtained from the accumulation moments up to order
(m,n) and vice versa.

Values for (G“n)_1 and (Gr’;n)_1 can be obtained by numerically inverting G¢ and G? ,
respectively.

Ezxample 2.2.2.

1 17 289 4913
61 [0 =1 =35 —919
(Gr) " = 0 0 2 108 |’
00 0 —6
1 17 289 4913 83521
o [0 -1 35 919 —21455
(G:°) =[0o 0o 2 108 3890 |,
0 0 0 —6 —444
00 0 0 24
and
1 18 324 5832
-1 [0 =1 =370 —1027
@) =19 o > 114
0 0 0 —6

Note the increasing dispersion in the elements of (Gg) ~as p and g increase. This sug-
gests an underlying numerical ill-conditioning due to roundoff errors as the order increases,
as it will be explained in chapter 9. A measure of the ill-conditioning in the inversion of
G is given by its condition number, that is the ratio between its largest and its smallest
eigenvalue, for different values of p and ¢. The results are plotted in figure 2.1a and 2.1b,
for increasing values of ¢ and p, respectively. It shows that, although G¥ is non-singular,
its inverse for high order moments or large images cannot be accurately computed.

Next, it is explored the possibility of accumulating image values in the opposite direc-
tions for a better conditioned relationship with the geometric moments. This is encouraged
by the fact that, while direct accumulation moments are more sensitive to variations of
pixel values that are close to the origin, geometric moments are more influenced by those
far from it.

2.3 Reverse accumulation moments

Definition 2.3.1 (Reverse accumulation moment matrix). The reverse accumula-
tion moment of order (k — 1,1 — 1) of matrix I, is the value of I,[1, 1] after bottom-up
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14 -
p=10
12 g
10 g
sl i
6 i
ab i
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o L . .
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121 g=5 -
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o B
(b) °r )
7+ B
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s B
a4 -
. . . . . .
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E1S i
2 i
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o . . .
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Figure 2.1: (a) Condition number of GP as a function of ¢ and (b) as a function of p.
(¢) Condition number of H, as a function of q. The vertical scale is given in powers of
ten.
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accumulating its columns k times (i.e., after applying & times the assignment Ippla—1i, j| «
Iwla—1,j] +1pla—i+1,j], for i =1toa—1, and for j =1 to b), and accumulating the
resulting first row from right to left I times (i.e., after applying [ times the assignment
Top[1,0— 7] < Lop[1,0— j] + Igp[1,0— j+ 1], for j =1 to b—1). The reverse accumulation
moment matrix is defined so that R, [k, ] is the reverse accumulation moment of order
(k—1,1-1).

Ezxample 2.3.1. Using the same matrix as in example 2.2.1, the reverse accumulation
moment of order (1,2) requires two columnwise accumulations, which leads to

2 3 12 5 5 22
21 9]land |3 2 10
11 1 11 1

respectively, and the three right-to-left accumulations of the first row to

(32 27 22), (81 49 22) and (152 71 22).

Then, it is said that the reverse accumulation moment of order (1,2) of matrix (2.9)
is 152.

It can be easily shown that the reverse accumulation moment of order (k — 1,1 — 1)
can be expressed, in terms of the image, as:

Romalk, 1] = ;2; <”;f; 2>Iab[r, N <S j: 2). (2.19)

Then, we can write
Rmn = (Pam)t Iab an7 (220)

where P, is a non-square Pascal matrix of general term:

k+1—2
P, [k, 1] = ( L ) (2.21)
Theorem 2.3.1. Matriz Py, can be factored as follows:
Py = Vo Hy, (2.22)

where Hy is an upper triangular matriz.

Proof. The development of the combinatorial number in (2.21), as in the proof of theo-
rem 2.2.1, leads to:

(_1 l—lB—_l B
(_1)l—2Bl—11’l 1
1-2,1-1

(1_11)! (1 k ... K o

qu[/f, l] =
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Considering all the elements of matrix P,,, the vector product turns into the matrix
product stated in equation (2.22), where

—1)i—k _ .
H, [k, 1] = (<l—)1>! B i lzk (2.23)
0, otherwise,

is a square upper triangular non-singular matrix and

By, = > (—r—i)(-r—is)...(—r—1ip).

11,02,..0p=1
11 <2< <1p

Using theorem 2.3.1 and corollary 2.1.1, the following result is obtained.

Corollary 2.3.1. Reverse accumulation moments can be expressed in terms of geometric
moments and vice versa as:

Ryn = (Hp)' My Hy, (2.24)
and

My = () ™) Ry ()™ (2.25)
respectively.

The condition number of H, as a function of p is shown in figure 2.1c. Clearly,
the relationship between reverse accumulation moments and geometric moments, besides
being independent from the size of the image, is better conditioned as suspected, so that
it is more interesting for reliable computations.

Now, it is possible to directly relate direct and reverse accumulation moments.

Theorem 2.3.2.
G!=D, T,V H,, (2.26)

where Dy, is a diagonal matriz of the form D[k, k] = (—1)*1.

Proof. From definitions 2.2.1 and 2.3.1, it is obvious that the direct accumulation moments
of an image I,[k, (] and the reverse accumulation moments of the reflected and displaced
image I[(a + 1) — k, (b + 1) — ] are equal. Let us distinguish the moment matrices
associated with each image by numbering them 1 and 2, respectively. Then, it can be
proved that the relationship between the geometric moments of both images is

M2, = (T; )" D,, M1,,, D, T;®**1),

m
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b b
y y y
REFLECTION TRANSLATION
a a
(@, y) = (—z,—y) (z,y) = (z+a,y+0b)
X X X

Figure 2.2: Reflected and translated image.

where D, are diagonal matrices that account for the reflection of the image, and T are
obtained according to corollary 2.1.2 (see figure 2.2).

Using corollary 2.3.1,
R2,,, = (H,)' (T;“")" D,,M1,,, D, T,;*VH,.

Since R2,,,, = L1,,,, corollary 2.2.1 finally permits to obtain equation (2.26).

Corollary 2.3.2.

(GO = (H,) " TV D, (2.27)

Using this corollary and corollaries 2.2.1 and 2.3.1, the following result, that finally
relates direct and reverse accumulation moments, is obtained.

Corollary 2.3.3. The direct (Ly,y,) and reverse (Ry,,) accumulation moment matrices
of an image are related as follows:

Ryn = (W2)" Ly, W, (2.28)
and

Ly = (W) R, W, (2.29)
where

(D) pgtk—1 .
Wik, 1] = {W B, if 1>k,
plMs

(2.30)
0, otherwise;
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and

By, = Z (=r —d1)(=r —ia) ... (=1 —ip).

11,82,...,0p=1
11 <t2<-<lp

Note that (W?) ™ = W,

10
0 0

(12 (11 » (1 3
=y 3)s Re=(; ), ma wi= (g %),

It can be easily checked that Ly = (W2)!R, W2 and Ry, = (W3)' L, W2

Ezample 2.5.2. Consider the matrix I, = ( > Then,

The mathematical development presented up to this point provide practical connec-
tions between geometric moments and direct and reverse accumulation moments by means
of the one-to-one linear transformations graphically summarized in figure 2.3. All the in-
volved constant matrices are compiled in table 2.1.

Voglk, 1] = k-
qu[k l] = ( —hi= 1)
pq[k l] (k l—12)
-1
Y[k, 1] = () (= I >k,
0, otherwise.
( 1)l 1 P
GP[k, 1] = ot Bk I >k,
0, otherwise.
D -t
H k| ={ D Bl 1>k,
0, otherwise.
(=D* pg+k—1
Wk, ] = v Biti-1 >k,
0, otherwise.
B;’q - %l’h """" ip=1 (_T - il)(_r - Z'2) ... (—T — ip)
i1<i2<...<ip

Table 2.1: Defined constant matrices connecting geometric, direct and reverse accumula-
tion moments.
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Figure 2.3: The linear transformations relating the three moment matrices defined here.
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Notice that it is not possible to obtain any set of moments up to order N = m +n —
using the traditional definition of order — from another set of moments up to order (m,n)
— using our definition. In this case, a set of moments up to order (m+n+1,m+n+1)
would be necessary. Nevertheless, the set of moments up to order (m,n) — as defined
here — can be obtained from another set of moments up to order N = m+n+1 — as
traditionally defined.

In chapters 4 and 5, it is shown that all the applications that traditionally required
geometric moments can benefit from the use of accumulation moments.
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Chapter 3

Computational considerations

The main advantage of using accumulation moments instead of other well-known moments
is that their computation only requires additions. In this sense, a hardware implementa-
tion much simpler than those proposed for the computation of geometric moments up to
third order in [33] and [119] can be developed for accumulation moments.

The use of moments in real-time applications requires specialized hardware. Imple-
mented structures include optical [12, 107], VLSI [33, 119] and parallel ones [16]. How-
ever, the accumulation moment implementation basically requires bit-serial adders and
shift registers.

The general idea of the implementation scheme is shown in figure 3.2. The basic
structure, shown in figure 3.1, is formed by a bit-serial adder and a feedback loop that
includes shift registers.

UL

n
]

Figure 3.1: Basic structure of the implementation scheme.

Given as input the bit 0 of pixel ¢, the register of the first basic structure contains all
the bits of data ¢ — 1, such that at each clock tick one bit is shifted and a new bit of the
input data ¢ is introduced. Clock frequency is determined by the delay of the bit-adders
and video rate. Each basic structure increases one order the number of accumulations.
The same basic structure is repeated m times in the horizontal direction in order to
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accumulate m times the value of every pixel of each image row. On the other hand,
each vertical series of n basic structures are activated when the bits associated with the
accumulated values of the last pixel of each image row are available at their inputs. Notice
that in the serial combination of basic structures each module is delayed one tick with
respect to the previous one. Finally, the outputs of the basic structures in the vertical
direction allow to obtain the accumulation moments.

OO000LLLL
cock1 00O ...
L = L = L 1=
input B B ...... B
Ln(2,1] - . Lmn(2,2] - . Ln[2,m)
Lyn[n, 2]
cock2 0 | L.
00 o -

Figure 3.2: Implementation scheme for accumulation moment computation.

Notice that higher order accumulation moments require increasing number of bits
because its numerical value increases with order. Assuming a uniform square image of
size a and 8 bits per pixel, the maximum value of its direct or reverse accumulation
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moment is
max(Ly,[m, m]) = max(R,,[m, m]) = 255 * (Pay1mla + 1,m])* = 255 * (Qar1,m[1, m])?,
as it can be obtained from equations (2.10) or (2.19). Figure 3.3a plots this value for a

fixed image of size ¢ = 512 and increasing values of m, and figure 3.3b shows the required
number of bits.

90

a =512 a = 512
120
80

70 B 100+

<)
o
T

80

J>va1ue ((‘lnog)

S <]

T T
bits

60

30|
a0t

201

201

101

Figure 3.3: (a) Mazimum numerical value of the accumulation moments as order in-
creases; and (b) required number of bits for these numerical values.

Real-time applications imply computing the accumulation moments of an image typ-
ically at TV rates, that is % sec. Given a 512 x 512 image, the pixel time is 127 nsec.
Assuming that the delay of a bit-adder is less than 5 ns, it is impossible to perform more
than 25 bit-serial additions. In case the input data contains more bits, it can be multi-
plexed into k parallel structures equal to the one in figure 3.2, where separate bit-adders
are used for different groups of bits of any input data. In [119], separate bit-adders are
proposed for high and low bits of an input, to perform cumulated summations in parallel.
Then, including this considerations in the diagram of figure 3.2, with a careful control of
synchronization, it is possible to obtain high order accumulation moments in spite of the
increasing amount of required bits.
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Chapter 4

Application to the fast computation
of geometric moments and its
associated invariants

4.1 Computing geometric moments

Taking into account the relevance of moments in such a broad field of applications as pat-
tern recognition [9, 83, 97|, feature extraction [27, 28], motion estimation [8, 84], medical
imaging [32, 41|, 3D modeling [6, 90, 59|, subband analysis [116], texture segmentation
[104, 109] and reconstruction [77, 72, 71, 79, 81|, any effort in order to attain low com-
plexity algorithms for their computation is justified.

Software implementation of geometric moment computation using its direct formula-
tion, i.e. equation (2.6) in corollary 2.1.1, leads to very long processing time. It is easy to
verify that, given a square image of size a, the computation of M,, requires a’m + am?
multiplications and a(a — 1)m + (@ — 1)m? additions. Assuming a = 512 and m = 3,
over 1.5 Mflops are required. Obviously, this has to be reduced, specially in real-time
applications, where a new image frame is obtained every % sec.

Most of the efforts for the efficient computation of geometric moments have focused
on the binary domain. Two different approaches have been considered: (1) reducing
the number of involved pixels and (2) using recursivity. The first approach is carried
out either by decomposing the image into simpler areas such as one-line-thick rectangles
(run-lengths) [18, 54, 117] or triangles [52] or by transforming the summation over an
area to the summation along its contour using the discrete version of the Green’s theorem
[85]. The second approach uses geometric moments of lower order to compute higher
order geometric moments [75, 100]. Obviously, both approaches have also been jointly
considered [42, 57, 113, 114] and extended to the 3D case [58, 53, 56, 115].

In the gray-level domain, the first approach that avoided the direct evaluation of (2.6)
was presented in [33], where the idea that a 2-D filter with separable impulse response
x™u(z)y"u(y) could be used to generate the (m,n)th order moment of a digital image
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was exploited. The result was limited to third order moments. A generalization to higher
order moments was provided in [55]. Hardware implementation structures have also been
explored including optical, VLSI and parallel ones as mentioned in chapter 3.

Using accumulation moments and corollary 2.3.1, the complexity of computing the
geometric moments of an image, in terms of the number of products and additions, is
reduced [68]. Given a square image of size a, the number of multiplications and additions
required to compute M, using (2.25) in corollary 2.3.1 is m?(m + 1) and m(m — 1),
respectively, because H,, are triangular matrices. Taking into account that the compu-
tation of R, involves a(a — 1)m + m?(a — 1) additions, the total number of additions is
ala —1)m+m?(a—1) + m(m — 1)2.

Table 4.1 compiles these results. Note that, when accumulation moments are used,
the number of multiplications is independent from the size of the image.

| | Additions | Multiplications |
Evaluation of (2.6) | a(a —1)m + (a — 1)m? a’m + am?
Evaluation of (2.25) | a(a — 1)m + (a — 1)m* + m(m — 1)? | m*(m + 1)

Table 4.1: Number of operations required to compute geometric moments either directly
or through accumulation moments.

Figure 4.1 shows the theoretical time comparison between the evaluation of (2.6) and
(2.25). The comparison is done for different values of the maximum order of the required
moments (figure 4.1a), and for different image sizes (figure 4.1b). Here, multiplication
and addition operations are assumed to require the same time, as it is the case in modern
RISC processors.

Thus, the advantage of using (2.25) for computing geometric moments has been clearly
established. Moreover, the hardware computation of the accumulation moments intro-
duced in chapter 3, makes the geometric moment computation independent from the
image size.

4.2 Computing moment invariants

Feature-based recognition of objects or patterns independently of their position, size,
orientation and other variations has been an active research field (see [112] for a review).

Two different approaches concerning invariant features have been proposed in the
literature. The first one is based on invariant properties of the projection basis associated
with the obtained linear features. For instance, the modulus of the Fourier transform is
invariant with respect to translation and the modulus of some Mellin-like transforms is
invariant with respect to scale and rotation. Hence, values from these modulus can be
used as invariant features [101, 102, 110].

The second approach is based on moments. Geometric moments up to third order
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Figure 4.1: Time comparison between the evaluation of equations (2.6) and (2.25), as-
suming that multiplication and addition operations require the same time.
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have been widely used because of their geometric and physical interpretation; parameters
such as the area, the center of mass and the principal axes of inertia are derived from these
moments [25, 89]. Then, different strategies use these physical parameters to normalize the
image under scale, position and rotation transformations prior to compute discriminant
features. Since image symmetries generate ambiguities in the principal axes definition,
many ad doc methods that depend on the particular application have been developed
[14, 25, 31, 98, 101].

A more general approach to obtain moment invariants is based on algebraic invariants
[2, 21, 40, 63, 91, 96]. An algebraic invariant of weight w and order p is defined as a
homogeneous polynomial p(agy,...,ay) obtained from the coefficients of a binary form
of order p, i.e.

P
(Azy + Bxo)? = Z A p—k (Z) Pk
k=0

that verifies

p(a6p7 R a';JO) = Awp(a’opv SR a;DO)’

where ag, ..., a,, are the coefficients obtained from substituing the following general
linear transformation into the original form:

/ !
1 = bllxl + b12$2

! /!
T9 = bglxl + b22$2

and

bll bl2

N\ =
o1 boo

If w = 0, the invariant is called an absolute invariant; if w # 0 it is called a relative
invariant. By eliminating /A between two relative invariants, an absolute invariant can
always be obtained.

This approach was formalized by Hu [40] as the fundamental theorem of moment
invariants which states as follows: If the algebraic form of order p has an algebraic
invariant,

plagp, - - -, ap) = A¥plagy, - - ., ap),

then the moments py; such that k+1 = p have the same invariants but with the additional
factor |.J|, which is the Jacobian of the transformation, i.e.

p(tops - - > tpo) = || A% p(thop, - - - Ihpo)-

This theorem was later revised by Reiss [91] who stated that the additional factor was |J|*
for affine transformations instead of |J|. The same invariants were obtained by Flusser in
[21] using a different derivation. This revised theorem also holds for algebraic invariants
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containing coefficients from two or more forms of different orders and moment invariants
containing moments of the corresponding orders.

The most widely used moment invariants are derived from central moments up to trird
order. Central moments are related to geometric moments through corollary 2.1.2, when
v and w refer to the coordinates of the center of mass. However, using corollary 2.3.1,
these particular central moments can be directly obtained from the reverse accumulation
moments as follows:

Mzcwc[l, 1] — R4[1, 1], (41)
Mzcwc[l, 2] — 0, (42)
Mzcwc [2’ 1] — 0’ (43)
P EX. T T o
Mzcwc[l,B] = —% —R4[1,2]+2R4[1,3], (45)
M2 [3,1] = —% —Ry[2,1] + 2R4[3, 1], (4.6)

- S e (S
+2R4[2,3], (4.7)

M2 = Ry M2 R M - R (g )
+2R4[3,2], (48)

Nﬁqu4y:_3(§ﬂi?}+1)Nﬁqu3]_3923%%%~—2R4L2}+6R4Lq,
(4.9)

e[, 1] = —3 (i‘{ﬁ: H +1) M [3,1] — 3 % —2Ru[2, 1] + 6 Ra[4, 1],

(4.10)

where v, and w. denote the coordinates of the center of mass, which can also be obtained
from corollary 2.3.1 as

_R[2,1] R
TRy MY Y TR

Let denote R[1,1] as a and expressions (4.4) to (4.10) as b,c,d, e, f,g and h, respec-
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tively. Then, the invariants from second and third order moments are [21, 91]:

cd — b?
P1 = 1 (4.11)
a
2h? — 6efgh + 4e3h + 4gf3 — 3e? f2
p2 = g 9 10 o! ! (4.12)
d(fg—e*) —b(gh — ef) + c(eh — f?
gy = W =€) —blg - f) +cleh — f?) (4.13)
d3g? — 6bd%eg — 6cd? f g + 9cd?e? + 12b%df g + 6bedgh — 18bede f
Ps = 11
a
2 7£2 3 _ 2 2 - 2 312
n 9c*df* — 8b°gh — 6¢*deh + 12b°ceh — 6bc” fh + c°h (4.14)

all

Invariants involving higher order moments can also be derived from central moments
(60, 111].

Non-linear combination of Zernique, complex and rotational moments also generate
some other moment invariants [5, 99]; they are obtained by combining moments so that
their individual dependence on the transformations is eliminated.

= IT] I=
. T m
pe il v
— T o

(a) (b)

Figure 4.2: Templates from which the affine moment invariants are obtained: (a) capital
letters and (b) affine transformed capital letters.

In table 4.2, the four absolute affine invariants derived by Flusser [21] and Reiss [91]
are obtained for the capital letters shown in figure 4.2a and their affine transformation in
figure 4.2b. A simple measure of their discriminality is provided by the parameter d[j],
for j =1,2,...,12, defined as

dlj] = V(B2 + (B20])2 + (B2 + (Auli)),

where p; are the absolute affine invariants normalized in the range [0,1], that is,

pli) = min(plt) ., p12)
max(p:i[1], ..., pi[12]) — min(p:[1], ..., ps[12])

pilj] =

Invariant pattern recognition systems require discriminality and reduced computa-
tional complexity. Since the use of the affine invariants has been proved to be useful in
many applications [21, 51, 99, 111, 118], their efficient computation is a relevant problem.
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| J] [ pix 103 [ps x107% [ p3 x 10° | py x 10°° || d|
1] A 29.29 29.07 96.10 27.45 [ 0.68
29.19 0.54 88.17 23.34 || 0.68

2| B 23.91 -0.45 -11.44 2.35 [ 0.71
25.27 -0.58 -7.42 2.13 || 0.72

3|C 63.94 313.85 96.71 24.82 || 1.27
63.71 525.07 99.07 40.20 || 1.27

4] D 37.06 -2.31 -31.04 9.57 || 0.80
41.00 -1.30 -28.64 10.78 || 0.85

5| E 32.50 54.26 42.31 2.06 || 0.80
33.33 151.07 53.43 6.77 || 0.82

6| F 32.71 150.25 -98.12 41.60 || 0.71
28.45 192.31 -264.45 64.34 [| 0.57

7] G 41.92 -8.40 -65.00 23.31 [| 0.84
43.00 -10.9 -80.20 31.52 [| 0.84

8 |H 35.68 0.00 0.10 0.07 || 0.80
36.14 0.00 0.03 0.10 ][ 0.80

9| I 18.35 0.04 1.74 0.01 || 0.71
21.33 0.00 1.87 1.29 || 0.71

107 52.64 3051.04 -972.17 538.68 || 1.23
50.30 2014.31 -850.46 449.92 || 1.07

11 | K 41.05 226.54 99.40 5.52 [ 0.92
41.88 255.55 93.60 7.96 || 0.93

12| L 56.46 8155.98 758.58 560.01 || 1.37
53.32 | 20169.53 397.95 260.49 || 1.67

Table 4.2: Affine tnvariants: p1, p2, ps and ps; and discriminant value d for the capital
letters of figure 4.2.



34 Fast computation of geometric moments and its invariants

Given the relationship between central and accumulation moments, moment invariants
can be directly obtained from accumulation moments. The computational cost is reduced
since computing accumulation moments up to third order requires only 4a? + 12a — 4
additions and 80 multiplications while computing geometric moments up to the same
order requires 4a? + 16a — 16 additions and 4a? 4+ 16a multiplications, as it can be easily
deduced from table 4.1.



Chapter 5

Application to the fast actualization
of moments in a sliding window

Many image analysis techniques place a window at different locations of the image to
derive a local description vector. This technique can be found within some texture seg-
mentation [15, 104] and optic flow computation algorithms [28] which are described in
terms of a sliding window that displaces all over the image. In general, description vec-
tors obtained in a particular window location can be related to those in previous locations
of the window if overlapping occurs.

This chapter describes a fast actualization rule of the accumulation moments in a
sliding window moving all over an image. When accumulation moments are used instead
of geometric moments as description parameters in sliding window applications, it is
shown how the actualization cost drops from O(m?) to O(m?), where m refers to the
amount of moments. Therefore, any application of this kind that traditionally required
geometric moments can benefit from the use of accumulation moments since, as we have
already seen, geometric and accumulation moments are related through a one-to-one linear
transformation: any set of geometric moments up to a given order is uniquely related to
a set of accumulation moments up to the same order.

5.1 Actualization of moments

Consider that image I, is split into non-overlapping regions Ik, , for £ = 1,2,---,
displaced (zy, yx) from the origin, as shown in figure 5.1.

Since geometric moment computation only involves linear operations, the geometric
moments M,,,, of I, can be obtained as a linear combination of the geometric moments
Mk,,,,, of each region with respect to their displacement from the origin. Then, using
corollary 2.1.2,

My = ) Mkt % = (T, Mk, T, % (5.1)
k k
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Iab

- . . +
I3a3b3 I4a4 b4

Figure 5.1: A partition of an image into four non-overlapping regions.

That is, for the particular case of figure 5.1,
M,., = M1, + M2, T + T, M3,,, + T,,** M4,,, T,". (5.2)

Lemma 5.1.1. Consider the three regions induced by a w X w sliding window in two
consecutive locations (see figure 5.2). Let M12,,,, and M23,,,, denote the geometric mo-
ments of the window encompassing regions 1 and 2, and 2 and 3, respectively. Then, if

the window slides from left to right,
M2324h) = (M12%%, — M1% ) T + M3zutv) h-v, (5.3)

otherwise, if the window slides from top to bottom,

M23(@+H% = (T2)" (M122%, — M1%) + (T2 )" M3EHw, (5.4)

(@, Y) g
v 1
2 w

(b)

Figure 5.2: A sliding window in two consecutive (a) horizontal and (b) vertical locations.

Proof. Consider the horizontal sliding window of figure 5.2a. Then,
M12% = M1% + M22W+h) ok
M2326Hh) — V22U th) | Vgewth) mh-w,
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Substituing one equation into the other and given that, from property 2.1.1,
-1 _ m—
(Tg) - Tp q:

equation (5.3) is straightforwardly obtained. Likewise, considering the vertical sliding
window of figure 5.2b,

M12% = M1%, + T " M2%,
M23{& Y = M2 7o M3y,
from which equation (5.4) is obtained. O

Theorem 5.1.2. Consider the three regions induced by a w x w sliding window in two
consecutive locations (see figure 5.2). Let R12,,, and R23,,, denote the reverse accumu-
lation moments of the window encompassing regions 1 and 2, and 2 and 3, respectively.
Then, if the window slides from left to right,

R2370 = (R1277, — R17) (Ua) ™" + R (U,)" 7 (5.5)
otherwise, if the window slides from top to bottom,

R23(7 = (Un)")” (R127%, - R17%) + ((Ua)) " R3GY; (5.6)
where Uy, are triangular matrices of the form

Up[k,l]:{l’ yolzk (5.7)

0, otherwise.

Proof. Taking into account that
—1 —
(H,) T;H,=(U,) ! (5.8)

and using the relationship between geometric and accumulation moments stated in corol-
lary 2.3.1, it is easy to derive equations (5.5) and (5.6) from the ones in lemma 5.1.1. O

In order to obtain a description vector for each pixel of the image, two consecutive
locations of the sliding window should differ in just one pixel. In this case, referring to
figure 5.2, region 1 will be called the outgoing vector; region 2, the overlapped region; and
region 3, the incoming vector.

Property 5.1.1. The moment matrices of a columnwise vector has equal values for all
their columns. Then, it can be expressed as:

M,y = My,[:, 1] (sq)ta

Ryg = Ryy[1, 1] (Sq)t:
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Likewise, the moment matrices of a rowwise vector has equal values for all their rows.
Then, in these cases,

M, =sp (Mpq[la :])t’
Ryg =5p (qu[l, 3])t'

Corollary 5.1.1. By lemma 5.1.1,

M232¢H) = M122¢ T2 — M1%¢ [:, 1] (u,)! + M3EUF9)[: 1] (v¥)! (5.9)
and

M23@08 = (TL) M122Y, — u,,, (M1%,[1,:])" 4+ v (M3,,,[1,:]@F9) ) (5.10)

are obtained for unitary horizontal and vertical displacements of the sliding window, re-
spectively; where

=(1 00 ... 0
and

vilk) = (¢ + 1)

Corollary 5.1.2. By theorem 5.1.2,

R23°WH) = R12% (U,)~! — R1% [:,1] (u,)! + R32WF)[: 1] (b2~1)! (5.11)
and

R23( = ((Un) ') RI2iY, — up (RIL[L:])" + bl " (R3GVL:]) (5.12)

are obtained for unitary horizontal and vertical displacements of the sliding window, re-
spectively; where

=(1 0 0 ... 0),

and

b[k] = (q;i;l)
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5.2 Computational complexity

Although equations in lemma 5.1.1 and theorem 5.1.2 provide an efficient way to up-
date geometric and accumulation moments in sliding window applications, the overall
computational cost is much lower for the latter.

Let us consider a unitary displacement and square moment matrices of size m; then,
evaluating equations in corollary 5.1.1 involves:

e computing the geometric moments of both the incoming and outgoing vectors, which
requires 2m(w — 1) additions and 2mw multiplications; and

e multiplying matrices and vectors and summing up the result, which requires 3m? +
$m? additions and $m® + $m? multiplications.

On the other hand, evaluating equations in corollary 5.1.2 involves:

e computing the accumulation moments of both the incoming and outgoing vector,
which requires 2m(w — 1) additions; and

e multiplying matrices and vectors and summing up the result, which involves 5m? —
m additions and m? multiplications, taking into account the particularities of the
involved vector and matrices.

Actualization of M
Additions 2m(w — 1) + 3m3 + 3m?
2

Multiplications | 2mw + %m3 + %m
Actualization of R
Additions 2m(w — 1) + 5m? —m
Multiplications | m?

Table 5.1: Number of operations required to update geometric and accumulation moments
in two consecutive locations of a unitary displaced sliding window.

Table 5.1 compiles these results, where it is easy to see that the complexity of the
actualization drops from O(m3?) to O(m?) when accumulation moments are used instead
of geometric moments. Not only asymptotical complexity is better but for any value of
m. Figure 5.3 shows the theoretical time comparison between both actualization costs
assuming that multiplication and addition operations require the same time.
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x 10

18-

= [ [y
= N > )
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theoretjcal time
o o
T T

Figure 5.3: Comparison between the time required to update geometric and accumulation
moments assuming that multiplication and addition operations require the same time.




Chapter 6

Generalization to higher dimensions

In this chapter, we provide a generalization of concepts and results introduced in previous
chapters to higher dimensions. We focus ourselves in the 3D case; however, the method we
follow to develop this generalization is straightforwardly applicable to higher dimensions.

The interest in analyzing moments of 3D data is motivated by their relevance in
physical based modeling and dynamic simulation [22]. The location of a body’s center of
mass, and its moments and products of inertia about various axes are important physical
quantities for this type of applications: they allow to obtain the body’s linear and angular
momentum if the linear and angular velocities of its center of mass are known. Therefore,
moments up to second order are essential in these applications. In related literature, it is
assumed that rigid bodies are composed of uniform density polyhedra. Then, the basic
idea is to use the divergence theorem to reduce each volume integral to a sum of surface
integrals over the individual faces of the polyhedron. Each of these surface integrals are
evaluated in terms of integrals over a planar projection of the surface. Once the problem is
translated into the one of obtaining moments of polygons in a plane, any method described
in chapter 4 for computing moments of binary images can be used [74, 115, 58, 53, 56].

However, modeling a body as composed of uniform density polyhedra requires a 3D
segmentation. Segmentation is a hard task, specially in those applications related to
tomographic data [32, 1, 11, 19, 43]. In this case, volume data is obtained by stacking
2D cross sections and assuming constant values within planes. This is known as a voxel
based model. Since common applications require the highest possible resolution, a great
amount of voxels are involved. Then, it is important to provide algorithms that are able
to obtain global features from this set of voxels avoiding a previous segmentation. In this
sense, the efficient computation of moments from gray-level 3D data is of great relevance.
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6.1 Preliminaries

Definition 6.1.1 (Kronecker product). Given any pair of matrices A,, and B, their
Kronecker product is defined as

AL 1B, ... Ayl q|Bys
Ap® B, = : :
qu[p7 ]':|B7'5 st qu[pa q]BTS

Definition 6.1.2 (Columnwise form of a matrix). Given a 2D matrix A,,, its asso-
ciated columnwise form a,, is obtained by sequentially reading each row, that is,

apg = (qu[l, 1 oo Apllal Apgl2,1] ... Aylp, Q])t :

Likewise, given a 3D matrix A, its associated columnwise form a,, is obtained
by sequentially reading each row of each depth plane; were rows range for £k = 1,...,p;
columns for [ =1,...,q; and depth planes for 5 =1,...,r. That is,

apgr = (Aper[1,1,1] Aper[1,2,1] .0 Apgr[l, 0, 1] Aper[2,1,1] Apgr[2,2,1] ...
t
AP g, 1) Ay [1,1,2] Apy[1,2,2] . Ayylpig,r])

Property 6.1.1 (Columnwise transformation). Given
Yy = (qu)t Xgr Brs,

its associated columnwise form y,s is obtained from
Yps = ((qu)t ® (Brs)t) Xqrs

where Xg, 15 the columnwise form of the matriz X, .

6.2 3D geometric moments

A 3D discrete image can be represented by a stack of 2D discrete images, as shown in
figure 6.1. Their values are stored in 3D matrices I,,. of size a X b X c.

Definition 6.2.1 (3D geometric moments). The geometric moment of order (k,1, )
of a 3D image I is defined as

a b c
P 3 9 ST NS

r=1 y=1 2=1

Then, the 3D geometric moment matrix M,,, is defined as

Mpqr [ka laj] = MUp—1,g—-1,7—1-
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Figure 6.1: 3D image as a stack of 2D images.

Lemma 6.2.1.
Mygr = ((Vap)t X (Vbq)t 029 (Vcr)t> iabc; (61)

where myq, and i are the associated columnwise forms of the 3D matrices M,q and
Lase, respectively; and V,, are the Vandermonde matrices defined in equation (2.5).

Proof. Definition 6.2.1 can be rearranged so that it refers to the geometric moment of a
1D function in the z variable, i.e.

Cc

My [k, 1 5] =Y 277 m [k, 1]; (6.2)
z=1
where
a b
mgz)q[k’ l] = Z Z xk_lyl_lIabc[xa Y, Z] (63)
z=1 y=1

Let My, [k, 1, :] be the rowwise vector containing the geometric moments up to order
(r — 1) of the vector m; [k,[]. Then, from corollary 2.1.1,

M, [k, 1] = (ml [k, 1] ... mS[k,1]) Vi (6.4)
where V,, is a Vandermonde matrix.

On the other hand, it is easy to prove that expanding equation (6.3), for z = 1,...,¢,
one obtains

(mi e t) oo me k)= ((1 - @)@l - b)) T
Lopela, b, ]
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where [z, y,:] is a rowwise vector containing the image in the z direction.

Including this expression in equation (6.4) and considering geometric moments up to
order (p—1,q—1,7—1), the following geometric moment matrix of size pg x r is obtained,

Mper(1,1, ] Tope[1,1, ]
Myqr[1,2;: Tupe[1,2, :

" [: | = ((Vap)t b (Vbq)t) ’ [: | V. (6.5)
M, [pa q, 5] Iabc[a, b, :]

Then, applying the columnwise transformation of property 6.1.1, lemma 6.2.1 is finally
obtained.
]

6.3 3D accumulation moments

Definition 6.3.1 (3D direct and reverse accumulation moments). The 3D accu-
mulation moments are defined as cumulative additions in three orthogonal directions of
a volume. The 3D direct accumulation moments extend the definition 2.2.1 by accumu-
lating the result of the 2D direct accumulation moments of each 2D image plane of the
stack along the positive direction of the third coordinate. In the same way, the 3D reverse
accumulation moments extend the definition 2.3.1 by accumulating the result of the 2D
reverse accumulation moments of each 2D image plane of the stack along the negative
direction of the third coordinate.

The direct and reverse accumulation moments up to order (p — 1,¢ — 1,7 — 1) are
stored in the 3D matrices L,q and Ry, respectively, of size p x ¢ x r.

Lemma 6.3.1. Given the columnwise form of the 3D direct and reverse accumulation
moments, Ly, and r,4,, respectively; they are related to the columnwise form of the 3D
image igp. as follows:

Lo = ((Qup)' @ (Qug)’ @ (Qw)") e (6.6)
and
T = ((Pap)’ @ (Pa)' ® (Pr)') e, (6.7)

respectively; where Q,, and Py, are the Pascal-like matrices defined in equations (2.12)
and (2.21), respectively.

Proof. An extension of the equations (2.10) and (2.19) to the 3D case leads to

a b c .
_ a—zrz+k—1\(b—y+Il—1\[c—2z+j—1
qur[kalaj]: § E E ( a—z )( b—y )( c— = )Iabc[xayaz]

z=1 y=1 z=1
(6.8)
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and
a b c .
. r+k=2\(y+1l-2\[(2z+7—-1
RIS 35 55 B i | Cinn) | G  #¥  R ()
r=1 y=1 2=1
respectively.

Then, for both equations, it is easy to see that using a similar development to the one
in the proof of lemma 6.2.1, this lemma is obtained.

U
Corollary 6.3.1. Given
i = (Te[1, 1, 2] Tane[1,2,2] ... Tapela,b,2])", (6.10)
z t
lpq = (LP(IT[L 1’ 'Z] LPQT[L 25 Z] s qur[pa q, Z]) ) (6.11)
2 t
rpq = (RINI""[L 1’ Z] R;DqT[la 2: Z] . qur[pa q, Z]) ) (6.12)
then,
Lo = (1, - 19) Qo (6.13)
and
oo = (T, --- T5,) Por (6.14)
Lemma 6.3.2.
my, = (((G2)) ' @ (G)) ' 8 (G Ly (6.15)
mpe = ((H))7 @ (H))™ @ (H)) ™) Tpar (6.16)
Proof. From equation(6.4),
M, [k, 1, ] = (ml [k, ... m¢[k,1]) Ve, (6.17)

where m/ [k,[] is the geometric moment of order (k — 1,1 — 1) of the image plane at
position 7 in the z coordinate of the 3D image.

By corollary 2.2.1, the geometric moments can be expressed in terms of the direct
accumulation moments; that is,

Mgk, 1, 2] = (Lpgr[k, 1, 1) ... Lpge[k, 1, 7]) (GO (6.18)

where Ly, [k, [, j] refers to the direct accumulation moment of order (j — 1) obtained from
the unidimensional function m}, [k, [] in the z variable.
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From equation (2.11), the relationship between the direct accumulation moments and
the function from which they are obtained is established through the up-down-flipped
Pascal matrix Q.. Then,

(LPQ[k’ l’ 1] Tt qu[k, la T]) = (mglyq[ka l] to mgq[ka l]) ch-
Including this expression in equation (6.18) and ranging for £k = 1,...,p and | =
1,...,q,
Mpqr{l, 1, :%
M, (1,2, : o
: = (my, mg) Qa (G7)7
M- [P, 4, 7]
where
i i i i t
mpq = (mpq[1’ 1] mpq[la 2] R mpq[p: q])

Since m;q is the columnwise form of the geometric moments of the image in the ¢
plane, they can be related to the columnwise form of its accumulation moments. Using
corollary 2.2.1 and property 6.1.1,

M, [1,1,]
M, 1,2,
Pq [1 2 ] — (((Gz)t)fl ® ((Gg)t)71> (l;q o lgcpq) ch (G_’cn)fl’
Mygr [P, g, ]

where 17 is defined as in equation (6.11).

Then, by corollary 6.3.1 and the application of the columnwise transformation of
property 6.1.1, equation (6.15) is obtained. An analogous development for the case of
reverse accumulation moments proves equation (6.16).

O

Example 6.3.1. Assume a 3D image of size 3 X 4 x 2 so that the 2D images planes are

1342[3, 5,1] =

B =
N O N
W N W

1
0 and 1342[2, o 2] =
1

—_ O
o N O

1
1
0

_= O O

Then, its associated columnwise form is

i3p=1(123110204231123110204231).
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Using the following Vandermonde matrices — as defined in (2.1.1) -

and V22 = (} ;)

and according to lemma 6.2.1, the columnwise form of the geometric moments is

© A

111 1
V34 = 1 2 4 8 , V43 =
1 39 27

— =
B~ W o =

1

(=2}

m432:(40 52 100 128 300 380 83 107 217 279 667 855
195 249 529 679 1655 2127 497 629 1387 1773 4393 5637)

On the other hand, using the following Pascal matrices — as defined in (2.21) -

bl 1 ; il)) 11
Pyu=112 3 4], Py = and Py =
136 10 1 3 6 1 2
1 4 10

and according to lemma 6.3.1, the columnwise form of the reverse accumulation moments
is

r432:(40 52 100 128 200 254 83 107 217 279 442 567
139 178 373 479 767 985 208 265 568 728 1175 1508).

Then, it is not difficult to verify that, using the following matrices — as defined in

(2.23)
100 0
01 L1 100 10
Hi=1g 011 Hy= 1014 HF(O 1)
2 2 ES
000 1 00 3

and according to lemma 6.3.2, the columnwise form of the geometric moments can be
related to the columnwise form of the reverse accumulation moments.

Hence, we have just proved that all matrix relationships obtained in chapter 2 can be
generalized to the nD case by simply using the Kronecker product and the columnwise
form of the data matrix as defined in 6.1.1 and 6.1.2, respectively.
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Part 11

Reconstructing an image from a set
of its accumulation moments






Chapter 7

Reconstructing by backprojecting

Since accumulation moments are obtained from accumulated additions over the image
values, the inverse process, that is, the reconstruction of the image from a finite set of
its accumulation moments can be done, as intuitively expected, by the inverse operation,
i.e., by accumulated subtractions.

We have devised a method that proceeds in two steps. The first step starts by sub-
tracting the accumulation moments of higher order from their immediate predecessor.
Resulting values are subtracted following the same order. The algorithm iterates until
only one number remains. The second step initiates with the values obtained from the
last subtraction of each iteration in the first step. It proceeds by subtracting each number
from the one obtained from the subtraction of the two numbers on its right side. The
last value of this sequence of subtractions is already part of the solution. All the others
are processed following the same algorithm until the solution is completed. This idea is
formalized in algorithm 7.1.

The method is better understood through the following example.

Ezample 7.0.2. Let us assume
Ry, = (10 30 65 119).

Figure 7.1 shows the way in which the subtractions proceed to obtain the reconstructed
image

Ly=(1 2 3 4).

It is easy to prove that, assuming m = n, the total amount of operations is simply
m?(m — 1) subtractions.

If the number of accumulation moments is smaller than the image size, the recon-
struction is an ill-posed problem, that is, the reconstructed image is not unique. Since
additional constraints are required to solve this ill-posedness, two reasonable assumptions
comes up:



52

Reconstructing by backprojecting

Algorithm: backprojection
Input: R,,,
Output: I,,,

FOR every column ¢
Rinn[:, ¢] = step2 (stepl (Rl c]))
ENDFOR

FOR every row r
Rina[r, | = step2 (stepl (Ronlr,:]))
ENDFOR

Algorithm: stepl
Input: T,
Output: 1,

FOR i=1 TO p-1
FOR j=p-1 TO i

rpf + 1] <= 1p[f + 1] =1, [J]

ENDFOR
ENDFOR

Algorithm: step2
Input: r,
Output: r,

FOR i=p-1 TO 1
FOR j=1 TO i

rp[p—Jl+—rplp—jl —rp[p—j — 1]

ENDFOR
ENDFOR

Algorithm 7.1: Backprojection reconstruction.
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Figure 7.1: The two steps of the backprojection reconstruction method.
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e reconstruct an image of the same size as the number of available moments and
assume null values for the rest of the image; or

e assume null values for unknown moments and reconstruct an image of the desired
size.

In the previous example, assuming that R4 is derived from a larger image, a possible
solution would be

Laa=(1 23 40 --- 0.

n

However, this solution is probably not very much alike the original image from which the
accumulation moments were obtained. This is clearly shown in the following example.

Ezample 7.0.3. Given I;; = (1 2 3 4 3 2 1), the reconstructed images I;; ob-
tained from:

16)

16 64 180)

16 64 180 420 868)

16 64 180 420 868 1644 2913);

R
Ri3
Ris
Ry7

(
(
(
(

are shown in figures 7.2 (a), (b), (c) and (d), respectively.

(d)

Figure 7.2: Backprojection reconstruction from (a) 1, (b) 3, (¢) 5 and (d) 7 reverse
accumulation moments assuming null image values. Original image is plotted in dashed
line.

In general, it has been observed that increasing the number of accumulation moments
generates more ripples in the reconstructed image, unless the number of accumulation
moments equals its size.

On the other hand, the second alternative, i.e. assuming null values for unknown
accumulation moments, neither allows to obtain any acceptable reconstruction, as shown
in the following example.
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Ezample 7.0.4. Given I;; = (1 2 3 4 3 2 1), the reconstructed images I,; ob-
tained from:

R;=(6 0 0 0 0 0 0)
Ri;=(16 64 180 0 0 0 0)
Ry;; = (16 64 180 420 868 0 0)
Ri; = (16 64 180 420 868 1644 2913);

are shown in figures 7.3 (a), (b), (c) and (d), respectively.

s00

ao0o

300

=200

100

—100

—=o0o0

—300

—aoo

—s00

(d)

Figure 7.3: Backprojection reconstruction from (a) 1, (b) 8, (¢) 5 and (d) 7 reverse
accumulation moments assuming that unknown moments are null. Original tmage 1is
plotted in dashed line.

It is possible to choose other values for unknown accumulation moments so that dif-
ferent reconstructed images are obtained. However, the backprojection method does not
provide a criteria to choose these values in terms of a reconstruction error measure.

Nevertheless, one important point is that this process only involves subtractions. No
matrix inversions are required, contrary to what happens in common reconstruction meth-
ods.
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Chapter 8

A matrix-based reformulation of
image series approximation

In this chapter, we introduce a matrix-based reformulation of the reconstruction of an
image from a set of its projection coefficients. From this formulation, a new reconstruc-
tion method is derived: the unitary transform method. The key point of this new method
is that the basis functions used in the reconstruction and those used to obtain the pro-
jection coefficients do not necessarily define the same subspace. It is proved that, when
both subspaces coincide, the approximated image is the same as the one obtained using
a least-squares error criterion.

Any discrete image of size a x b, I,, can be seen as a vector in R**? or, alternatively,

as a bidimensional function that maps all the points of the uniform lattice {1,2,...,a} X
{1,2,...,b} onto real values. Then, I, € R**® can be uniquely expressed as a linear
combination of the functions of a basis set, i.e., a set containing ab linearly independent
bidimensional functions, which will be denoted by {EF/}, &k = 0,...,a — 1 and | =
0,...,b—1. In other words,
a—1 b—1
Ip=)» Y of k. (8.1)
k=0 1=0

Definition 8.0.2 (Basis matrices). The functions in any basis set are assumed to be
separable and equally defined for both coordinates, i.e.,

:Zbl = ¢a (¢b)t’

where ¢F and ¢} are vectors which will be grouped into respective matrices of the form:
Py = (¢2 d’;(;q_l)) )

called basis matrices.

Definition 8.0.3 (Gram matrices). Given any subset of {£* 1} their associated Gram
matrices contain the inner products between its separable elements, respectively, as fol-
lows:
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Note that T’} k+1,14+1] =< d)'p“, d)ﬁ, > and that Gram matrices become diagonal when
dealing with orthogonal basis sets and the identity when the basis is orthonormalized.

Definition 8.0.4 (Projection matrices). The matrices containing the projection co-
efficients of an image I,, € R**® onto the first m-n elements of {E5!} are called projection
matrices. They can be obtained by computing:

an = (@am)t Iab (bbn- (82)

Note that Qma[k + 1,1+ 1] =< L, Ef >= (¢%)! L, ¢

Definition 8.0.5 (Expansion matrices). An image I, € R*** can be partially ex-
panded in terms of a subset of {EF/} as:

._.

m—1 n—
MNUER =@, A (Pon)?, (8.3)
k=0 1

Il
<)

where m < a, n < b, and Al + 1,1 + 1] = ML Note that 1% = I,,. When M\ is
chosen so that the truncation error is minimized using a least-squares error criterion, A,
denotes what it is called an ezpansion matriz.

Lemma 8.0.3. Given an image 1, and a subset of {Eﬂ)}, any expansion matriz can be
expressed in terms of the corresponding projection and Gram matrices as follows:

Ay = (P%)_l Qi (PZ)_la (8-4)

where m < a and n < b.

Proof. Since \¥! is chosen so that the truncation error is minimized according to a least-
squares error criterion, the subspaces generated by the truncation error and the truncated
series are orthogonal (see figure 8.1). That is, forp =0,...,m—1andfor¢g=0,...,n—1,

m—1
=pq E
ab’Iab

k=0

n—

1
/\klu—kb >=0.

1=0
In other words,
m—1n—1
< @5 (})' Ly >= N < @b, > < (D)), ()" >,
k=0 =0

Vp=0,....m—1,VYq=0,...,n—1.
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Figure 8.1: Geometric interpretation of the least-squares error criterion.

Then, when formulated in matrix terms, this leads to:

Qi = Ty Ay T (8-5)

Since Gram matrices are obtained from functions of a basis set, they are non-singular
and this proves the lemma.
]

Corollary 8.0.2 (Least-squares approximation). The series approximation of an im-
age, in the least-squares sense, can be expressed as:

i;zm = (I)am Amn (i’bn)t - éam (an)_l an (FZ)_I (ébn)t -

=Py (((I)aM)t (I)amrlnmn ((@bn)t (ﬁbn)il ((I)bn)t = (‘I’aM)7 Qi ((I)bn)+a
(8.6)

where (1)~ and ()T are called the left and right Moore-Penrose pseudoinverses or gener-
alized inverses.

The inversion of the Gram matrices requires the computation of the above pseudoin-
verses which are highly ill-conditioned when dealing with geometric moments. In practice,
one has to rely on the singular value decomposition to obtain these pseudoinverses as ex-
plained in chapter 12.

Corollary 8.0.3. If the basis set {Efbl} 1s orthonormal — we use an overline to distinguish
it from the general case — the least-squares approximation of the image is obtained from

I, =®un Qon (Bon)’ (8.7)
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since

Qe = Ky (8.8)

Lemma 8.0.4. Given a subset of {Efé} that expands a subspace of the same dimension
as the one expanded by a subset of {1, then:

Qi = (Pam)’ Bam) ™" Qo ((Bon)" o) ™ (8.9)
where

Qnn = (Pam)’ Tap Pon
and

ﬁmn = (Eam)t Iab 6bn-

Proof. Let us consider the following approximated image

I, = ®.n Qun ()" (8.10)

If we want that this image has the same projection coefficients onto {Z} as 1,4, then
QL = (Pam)" Loy Pon = (Bam) Iy o = (Pam)’ Ram Vonn (Bon) By (8.11)

from which (8.0.4) is readily obtained.
0

Corollary 8.0.4 (Unitary approximation). The series approzimation of an image can
be obtained from:

Ly = Ban (Bam)' Bam) ™ Qo (Bon)' ) ™ (Br)! = (8.12)
=B, (C) ! R ((CV)) 7 (Br)’ (8.13)

where
Colk+1,1+1] =< ,, ¢ > . (8.14)

Corollary 8.0.5. If the subsets of {E%} and {Efbl} span the same subspace, then I7" = T,

i,ﬁ,m and T;,m have a simple geometric interpretation, as shown in figure 8.2.

This chapter has provided a unified framework for the reconstruction of an image from
a reduced set of projection coefficients in matrix terms. Former and novel reconstruction
methods developed in chapters 10 and 11, respectively, are set into this context.
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Figure 8.2: Geometric interpretation of the unitary approrimation. For clearness, the
origins of both basis sets are represented separately.
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Chapter 9

Reconstructing by expressing
moments as projection coeflicients

9.1 Geometric and accumulation moments as projec-
tion coeflicients

Geometric moments are defined in 2.2 as

Hmn = Z Z xmynlab[xa y] (91)

z=1 y=1

Then, they can be seen as the projection coefficients of the image onto the basis set of
monomial functions, that is

an[k} + 1,l—|— 1] = Uk,

Erl [z + 1L,y +1] = 2"y,
and

®,,[k, 1] =k,
fork=0,....m—1land [ =0,...,n— 1

These basis matrices are the already introduced Vandermonde matrices and their asso-
ciated Gram matrices correspond to what in the literature are known as Hilbert matrices
whose general term is [105]:

P E =
Pk +1,1+1] PR

Likewise, direct and reverse accumulation moments are defined in 2.10 and 2.19 as

SRS 3 3] (bt | Caraity LAY 9

z=1 y=1
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and

a

Rl 1] = ZZ (it [ Gt 9} (93

respectively.

Remark. Since combinatorial numbers can be expressed in a polynomial form as shown
in the proofs of theorems 2.2.1 and 2.3.1, i.e.

U G = § (B (9.9

p—t

where the order of the polynomial is ¢ — 1, accumulation moments can be seen as the
projection coefficients of the image onto the basis set of these polynomial functions.

Hence, for direct accumulation moments,
an[ka l] = Lmn[ka l],

Ennlz, y] = ri(z) r(y)

and

Dylk, 1] = ((l_i)l_; ﬁ(_p —i+k),

fork=0,....m—1landl=0,...,n—1.
Likewise, for reverse accumulation moments,
Qunlk, 1] = Rk, 1]

and, using the same definition of the polynomials in (9.4) by simply setting p = —1,

B2yl =1 (=2) 7} (—y)

and

llll
pQ[kl]_ 'H

fork=0,....m—1andl=0,...,n—1.

Tables 9.1 and 9.2 show some polynomials of the basis set associated with direct and
reverse accumulation moments, which are plotted in figures 9.1 and 9.2, respectively. In
figure 9.3, the polynomial basis up to fourth order are represented for both (a) direct and
(b) reverse accumulation moments.
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| p=1| rolz
p=2 | ro[z
ri[z —z+3
p=3 | rolz] = 1
rifz —z+4
ro[z 0.500 22 — 4.500 2 + 10
p=4 | rolz] = 1
ri[z —z+5
ro[z 0.500 2 — 5.500 z + 15
r3[r] = —0.16723 + 322 — 17.830z + 35
p=5 | rolz] = 1
ri[z —z+6
ro[z 0.500 22 — 6.500 = + 21
r3[z] = —0.167 23 + 3.500 2> — 24.334 z + 56

=
I=
=
I=
] =
=
I=
]=
I=
=
I=
I=
I=
]=
ryz] = 0.042z* — 1.2502° + 13.958 22 — 68.750 = + 126
I=
I=
I=
I=
]=
=
I=
I=
I=
I=
]=
I=
=

p=6 | rolz] = 1

ri[z —z+7

ro[z] = 0.500z2 — 7.500 = + 28

r3[z] = —0.167z% + 422 — 31.830z + 84

rqz] = 0.042z* — 1.41723 + 17.958 22 — 100.584 z + 210

rg[z] = 0.008 25 — 0.3752* — 6.708 2 + 59.625 % — 263.283 = + 462
p=7 | rolz] = 1

ri[z —z—8

rofz] = 0.522 — 8.5z + 36

r3[z] = —0.167 2% + 4.52% — 40.334z + 120

ryfz] = 0.0427* — 1.583 23 + 22.458 v — 140.917 z + 330

r5[z] = —0.008 7% + 0.417 z* — 8.292 73 + 82.084 2% — 404.200 = + 792

rg[z] = 0.001 25 — 0.087 2% + 2.285 z* — 31.646 2% + 245.214 % — 1007.767 7 + 1716

Table 9.1: Polynomial basis associated with the direct accumulation moments for increas-
ing values of p.
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2 T T T T T T T T
L1
L R =
-1 l l l l l ! l l
2 2 3 4 7 8 9 0
T T I T | T | q
0
0
0
0
2 . . . : ?N 8 9 10
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&_1 l l l l l ! i\i
1 2 3 4 5 6 7 8 9 10

Figure 9.1: Polynomial functions associated with the direct accumulation moments for
increasing values of p.
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p=-1 | rg[z] =1
rifz T
ro[z] = 0.50072 + 0.500 z

=
| =
]:
r3[z] = 0.167z3 + 0.5002% + 0.334
]:
]:
]:

rqyfz] = 0.042z* + 0.250 2% + 0.458 720.250 =
r5[z] = 0.008 75 + 0.084z* + 0.292 73 + 0.417 22 + 0.200 =
rg[z] = 0.001z5 + 0.0217 25 + 0.118 z* + 0.31223 + 0.381 2% + 0.167 =

Table 9.2: Polynomial basis associated with the reverse accumulation moments.

1.5 =

0.5 =

—0.5 =

i i
=8 -7 -6 -5 -4 -3 -2 -1 o

Figure 9.2: Polynomial functions associated with reverse accumulation moments.
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Figure 9.3: Polynomial basis of fourth order for (a) direct and (b) reverse accumulation
moments.
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Notice that the coefficients of 7P(t) correspond to the elements of G[:, g|, as defined
in 2.16. Likewise, the coefficients of 7' (t) correspond to the elements of H,[:,q], as
defined in 2.23.

This interpretation shows how both geometric and accumulation moments are obtained
as projection coefficients onto a polynomial basis. In fact, this is the definition of moments,
which only differ in the specific polynomial basis set and the chosen coordinate system,
either polar or cartesian. Therefore, although it was not so obvious that accumulation
moments could be considered as proper moments when first introduced in chapter 2, here
we have provided a formal justification.

9.2 [TIll-posedness

Inverse problems, that is, reconstructing an image from a finite set of its projection
coefficients are usually ill-posed problems in the Hadamard sense [4]: either the solution
is not unique, leading to an ambiguous reconstruction, or it does not exist or it does not
depend continuously on the input data.

In this section, we set the problem of reconstructing an image from a finite set of
its moments in terms of the matrix formulation introduced in chapter 8. In this context,
given a finite set of either geometric or accumulation moments, the reconstruction problem
consists in obtaining an image matrix I, so that any of the following relationships is
verified:

an (Vam)t Iab Vbna
Lmn = (Qam)t Iab ana (95)
Rmn = (Pam)t Iab an-

If a = m and b = n, then

Ly = (Vo)) ™ My, (V5) ™

= ((Q)") 'L (Q) " = (P)) " Ras (Py) . (9.6)

In [88, pp. 90-91], a method to obtain the inverses of square Vandermonde matrices is
provided. Square Pascal-like matrices are also invertible using this method since we have
proved in theorems 2.2.1 and 2.3.1, respectively, that they are connected to Vandermonde
matrices through triangular matrices.

However, in common applications, the number of available moments is lower than
image dimensions, i.e. m < a and n < b, so that only an approximated image can be
obtained. In this case, the reconstructed image is not unique and the reconstruction is an
ill-posed problem.

Non-unicity of the solution is easily proved if the equations in (9.5) are expressed in
terms of a set of m - n linear equations with a - b unknowns of the form:

Wmn = Km-n a-b ia-ba (97)
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where w and i are columnwise vectors obtained by sequentially reading each row of the
projection matrix and I, respectively; and K,,., .5 is obtained from the Kronecker
product of the basis matrices, as shown in chapter 6, that is

Km-n ab — (Qa-m)t ® (@b-n)t-

The rank of K., 4.4 is, at most, m - n. Then, the set of equations in (9.7) is rank-
deficient and the solution is not unique [30]. Therefore, selective-solution methods are
required, which impose a - b — m - n linearly independent constraints so that the solution
becomes unique. In chapter 8, it is shown that traditional least-squares reconstruction
methods solve the ill-posedness by assuming constraints on the expansion coefficients. On
the contrary, the unitary transform reconstruction method that we introduce in chapter 11
assumes constraints that can be interpreted in terms of image parameters, which is a much
useful approach.

9.3 Ill-conditioning

In this section, we deal with ill-conditioning. We analyze the underlying reason why re-
constructing an image from a set of its moments is, in general, an ill-conditioned problem;
this means that, small perturbations in the data generate large errors in the reconstructed
image which prevent us from obtaining an effective solution.

Here, we assume that moments are not affected by measurement errors. Then, we will
see that perturbations are only due to roundoff errors.

Roundoff errors are the consequence of using a limited number of digits to approximate
a number which requires more than this limit of digits for its exact specification. This
error is introduced because of the fact that a computer is capable of supplying only a
certain number of digits in effecting arithmetic operations. In particular, most common
computers (IBM PC, most UNIX workstations, or Macintosh) use an IEEE arithmetic
format that is based on a 64-bits floating-point representation of the numbers; specifically,
11 bits are used for the exponent, 52 bits, for the mantissa (the fraction), and 1 bit, for
the sign [23, chapter 4]. Then, the exponent ranges from 1 to 2046, where 2046 = 21! — 2,
but it is normalized from -1023 to 1022. As a consequence, the largest representable
floating point number is 1.797693134862316 x 10°°® and the smallest positive floating
point number is 2.225073858507201 x 1073%. Since the mantissa is specified by 52 bits,
the computer integer resolution, i.e. the maximum unsigned floating point integer, is
n = 2% —1 = 9.007199254740991 x 10'°. Therefore, any pair of numbers that have
the same exponent but their mantissa differ below 7 are represented by the same value in
the computer and roundoff error is introduced. Hence, the order in which additions are
carried out is important since the associative law (n; @ ng) ® ng = n; ® (ny S n3), where
the symbols @& denotes computer addition, does not always hold [39, pp. 5-23].
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In particular, geometric moments are obtained by the following addition:

Mylk + 1,14 1) = 1F1 5 [1, 1] + 15205 [1, 2] + . .. + 1*alT,5[1, 0] + . . . 4 a*b'144[a, D).

Assuming a square image of size ¢ and 0 < I, [k, [] < 255, the maximum order Myax = Nmax
ensuring exact moment computation independently of the algorithm, for the worst pos-
sible case in which I,[1,1] = 1 and I,[a,a] = 255, is obtained when 255a%™msx < 7.
Then,

(9.8)

Figure 9.4 shows these values for increasing image sizes a.

10

I I I I I I I I I
20 40 60 80 100 120 140 160 180 200

Figure 9.4: Maximum order of moment m., computable without roundoff error for in-
creasing values of the image size a, when the computer integer resolution is n = 253 — 1.

Aside from the roundoff error in the value of moment, the inverse process, that is
reconstructing an image from a set of its moments, is also perturbed by roundoff errors.
Let us assume a number of moments equal to the image size. Then, the inverse process
involves inverting the Vandermonde matrix. A measure of the roundoff error introduced
in this process is plotted in figure 9.5 where the mean square error of V,, (V,,)~! with
respect to the identity matrix 1,,, for different values of m, is evaluated.

The influence of roundoff errors in the reconstruction process is analyzed in terms
of the perturbation theory. Let us consider the linear set of equations in (9.7) where
subscripts are now ignored for simplicity of notation,

w=Ki. (9.9)
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30

201

101

I I I I I I
20 40 60 80 100 120

Figure 9.5: Roundoff error in the inversion of Vandermonde matrices V,, for increasing
values of m.

An elementary formulation of perturbation theory tell us that if the matrix K and the
vector w are perturbed by small amounts K and dw, respectively, we have that [30]:

18l (16K 1K |
— < x(K), if —— <1
s ) K]
I5ill _ 16wl 3w

Io9W (K, <1 9.10
S e X&) g (9-10)

where 6% is the change produced in i, and x(K) is the condition number of matrix K with
respect to inversion. The condition number is so-called because it quatitatively describes
the ill condition or bad behaviour of matrix K. It is defined as follows [30]:

-1
x(K) = K[ (K)~],
where || || is the norm of the corresponding matrix, that is, a number that gives a measure
of the magnitude of the matrix. In particular, the norm that measures the largest amount
by which a vector is amplified by matrix multiplication corresponds to the spectral norm,
defined as:

K
IK] = max —”” “|’|” .
w

where Apmay is the largest eigenvalue of (K)*K; then,
1
K) || = ,
) 1) =
where A, is the corresponding minimum eigenvalue. Thus, by adopting the spectral
norm,

x(K) = ’\m“. (9.11)
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Remark. The sensitivity of the inverse problem with regard to perturbations in the data
can be bounded by the condition number of its associated matriz using (9.10).

Therefore, perturbation theory provides an understanding of the possibility of obtain-
ing an effective solution of a linear inverse problem.

In figure 9.6, the mean square error in the reconstruction of uniformly distributed
random images of different sizes is plotted. It is clearly shown that, increasing matrix

30

20

101

,(log)

101

20}

30|

-40
0

I I I I I I
20 40 60 80 100 120

Figure 9.6: Mean square error in the reconstruction of a uniformly distributed random
square image of size m.

dimensions lead to roundoff errors that generate numerical instabilities in the inverse
process and, consequently, large errors in the reconstructed image.

Figure 9.7 shows the condition number of Vandermonde matrices for increasing matrix
dimensions m. The maximum computer integer resolution n = 2%3—1 = 9.007199254740991 x
10'5 is also plotted. It can be seen that the condition number can be empirically approx-
imated as follows:

10°8%" = o602 form =1.....40:
V,,) = - T 9.12
X(Vim) {10% form > 40. ( )

Then, for m = 35, the condition number of the corresponding Vandermonde matrix V,,
overpasses the maximum computer integer resolution. Notice that, in figure 9.6, the error
of reconstructing a uniformly distributed random image is significant for m > 35.

Hence, although the condition number only provides a bound of the sensibility of
the linear set of equations to perturbations, the analysis of figure 9.6 reveals that this
bound is very close to empirical results. As a consequence, although the approximation
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error is supposed to diminish as order increases, there exists a limit in the number of
useful moments due to numerical considerations. In chapter 12, it is shown how using
the singular value decomposition can palliate the roundoff error introduced in the inverse

process.
20F T T T T T T =
16 log(n)

log(x (V).

I I I I I I
20 40 60 80 100 120

Figure 9.7: Condition number of the Vandermonde matriz V,, for increasing size m and
a computer integer resolution n = 2% — 1.

Roundoff errors can be modeled as white Gaussian noise [50]. In this sense, an in-
teresting analysis on the signal-to-noise rate versus the maximum order of moment used

in the reconstruction, when white Gaussian noise is added to the signal, can be found in
[108].

Finally, notice that the inherent problem in reconstructing an image from a finite set of
moments comes from the projection basis set itself. An analysis of the basis set functions
reveals that monomials — associated with the geometric moments — and 7?(t) — associated
with the accumulation moments— differ very little, respectively, as order increases; in other
words, they are nearly parallel.
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Chapter 10

Drawbacks of former reconstruction
methods

In this chapter, former reconstruction methods are analyzed. There exist two basic ap-
proaches. On one hand, the Legendre method, which is based on the least-squares ap-
proximation of the image using Legendre polynomials. On the other hand, the variational
methods, which are based on the bayesian theory; they obtain either the image that max-
imizes the entropy or the one that minimizes the divergence, depending on the adopted
optimization function.

We show in this chapter how Legendre polynomials are not orthogonal in the discrete
domain, contrary to what is assumed by some authors. Therefore image reconstruction
using these polynomials is incorrect. Proper orthogonal polynomials are used in chap-
ter 11. We also show how the explicit exponential form of the image that is obtained when
the entropy is maximized using Lagrange multipliers, is not always a solution. The reason
is that this method assumes a continuous optimization domain and this is not always the
case.

10.1 The Legendre method

Image reconstruction from a finite set of geometric moments using the Legendre method
was first formulated in [106]. This method is based on the approximation of the image as a
linear combination of orthogonal polynomial functions. Polynomials are the most intuitive
choice among possible orthogonal basis functions because they can be easily related to
the monomial functions that are used to obtain geometric moments. Moreover, since they
expand the same subspace, as derived next, the reconstructed image is a least-squares
approximation of the original one, as it was proved in chapter 8.

Proposition 10.1.1. Any polynomial p. of degree I, can be expressed as a unique linear
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combination of the orthogonal polynomials {p,*}, 0 < k < 1. That is,

l
pf"[t]:zckl ﬁrk[t]? fO’f' t:1:27"'7T;
k=0

where

kl —k !
"' =<Pp,,pp > .

Proof. The set of orthogonal polynomials {p*}, 0 < k < [, define a basis in the vector
space of polynomials of order I [26]. Then, the finite series expansion of any polynomial
of order [ leads to the above result.

U

Corollary 10.1.1. Sets of polynomials up to the same order expand the same subspace.

Using corollary 8.0.4, an approximation of the image can be obtained from
=P (C3) " M ((C1)) " (Pin)',

where C2[k + 1,1+ 1] = ¢™, as defined in proposition 10.1.1.

Because of corollary 10.1.1, the reconstructed image is a least-squares approximation.
Notice that this method assumes null projection coefficients onto the Legendre polynomi-
als of order higher than the maximum order of available moments. Thus, this solves the
ill-posedness and the solution becomes unique.

10.1.1 The incorrectness of the Legendre method

Legendre and Zernike polynomials were first proposed in [106] for image reconstruction
and invariant parameters determination. They are orthogonal polynomials for continuous
variables in rectangular and polar coordinates, respectively. Extensive information on
these polynomials can be found in [86].

Remark. Legendre and Zernike polynomials are not orthogonal polynomials for discrete
variables.

Their non-orthogonality can be verified by computing their associated Gram matrix,
as shown in the following example. Nevertheless, a formal analysis on classical orthogonal
polynomials of a discrete variable can be found in [78].
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Example 10.1.1. Legendre polynomials up to fourth order are:

p [t =1
p [t =t
3 1
plt] ==t — =
5 3
P[] = =3 — =t
. 35 30, 3

)=t — 424 S
P [t] = st T3
Then, assuming r=>5 and evaluating ¢ in the polynomial domain, that is ¢t = {—1, —%, 0,

1 -1 1 1 1
1 —05 —0.13 044 —0.29

Pis=|1 0 -05 0 038 |,
1 05 —0.13 —0.44 —0.29
1 1 1 1 1

and the associated Gram matrix is

) 0 125 0 1.80
0 25 0 156 0
I's=1]125 0 228 0 1.88
0 156 0 238 0
1.8 0 18 0 231

Since the resulting Gram matrix is not diagonal, the basis functions are not orthogonal.
Nevertheless, notice that polynomials of even and odd order are mutually orthogonal,
which justifies some resemblance of the reconstructed image with respect to the original
one. Moreover, as the order of the polynomials increases, their Gram matrices tends to a
diagonal matrix. This is shown in figure 10.1, where the mean square error between the
Gram matrix I',, and the identity matrix 1,,, for increasing dimensions m, is plotted.

Y 1}7

N

Remark. Discrete image reconstruction from a finite set of geometric moments using
Legendre or Zernike polynomials is not correct.

This remark has not been previously reported in the literature concerning image re-
construction from a finite set of geometric moments. Indeed, in [81] (and other papers
by the same author, [82] and [61]), the reconstruction error was justified as the error
introduced by assuming constant values of Legendre polynomials inside each pixel area,
instead of the non-orthogonality of Legendre polynomials for discrete variable.

However, the error introduced due to this non-orthogonality is negligible, as shown in

the following examples.

Ezample 10.1.2. Figure 10.2 shows the reconstructed images using Legendre polynomials,
from geometric moments up to order (a) 1, (b) 3, (¢) 5 and (d) 7.

Example 10.1.3. In figure 10.3, the reconstruction of letter “E” is done using Legendre
polynomials from increasing number of moments.



78 Drawbacks of former reconstruction methods

11

30 35 40 45 50

Figure 10.1: Mean square error between the Gram matrices associated with Legendre poly-
nomaials and the identity matrices for increasing dimension m.
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Figure 10.2: Reconstructed images using Legendre polynomials from (a) 1, (b) 8, (c) 5
and (d) 7 geometric moments. The original 7 x 1 image is plotted in dashed line.
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m=11

m=21

|

m=23 m=25 m=27 m=29

m=31

Figure 10.3: Reconstructed images using Legendre polynomials for increasing values of
geometric moments m of a 32 X 32 image.
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10.2 The variational method

A bayesian interpretation of the reconstruction problem can be formulated in terms of
entropy. The concept of entropy is related to the degree of uncertainty of a random
process. An intuitive understanding of uncertainty led to its mathematical definition,
which is uniquely stated, except for a constant factor, as

== ) Tufz,y] In(Taz, y])

=1 y=1
where Iz, y] is assumed to be a probability distribution function.

Maximum entropy methods (MEM) have been proposed as an approach to the problem
of inversion, given a priori information [88]. In this context, reconstructing an image from
a finite set of geometric moments can be translated into the context of estimating the
probability distribution function, given a finite set of constraints, by maximizing the
entropy. That is,

I, such that max{H} or min{—H}

subjected to the following constraints:

1. the image is positive, that is,

Iop[z,y] > 0, for z=1,...,a and y=1,...,b;

2. the geometric moments up to order (m — 1,n — 1) of the obtained image coincide
with the given moments, that is

an = (Vam)t Iab Vbn

where M,,,, is the normalized geometric moment matrix such that the area is the
unity, that is M,,,[1,1] = 1.

Results are obtained using variational techniques involving Lagrange multipliers \¥!,
that is, minimizing

—1n—

ZZIab[ﬂc y]ln abxy —|—Z )\kl(zz L[z, y] 2yt — mn[k+1,l+1]).

z=1 y=1 k=0 [=0 =1 y=1

It has been proved [80, pp. 569-577] that the solution to this equation can be expressed
as an exponential function of the form:

Lplz, y] = A el N ov=oxmamyry

where A\* can be obtained from the set of non-linear equations obtained when this image
is included in the equations defined by the above constraints, i.e. those that the geometric
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moment impose. This is the basic result used in [79] for image reconstruction from a finite
set of geometric moments.

A more general concept used to solve the problem at hand is the Kullback-Leibler
distance or cross-entropy, which measures the distance between two probability density
functions. Its generalization to the case of other functions than probability densities is
known as I-divergence. This is the variational approach introduced in [70]. I-Divergence
is defined as

z‘l:z”: (Iab[x, y] ln(I“b[x’ y]) + 12, [z, y] — L[z, y]),

z=1 y=1 Igb[‘rl"’ y]

where 10, is an a priori estimate of I,,. Then, the variational method associated with the
divergence consists of minimizing this function subjected to the set of known moments.
Notice that the method is equivalent to MEM if a constant a priori estimates of I?, are
assumed.

10.2.1 Considerations about the optimization domain

Solving the variational method through Lagrange multipliers permits to obtain an explicit
form of the reconstructed image in terms of an exponential function. However, the method
implicitly assumes a continuous domain of the function to be minimized because it involves
derivatives. This is not always the case as shown in the following example.

Ezxample 10.2.1. Let I;3=(0 0 1). Then, Mi5[1,1] =1 and M;s[1,2] = 3. If we want
to reconstruct an image from these moments using the variational method, the Lagrange
multipliers approach provides a reconstructed image of the form:

Lig[k] = e”CoRHMED - for k= 1,2,3,

Including this image into the equations defined by the constraints, i.e. those that the
geometric moments impose, leads to:

ww 4+ vw? + uw® =1
uw + 2uw? + 3uw® = 3,

A —A1k?

where u = e ™* and v = e . It can be shown that this set of polynomial equations is
incompatible: there are not real values for u and v that simultaneously satisfy them.

The reason is easy to understand when analyzing the domain of the optimization
function. On one hand, the solution to the set of constraint equations

113[1] + i13[2] =+ :~[13[3] =1
T;3[1] + 21,5[2] + 3133[3] = 3

is a line in the three-dimensional space of the image which, in parametric formulation,
can be expressed as.

(I5[1], T15[2], T13[3]) = (0,0,1) + (1, =2, 1).
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I13[2]

entropy function domain: Iy3 > 0

constraints solution space

I13[3] //13[1]
=}

Figure 10.4: Geometric representation of the optimization domain of example 10.2.1.

On the other hand, the entropy function is defined for 0 < ilg[k] < 1. Then, the geo-
metric representation of this domain shows that their intersection is a single point (see
figure 10.4). Therefore, it can never be obtained by variational methods because they
involve derivatives and a continuous domain is required.



Chapter 11

Novel reconstruction methods

We have just shown that none of the former reconstruction methods is fully satisfactory.
In this chapter, using the matrix-based reformulation of image series expansion introduced
in chapter 8, we straightforwardly obtain a set of unified approaches to solve the problem
of reconstructing an image from a finite set of its moments.

Ill-posedness is solved imposing null value to those coefficients of the orthogonal basis
set used in the reconstruction that have higher order than the maximum order of available
moments. It is shown how specific orthogonal basis sets allow to translate this requirement
into visual constraints over the image such as its bandwidth or spatial resolution. None
of the former methods provided the proper setting to introduce these constraints.

11.1 Least-squares reconstruction using Chebyshev
polynomials

Since different sets of polynomials up to the same order expand the same subspace (corol-
lary 10.1.1), the unitary approximation in corollary 8.0.4 provides a least-squares recon-
struction if the orthogonal basis set corresponds to orthogonal polynomials. This is the
underlying idea of the Legendre method. However, proper polynomials must be used
instead of the erroneously adopted Legendre and Zernike ones.

Lemma 11.1.1 (Orthogonal polynomials in IR“Xb). The only possible orthogonal poly-
nomials in the vector space of discrete images of size a X b are the Chebyshev polynomials.

Proof. In [78], a unified approach to different types of orthogonal polynomials is provided.
In particular, orthogonal polynomials of a discrete variable are obtained as solutions of
the following difference equation:

Alo(z)p(z) v y(z)] + Ap(z)y(z) = 0,

were o(z) is a polynomial of at most second degree; A is a constant; p(z) is a function
that verifies Alo(z)p(z)] = 7(z)p(x), where 7(x) is a polynomial of at most first degree;
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and

Ay(r) =y(r +1) —y(z),
vy(z) = y(x) —y(z —1).

Then, it is proved that the polynomial solutions are defined by the finite difference form
of the Rodrigues formula, i.e.

i Bk \ k—1
pha) =05 A [,0(3:) ga(.’r - k)]. (11.1)

These polynomials are unique orthogonal polynomials, up to a normalizing factor, if both
the support region and the weighting function p(z) are fixed.

Since geometric moments are defined over a uniform lattice in [1,a] x [1,b] and the
weighting function is the unity, the only possible orthogonal polynomials are the Cheby-
shev polynomials, as proved in [78, pp. 30-44].

O

Definition 11.1.1 (Chebyshev polynomials of discrete variables). The Chebyshev
polynomial of order k is defined as

pivlr] = (_kl!)—k Ak[ ;c:_ol(x—l)(N—l—x-i-l)] it k=1,...,N—-1, (112)

forz=0,1,...,N — 1.

Lemma 11.1.2 (Recurrence relation of Chebyshev polynomials). Chebyshev poly-
nomials of discrete variables verify the following recurrence relation:

z pi[z] = ol (2] + BFpi[z] + APl ], (11.3)
where
¢ T o0kt 1) (11.4)
pr=""2 (11.5)
p k(N —1)” — &%)
T T T @k + 1) (11.6)

Proof. In fact, recurrence relation is a common property for all orthogonal polynomials
[78, pp. 14]. Value for parameters o, 3¥and «* are derived in [78, pp. 36-44].
]

Figure 11.1 shows the normalized Chebyshev polynomials for N = 5.
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Figure 11.1: Normalized Chebyshev polynomials for N = 5.
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Figure 11.2: Reconstructed images using Chebyshev polynomials from (a) 1, (b) 3, (¢) 5
and (d) 7 moments. Original 1 X 7 image is plotted in dashed line.
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Example 11.1.1. In figure 11.2, a normalized version of the Chebyshev polynomials com-
piled in table 11.1.1 are used to reconstruct the original image shown in dashed line,
for (a) N =1, (b) N =3, (c) N =5and (d) N = 7. It can be seen that, using the
same number of geometric moments as pixels in the image, the original image is perfectly
reconstructed.

A comparison between the reconstructed images in figure 11.2— using Chebyshev poly-
nomials — and figure 10.2 — using Legendre polynomials — reveals that, although the Leg-
endre polynomials are not orthogonal in the discrete domain, they can be used in the
reconstruction process. In fact, the mean square reconstruction error in these particular
examples nearly coincides, as shown in figure 11.3.

Legendre

. log

Chebyshev

Figure 11.3: Comparison of the mean square reconstruction error using Legendre and
Chebyshev polynomials in figures 10.1.2 and 11.1.1, respectively.

Example 11.1.2. In figure 11.4, the reconstruction of letter “E” is done using Chebyshev
polynomials for increasing number of moments.

Remark. The same results are obtained if corollary 8.0.2 is used instead of corollary 8.0.4
when Chebyshev polynomaials are considered. That is,

™ _ D a\— -1 = - Tmn
Ly, =Pan (Cy) F My ((CZ)t) (an)t = (Vam)” My, (Vbn)+ =1;".  (11.7)

In figure 8.2, the geometric interpretation of the unitary transform reconstruction
clearly shows that, if both the projection basis and the orthogonal reconstruction basis
belong to the same vector space (a plane in the figure), then the reconstructed images
obtained, using either a least-squares approximation or a unitary approximation, coincide.
Since both basis are polynomials, by corollary 10.1.1, this remark becomes obvious.

Remark. Since accumulation moments are also obtained from projections onto a poly-
nomial basis set, as shown in section 9.1, the least-squares approrimated image obtained
from a reduced set of accumulation moments of an image is the same as the one obtained
from the same amount of its geometric moments. Then,

TZZ” = (Qam)_ Lmn (an)+ - (Pam)_ Rmn (an)+ - (Vam)_ an (Vbn)+- (118)
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N=2 | pJ[z] = 1

= 2x—2
p3lz] = 622 — 12242

N=4 | pQz] = 1

piz] = 22 -3

piz] = 622 — 18z +6

= 2023 — 9022+ 94z — 6

N=5 | pdlz] = 1

pslz] = 2z —4

= 622 —24z +12

= 2023 — 12022 + 1722 — 24

N=6 | pd[z] = 1

= 2x—-5

pilz] = 622 — 30z + 20

pi[z] = 203 — 15022 + 274z — 60

= 70z* — 70023 + 2150 22 — 2000 z + 120

palz] = 252z° — 3150 z* + 13720 73 — 24150 22 + 14048 = + 120

N=7 | piz] =1

prlz]= 22 —6

p2[z] = 62?2 — 36z + 30

= 20z% — 18022 + 400z — 120

prlz] = 70x! — 84023 + 311022 — 3540 x + 360

p3[z] = 252z° — 3780z + 19740 2% — 41580 22 + 28968 = + 720

]
]
]
]
]
]
]
]
]
]
]
]
]
]
pi[z] = 70x* — 56023 + 137022 — 1000 = + 24
]
]
]
]
]
]
]
]
]
]
]
]
] = 92425 — 1663225 + 112560 z* — 352800 2% + 501396 22 — 250488 = + 720

Table 11.1: Chebyshev polynomials for increasing values of N.
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m=3 m =5 m =7 m=9 m =11
m =13 m =15 m =17 m = 19 m =21
m = 23 m = 25 m =27 m = 29 m = 31

Figure 11.4: Reconstructed images using Chebyshev polynomials from moments of increas-
ing order of a 32 x 32 image.
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Notice that the ill-posedness of the reconstructing problem is solved by assuming that
the coefficients obtained as the projection of the image onto Chebyshev polynomials of
order higher than the maximum order of available moments are null.

11.2 The unitary transform method

By lemma 8.0.4, given the Vandermonde matrix V,,, associated with the monomial basis
set and ®,,, associated with any separable orthogonal basis set,

Qo = (Vam)! @am) ™ Mo (840)! Vi) 7L (11.9)

Then, the image is reconstructed from

Fmn

I, =Pun (Vam) @om) " My (@) Vi) ! (o) (11.10)

As in the previous section, the unitary transform method obtains an approximation of
the image by its truncated series expansion onto an orthonormal basis set. The only differ-
ence is that both the projection and the reconstruction subspaces are not the same. Then,
the coefficients associated with those reconstruction functions of order higher than the
maximum order of available moments are assumed to be null. All the others are obtained
from an approximated image whose moments are known. A geometric interpretation was
provided in chapter 8 (figure 8.2).

A desirable property for the basis functions of the series approximation of an image is
that they concentrate most of the information in a reduced amount of coefficients since
only a finite number of them are used. What information means depends on the inter-
pretation of the basis; however, most common applications refer to bandwidth or spatial
resolution, which are associated with the Fourier and Haar coefficients, respectively. Then,
setting a relationship between these coefficients and moments provides a straightforward
interpretation of the information contained in higher-order moments, as well as a novel
method for reconstructing an image from a given set of moments [65]. None of the former
methods provided the proper setting to introduce these constraints.

11.2.1 Reconstructing a band-limited image

In terms of the Fourier transform coefficients of the image, the band-limiting assumption
means that Fourier coefficients of order greater or equal to (m,n) are null.

Fourier coefficients are normally defined as

a b
i = o 303 Ty e ()
k.l ab .
ab

=1 y=1
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Nevertheless, a relocation of these coefficients into a matrix C,,, is carried out here so
that increasing indexes correspond to higher frequency coefficients. In this case,

(m—1) (n—1)
(z—1)(k— -1) | =5~ -1)(-1)
2 + 2 5 )

a b
Conlk, 1] = \/% S Y 1, o2 ( z

z=1 y=1

(11.11)

Then, Fourier coefficients can be seen as the projection coefficients of the image onto
complex exponential functions of the form:

(k—l)(z—(igﬁ—l))

_ 1 _ion
‘I)pq[kal] = I;e 72 ( P

Considering orthogonal basis matrices of this form into (11.10), a low-pass approxi-
mation of the original image is obtained from a finite set of geometric moments.

Example 11.2.1. In figure 11.5, the band-limited reconstruction of letter “E” is done using
the unitary transform method with Fourier coefficients and moments of increasing order.

m =3 m =5 m="7 m =9 m =11
m =13 m = 15 m =17 m = 19 m =21
m =23 m = 25 m = 27 m = 29 m = 31

Figure 11.5: Band-limited reconstruction of a 32 X 32 image using the unitary method
from moments of increasing order.

Remark. A band-limited image can be perfectly reconstructed, using this method, when
the number of moments obtained from the image is equal or greater than the number of
its significant discrete Fourier spectrum coefficients.
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Likewise, a high-pass approximation could be obtained if the basis function associated

with higher frequencies were considered instead.

11.2.2 Reconstructing a resolution-limited image

Limiting the resolution of an approximated image means eliminating those regions of
smaller size than a given one. In terms of Haar transforms, this requirement becomes
trivial since its main characteristic is the direct relationship between the number of coef-

ficients and the spatial resolution of the signal.

Figure 11.6 shows the effect of limiting the resolution of a function using the Haar

transform, when a reduced set of p coefficients is considered.

Figure 11.6: Effect of limiting the spatial resolution of a function using a finite set of its

Haar coefficients.

Haar coefficients are obtained from the projection of the image onto the Haar functions
h¥ (z), which are defined over the closed interval z € [0, 1], and for £ = 0,1,2,...,n —

where N = 2". Since any integer k can uniquely be decomposed as

k=2 +q—1,

{either 1<g<2Pand1<p<n-1,
where

or qg=0,1and p # 0.

Haar functions are defined as:

ho (2) = hoo(2) =

1
VN’
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and
2% if Tl<i<l2
N N 1 r . g—1
h (2) = hpy(2) = N —22 if 2 <z<
0 otherwise.
Then,
®,,[k, 1] = W (k). (11.12)

Considering orthogonal basis matrices of this form in equation (11.10), a resolution-limited
approximation of the original image is obtained from a finite set of geometric moments.

Example 11.2.2. In figure 11.7, the resolution-limited reconstruction of letter “E” is done
using the unitary transform method with Haar coefficients and moments of increasing

order.
m=2 m =4 m =28 m = 16 m = 32

Figure 11.7: Resolution-limited reconstruction of a 32 x 32 image using the unitary method
from moments of increasing order.

Setting to zero Haar coefficients of higher order allows reconstructing a resolution-
limited image from a finite set of its moments.

Remark. A resolution-limited image can be perfectly reconstructed, using the unitary
method, when the number of moments obtained from the image is equal or higher than the
number of its significant discrete Haar coefficients.

Finally, in figure 11.8, it is shown a comparison for the novel reconstruction methods
that we have introduced in this chapter, for the particular case of the letter “E” used in
the previous examples. The comparison is done in terms of the logarithm of the mean
square error:

(11.13)

S5 (Ll o] — Lofe, )’
10 1og( S S (Tl ) )
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o Chebyshev *
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Figure 11.8: Mean square error of the reconstructed images in figures 11.4, 11.5 and 11.7.
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Chapter 12

Computational considerations

We have just introduced, in the previous chapter, novel reconstruction methods that solve
the ill-posedness of the reconstruction problem under a unified approach. In this chapter,
we deal with some computational considerations related to reduce the dimensionality of
the problem, that is, the amount of data involved in computations. Dimensionality can
be reduced by taking advantage of the separability of the basis functions. We propose
to uncouple the problem and parallelize each uncoupled system prior to solve it through
an iterative method that provides the closest solution to the initial guess [95]. Then,
assuming null initialization, the solution to the direct set of equations defined by known
moments is the one of minimum energy.

A different approach is attained through the singular value decomposition. This
method consist of diagonalizing a matrix through orthogonal ones [30]. The elements
of the diagonal matrix are the singular values in decreasing value order. Then, setting to
zero those singular values that are too small reduces roundoff errors.

12.1 Uncoupling and parallelizing

In general, image processing imposes large memory requirements, not only for image
storage but for the intermediate steps in their manipulations. Therefore, algorithms that
avoid manipulating the complete image at once are generally pursued. In this sense, the
following properties provide the necessary key points for decomposing the reconstruction
problem into simpler ones. In our case, this is possible because the basis functions are
separable.

Property 12.1.1 (Separability). Given separable projection basis, image reconstruc-
tion from a set of projections, that is solving

an = (@am)t Iab (I)bna

can be uncoupled into two steps:
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1. obtain the intermediate variable F,,;, from

an = Fmb (I)bn;

2. obtain the image 1y, from

Fmb = (Qam)t Iab-

This property provides a way to translate the problem of solving a set of m - n linear
equations with a - b unknows into two problems of lower dimension.

Property 12.1.2 (Parallelizability). Each row in the step 1 and each column in the
step 2 can be expressed as

Qunlk,:] = Foplk, :] Pon, (12.1)
fork=1,...,m, and
Frol, 1] = (®am)’ Lasl:, 1], (12.2)

forl = 1,...,n, respectively. This defines an independent set of equations that can be
solved separately. Equation (12.1) defines a set of n equations, one for each possible value
of k; and equation (12.2) a set of m equations, one for each possible value of .

This property allows parallel implementations of the inverse problem.

12.2 Iteratively reconstructing

We propose an iterative algorithms based on Kaczmarz method [95] for solving a linear set
of equations. This method is generally known as the algebraic reconstruction technique
(ART) among the tomographic community since first introduced in [36].

Given a linear set of equations,
Yp = Apg Xq;

each equation
q
olk] =Y Aplk, 1] x,[l,  for k=1,...,p,
=1

defines an hyperplane in the ¢-dimensional space, where ¢ is the number of unknowns.
Therefore, a vector of unknowns (x4[1],...,%4[q]) is represented by a point in this space.
The method iteratively projects an initial ¢-dimensional point onto each one of the hy-
perplanes defined by each linear equation, as shown in figure 12.1. That is,
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x[2]

Initial point

yplll = 2 Apqll,l] xq

/

ypl2] = i1 Apql2, 1)/x4[1]

o8] = X7 Apql3,1] xq[l]

Figure 12.1: Space of unknowns. Each equation defines an hyperplane (represented by a
line in the two-dimensional space).

(xéfl Aylk, ] = yqlk])
Apglky ] (Apglk,:])t

X =x," — A Aylk, ] (12.3)

where i refers to the iteration index, k, to the selected equation in the set and A, to a
relaxation parameter.

The rate of convergence of the algorithm intuitively depends on how parallel are the
hyperplanes. Since the hyperplanes are obtained from ill-conditioned matrices, they are
likely to be nearly parallel, providing a slow rate of convergence.

The solution obtained in this way corresponds to the one which is closest to the initial
guess in a least-squares error sense [95, pp. 415-425]. Hence, a null initialization selects
a minimum energy solution.

Remark. Applying this iterative method to the direct formulation of the reconstruction
problem, ., = @Zm Iy Py, a null initialization provides a unique solution: the mini-
mum energy image with the desired moments.

Notice that a straightforward application of this iterative method implies m - n equa-
tions and a-b unknowns, as described in chapter 9. Then, the so-called space of unknowns
is ab-dimensional. Since each coordinate of these space will be updated at each iteration
and the number of iterations depends on the conditioning of the problem, it results in a
great amount of operations. Nevertheless, the separability of the problem, in the terms
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Figure 12.2: Original function.

given in the previous section, can be used to reduce computational overhead. Unfortu-
nately, this is not possible in tomographic applications where the underlying projection
basis set is not separable.

Therefore, properties 12.1.1 and 12.1.2, respectively, can be straightforwardly intro-
duced in the iterative reconstruction methods. They allow to reduce the dimensionality
of the space of unknowns. That is, instead of dealing with the whole image as a vector of
dimension ab, rows and columns are treated independently and the maximum dimension
of the space of unknowns is either b or a, in the first and second step respectively. This
is formalized in algorithm 12.1.

Example 12.2.1. The function in figure 12.2 has been reconstructed using algorithm 12.1.
We have used different values for the convergence factor, €, —i. e. the factor that decides
when to stop this iterative algorithm depending on the root-mean-square error between
the solution of two consecutive steps of the iteration, that is,

(xp — t)" (xp — tp)
(xp)"%,p

I

evaluate_error(x,, t,) = \/

where x,, and t, refer to the current and previous solution values after an iteration of the
algorithm.

The results are plotted in figure 12.3 for geometric moments (in solid line), direct
accumulation moments (in dotted line) and reverse accumulation moments (in dashdotted
line). An amount of moments equal to the image dimensions has been considered.

The number of iterations of the algorithm and the relative error of the moments ob-
tained from the reconstructed image with respect to those of the original one, for different
values of the convergence factor, are shown in figures 12.4a and 12.4b, respectively.
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Algorithm: iterative_reconstruction
IanIt: an; (:bum: @bna a, b7 €
Output: I,

Initialize Xy,
F.,.» < solve_uncoupled_set(Xy, Qmn, ®on, m, €)

Initialize X
(I)t < solve_uncoupled set(Xap, (Frmp)?, Pum, b, €)

Iab — ((Iab)t)t

Algorithm: solve_uncoupled_set
Input: X, B,q, Apg, 7€
Output: C,,

FORk=1TOr
xp  Xpr:, k]
Yq ¢ (Brglk,])’
x, < solve_parallelized_set((A,,)*, X,, ¥4, €)
Crplk, ] < (%)
ENDFOR

Algorithm: solve_parallelized _set
Input:  x,, Apg, ¥y

Output: x,
Initialize x,
WHILE error > criterion
t, < x,
FORi=1TO p
x, < update(x,, Ay, Vg, ©)
ENDFOR
error <— evaluate_error(x,, t,)
ENDWHILE

Algorithm 12.1: Iterative reconstruction.
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Figure 12.3: Reconstructed images using the proposed iterative algorithm, for an amount of
moments equal to image dimensions, and different values of the convergence factor ¢, i.e.
(a) 1071, (b) 1072, (c) 1073, (d) 107*, (e) 107°. The reconstructions using the geometric
and the reverse accumulation moments, in solid and dashdotted lines, respectively, are
nearly overlapped.
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Figure 12.4: (a) The number of iterations and (b) the error of the moments obtained from
the reconstructed image with respect to those of the original one, in figure 12.8. Solid
lines refer to geometric moments, dashdotted lines to reverse accumulation moments and
dashed ones to direct accumulation moments.

Although the algorithm always converges, the number of iterations exponentially in-
creases as the parameter e¢ decreases.

Notice that in figure 12.4b, for a fixed ¢, the direct accumulation moments provide
a better reconstruction than geometric or direct accumulation moments, in terms of the
error of the moments of the reconstructed image with respect to the original one.

Multiple variations of this simple iterative algorithm have been introduced in the
literature concerning the adequate relaxation parameter, the optimal order to access the
set of linear equations, the convergence factor and the initial guess of the iteration [10, 38,
37,45, 44, 17, 76]. However, there exists a consensus about the specific image-dependence
of this parameters.

It is worth to mention that the relaxation parameter has a statistical interpretation.
This interpretation derives from the correspondence between the estimate-maximize (EM)
formulation, which is a general method for solving maximum likelihood (ML) estimation
problems given incomplete data [20], and the formulation of the Kaczmarz method [95].
Experimental results developed in [37] to determine the optimal value of this parameter
show its dependence on the level of noise. In particular, for the case of white Gaussian
noise, it is proved to be related to the noise covariance associated with the equations
in each iteration [20]. Since roundoff error can be modeled as white Gaussian noise, as
already mentioned in chapter 9, this parameter is related to numerical instabilities.
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Figure 12.5: Reconstructed images using SVD from (a) 1, (b) 3, (¢) 5 and (d) 7 geometric
moments. Original 1 X 7 image is plotted in dashed line.

12.3 Singular value decomposing

Inverting ill-conditioned matrices requires preconditioning, that is, eliminating numerical
instabilities. For non-square matrices, a generalized inverse is normally used. In chapter 8,
it has been shown that this pseudoinverse allows to obtain the least-squares approximation
of an image. The pseudoinverse of a matrix can be obtained from its singular values [34,
chapter 11]. For example the left pseudoinverse of A,,, is obtained as

Dy Onpuy

(Apn)” =Unp (o ) (W) (12.4)

m—p,m—p Onfp,nfp
where D;pl [k, k] = é and oy, are the singular values of A,,,, such that oy > --- >0, > 0,;
and, U,, and V,, are orthogonal matrices.

Then, the singular values are the elements of a diagonal matrix obtained from diag-
onalizing a real matrix A,,, using the orthogonal matrices U, and W,, [30, pp. 69-72].
These singular values are the positive square roots of the eigenvalues (which are non neg-
atives) of (A,n) Amn. The columns of U, are called the left singular vectors of A,
(the ortogonal eigenvectors of A,,(A,)") and the columns of W, are called the right
singular vectors of A,,, (the ortogonal eigenvectors of (A,)"Ayy) [49].

Example 12.3.1. In figure 12.5, it is shown how the reconstruction of the image in dashed
line using the SVD is the same as the one obtained from the least-squares approximation
in chapter 11.

The SVD allows to reduce numerical instabilities by setting to zero those singular
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values that are too small [88, pp. 676-706]. But, how small is small? A plausible answer
seems to be to consider as small those values smaller than m times the computer numerical
precision &, where m refers to matrix dimensions. The numerical precision is defined as the
distance from 1.0 to the next largest floating point number, that is, for the case of the 64-
bits floating-point IEEE format (see section 9.3), £ = 2752 = 2.220446049250313 x 10~ 16.
However, a more accurate answer would depend on the application.

To evaluate the performance of the SVD in reducing numerical instabilities, a pseu-
doinverse is obtained treating as zero those singular values that are smaller than a given
threshold #; in particular, £ = m & o,, where o, is the largest singular value of the matrix.
Figure 12.6 shows the mean square error of V,,, (V,,)~ with respect to the identity matrix
1,, for increasing values of m. Comparing these results with the ones obtained for the or-
dinary inverse in figure 9.5, it is shown that the computation of the pseudoinverse clearly
reduces roundoff errors in the reconstruction process. Figure 12.7 shows the mean square
error of reconstructing uniformly distributed random square images for increasing values
of m using pseudoinverses. Again, results improve with regard to the ones in figure 9.6
where the ordinary inverses are used.

30

201

101

I I I I I I
20 40 60 80 100 120

Figure 12.6: Roundoff error in the Vandermonde matriz pseudoinverses (V,,)~ for a
threshold t = m & o1, where o is the largest singular value of V,,, and & = 2752,

12.4 Reconstruction error

In this section, we analyze the error in the reconstructed image. Aside from the roundoff
error analyzed in chapter 9, there exist two other sources of error: (a) the reconstruction
error due to the fact that the number of moments is lower than the image size; and (b)
the reconstruction error due to noisy data.
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Figure 12.7: Mean square error in the reconstruction of uniformly distributed random
square image of size m using Vandermonde matriz pseudoinverses.

Let us consider the linear reconstruction problem in the general form:

i0s = Kobmn)” @men,s (12.5)

where, according to the unified approach of chapter 11, the pseudoinverse (Kg.p.;m.n)~ can
be written as:

(Ka-b-m-n)_ = (gam (((I)am)t q)am)_l) &® (abn (((I)bn)t abn)_l)- (126)

Then, as stated in section 9.3, a bound of the sensitivity of the reconstructed image
with regard to perturbations in the data can be derived from the condition number of the
involved matrix as follows:

81 _ (19K 10K]]
— < x(K), where < 1; and
[E{ 1K
m < MX(K), where [ow] < L
[ 1 [[wl]

Therefore, the reconstruction error can be analized in terms of the condition number
of matrix Kg.p.pm.n- Figure 12.8 plots this value in function of the available number of
moments and different reconstruction basis matrices. The maximum computer integer
resolution n = 25 — 1 = 9.007199254740991 x 10'° is also plotted.

The influence of the condition number is shown in the following example.

Ezample 12.4.1. Let us consider the reconstruction of letter “A”. Figures 12.9, 12.10,
12.11 and 12.12 show the results for different order of moments, using Chebyshev polyno-
mial, Fourier, Haar and monomial basis, respectively. A comparison in terms of the mean
square reconstruction error is shown in figure 12.13.
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Figure 12.8: Condition number of matriz K.

It can be seen that the reconstruction error decreases as the order of moments in-
creases. This outlines the fact that the reconstruction error is mainly a truncation error,
i.e. the error introduced by the fact that the number of moments is lower than the
image size. Since we have used pseudoinverses instead of ordinary inverses to reduce ill-
conditioning, these result proves that roundoff error can be palliated using the singular
value decomposition and eliminating those singular values below a given threshold.

Ezxample 12.4.2. This example shows the effect of noisy data. Figures 12.14, 12.15, 12.16
and 12.17 show the reconstruction of the same image as in the previous example from
a set of moments obtained from a noisy image. In particular, zero mean gaussian white
noise with 0.01 variance has been added. A comparison of the mean square reconstruction
error is shown in figure 12.18.

In this case, the error do not, in general, continuously decreases as the order of mo-
ments increases. There exists a particular order, that depends on the basis used in the
reconstruction, for which the reconstruction error has its minimum value. Notice that
monomial basis are more insensitive to noisy data. Therefore, although the monomial
basis and the Chebyshev polynomial basis should provide the same reconstructed image —
both basis define the same subspace and are supossed to reconstruct the image contained
in this subspace — the latter is more sensitive to perturbations in the data.
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Figure 12.9: Reconstructed images using the Chebyshev polynomial basis for increasing
number of moments of a 32 x 32 image.
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Figure 12.10: Reconstructed images using the Fourier basis for increasing number of mo-

ments of a 32 X 32 image.
m = 32

m=2 m =4 m =8

Figure 12.11: Reconstructed images using the Haar basis for increasing number of mo-
ments of a 32 x 32 image.
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m=7 m=9
m =17 m = 19
m = 23 m = 25 m = 27 m = 29 m = 31

Figure 12.12: Reconstructed images using the monomial basis for increasing number of
moments of a 32 X 32 image.

\ ° Chebyshev
LI - X Fourier

~ s \ * Momnomial

1t

Figure 12.13: Mean square error of the reconstructed images in figures 12.9, 12.10, 12.11
and 12.12.
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m=>5 m=7

m =15 m =17
.
m = 23 m = 25 m = 27 m = 29 m = 31

Figure 12.14: Reconstructed images using the Chebyshev polynomial basis for increasing
number of moments of a 32 x 32 image.
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Figure 12.15: Reconstructed images using the Fourier basis for increasing number of mo-
ments of a 32 X 32 image.

m=2 m =4 m =8 m = 16 m = 32

Figure 12.16: Reconstructed images using the Haar basis for increasing number of mo-
ments of a 32 x 32 image.
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A

m =23 m = 25 m = 27 m = 29 m = 31

Figure 12.17: Reconstructed images using the monomial basis for increasing number of
moments of a 32 x 32 image.
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Figure 12.18: Mean square error of the reconstructed images in figures 12.14, 12.15, 12.16
and 12.17.
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Chapter 13

The binary case

Since the reconstruction methods introduced in previous chapters are limited to gray-level
images, if a binary image is required it is necessary to binarize the approximated image.
However, the binarization process do not normally preserve moments. Therefore, it seems
reasonable to consider specific methods for reconstructing a binary image from a finite
set of its moments.

When dealing with binary images, the reconstruction problem can be translated into
the context of constraint satisfaction problems (CSP). For the particular case of global
constraints such as moments, obtaining a solution is often computationally very expensive.
Hence, we particularize the general problem to the one of reconstructing a binary image
having a given area and centroid, that is, moments up to first order. To this end, we have
devised a recursive algorithm of linear complexity with respect to the area of the region
to be reconstructed.

13.1 Setting the problem as a CSP

Reconstructing a binary image requires solving equation (8.2) subject to the constraint

Is|z,y] € {0,1}.

Therefore, solving the inverse problem for binary images fits into the context of con-
straint satisfaction problems (CSP), which involve finding values for variables subject to
constraints on acceptable combination of values.

The variables of the problem are the pixels of the image, their domain of potential
values is {0, 1}, and the constraints are the set of linear equations defined by the known
moments. These equations are of the form of pseudoboolean linear constraints since
coefficients are integer values and variables are 0 or 1 [3]. Then, a solution is specified by
the assignment of a value to each variable such that constraints are satisfied.

The process of searching for a solution satisfying these pseudoboolean linear con-
straints can be represented by a search tree, where each level of the tree corresponds to
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a variable and nodes to the assignment of values to variables. A search path is the set
of assignment values along a branch of the tree. A solution is obtained when exploring
a search path such that their nodes are consistent, that is, the values assigned to the
variables satisfy the constraints.

Any algorithm that expands the complete search tree is NP-complete, which means
that its cost increases exponentially with the problem dimensions. Therefore, complete
expansion must be avoided. Pruning techniques that eliminate a subtree of the search
space, either based on already assigned variables (retrospective techniques) or not yet
assigned variables (prospective techniques) along the current search path, have been pro-
posed in the literature (see [24] for a review). Also, ordering techniques based on some
heuristic that directs the sequence in which variables, values and constraints are consid-
ered during the search have extensively been developed. A measure of the effort for CSP
algorithms is the number of constraint checks, that is the number of times that a basic
question of the form: “is value x; of variable x consistent with value y; of variable y?”
occurs.

In the next section, it is proved that obtaining a binary image of a given area and
centroid, that is, of particular values of the accumulation moments up to first order, do
not require to expand the search tree. Its complexity is linear with the area.

Since the solution to this problem is, in general, not unique, it is possible to consider
additional constraints so that it satisfies some desired properties; for instance, connectiv-
ity, thinness, closed contours or higher order moments. In this case, the search tree must
be pruned while searching. A measure of the efficiency of the algorithms in this case is
the number of constraint checks, that is, the analysis of consistency of variables at each
node with respect to other variables. Obviously, the deeper in the search tree we explore
before a partial solution is rejected, the more costly is the algorithm.

Constraints are defined as m-ary when they involve m variables. Local constraints are
at most 8-ary, since they represent a relationship between a pixel and its neighborhood.
On the other hand, global constraints might relate a pixel with all the others in the
image; therefore, they are ab-ary. Then, more efficient algorithms can be envisaged for
local constraints than for global ones.

13.2 Partial constraint satisfaction

Definition 13.2.1 (Index vector). Given the columnwise form of a binary image i,
the vector p, containing those positions k that verify iz[k] = 1 such that p.[l] < p.[l + 1],
for 1 <1 < ¢, is defined as the index vector associated with i,p.

Lemma 13.2.1. Given a binary image 1y, its index vector and its direct accumulation
moments up to first order satisfy

5 pull] = Roaf1,2] 4 bRonn(2, 1] — b R [1, 1], (13.1)

=1
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where ¢ = Ry [1, 1].

Proof. From equation (2.19), the reverse accumulation moments up to first order can be
expressed in terms of the image as:

R..[1,1] = Z Zlab[r, s]

Ron[1,2] = 2;2;( ) L[r, s]
Ron[2,1] = ZZ (7 )l

Using the columnwise form of the binary image i,, obtained by sequentially reading each
row of I,;, this set of linear equations can be expressed in matrix fom as follows:

Riyn[l, 1] 1 ...11 ...1...1...1
Roo[L,2] | =1 ... b1 ... b ... 1 ... b iw. (13.2)
Roun[2,1] 1 12 2 ... a
Then, it is easy to verify that
Rinl1,2] + b Rimp[2,1] = bRma[1,1] = (1 2 ... ... ab) iw.

In other words, a linear combination of the accumulation moments up to first order is
the projection of the columnwise form of the image onto the vector of natural numbers.
Therefore,

ab c
D kiwll= 3,k =) pl
k=1 ksuch that i,s[k]=1 =1
where ¢ is the number of 1’s in the image, i.e. ¢ = R,;;,[1,1]. This proves the lemma. [
Corollary 13.2.1. By lemma 13.2.1 and corollary 2.5.1,
> Pell] = M1, 2] + b Myn[2,1] = b M1, 1, (13.3)
=1

where ¢ = My, [1, 1].

A geometric interpretation of lemma 13.2.1 leads to the following result.

Corollary 13.2.2. Given the c-dimensional lattice of all possible index vectors associated
with binary images of area c, the index vectors that are associated with binary images of
the same centroid are located onto an hyperplane of the form

P+ pe2 + - +pild =5,

where s depends on the centroid.



p%[3] > p.%[2] > pO[1]

Figure 13.1: Hyperplane of constant addition s = 10 and ¢ = 3.
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Figure 13.1 exemplifies this interpretation.

Lemma 13.2.2. The range of values of pgc] of all index vectors that verify Y ;_, pi[l] = s
is composed by the integers in the interval [f)ﬁ[c], f)ﬁ[cﬂ , where

ple] = min(s - C(C; 1),ab), (13.4)
vs[]_{ il - ldl, i ﬁz[;]—Lszc_1+f+[;_1Ldﬂ 5s)
pilc] — |d] + 1, otherwise,
d=p[d - %(s _ @_%M) (13.6)
and
f= 8:%1[0] g (13.7)

Proof. Since

Pl =s— 3 pill, (13.8)

then, for a fixed value of s, the maximum value of pc[c] f)ﬁ[c] is attained when all other
coordinates pZ[l] are minimum, i.e. pi[l] =1, for [ =1,...,¢— 1. Then,

Zps[l 1).

However, since the index vector refers to locations of the columnwise form of the image,
there exists a constraint on its maximum value, that is

pelc] < ab,

where a X b is the image size. Hence,

pilc] = mln( 0(02— D , ab) .

On the other hand, the expression of the minimum value p2[c| can be derived from
modeling the problem in terms of the collision of two mobiles. Figure 13.2 sketchs the
model. Let pg[c| be mobile 1 and all the other [pf[c—1], pi[c—2],...,p:[1]] be linked in a
single mobile 2. Their initial positions are defined by the situation in which p3[c] = p[c].
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Figure 13.2: Kinematic model to obtain pé[c]|.

Notice that, if p5[c] = ab the front position of mobile 2 is ¢ — 1 + f, where f is a constant
offset required to each element of mobile 2 so that equation (13.8) is satisfied. Then,
s—Peld _ ¢

I=="1 "%

Their speed are measured in terms of integers per jump. Assuming that mobile 1 can move
at 1 integer per jump, mobile 2 moves at c—% integers per jump because equation (13.8)
must always be satisfied. Then, at the collision point,

1

from which
. 1 (c—=1)(c—2)
d=9cl = Z(g— /=)

Since the number of jumps must be an integer, let it round to the nearest integer towards
zero, i.e. |d]. Then, if

)- (13.10)

pilc] — |d] > ¢ — 1+ offset + [

[dﬂ, (13.11)

it means that mobile 1 can perform |d| jumps without colliding with mobile 2. Then, to
avoid any collision, the number of jumps must be |d| — 1. Therefore,

c—1

5%[c] = pole] — |dl, if equation (13.11) is satisfied,
Pe pilc] — |d] +1, otherwise.

Notice that, since the speed of mobile 1 is 1 integer per jump, every integer value
included in between pflc| and P[c] determine the coordinates of index vectors on plane
s. Then, the range of values of p3[c| is completly defined and lemma 13.2.2 is proved. O
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Property 13.2.1 (Recursivity). Given c and s, it is possible to obtain all index vectors
of dimension ¢ on the hyperplane s by recursively applying lemma 18.2.2, for i = c¢,c —
1,...,1, so that, for each value pflk[z] = pJili] + k in [P]*[i], Di*[i]], the range of values of
coordinate p;‘[i — 1] is obtained from lemma 13.2.2 when

where s, = s.

This is formalized in algorithm 13.1.

Algorithm: binary_images_of_given_area_and_centroid
Input: s, c

Output: {PATHS}

{path } « {o}
{PATHS} « {2}
{PATHS} <« hyperplane (s, c, {path},{PATHS} )

Algorithm: hyperplane
Input: s, c,{path},{PATHS}
Output: {PATHS}

IFc#1
{R} <« obtain_range(c, s)
WHILE {R} # {o}
p+ {R}
{B} «{R} —p
S Ss—p
c+—c—1
{path} < {path} Up
{PATHS} « hyperplane (s, ¢, {path},{PATHS} )
ENDWHILE

ELSE

{path} < {path} U s

{PATHS} « {PATHS} U {path}
ENDIF

Algorithm 13.1: Reconstruction of binary images of given area and centroid.
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Example 13.2.1. Figure 13.3 shows the complete set of binary images of equal area and
centroid for ¢ =9 and s = 5.

Figure 13.3: Complete set of binary images for c =9 and s = 5.

This algorithm allows to straightforwardly obtain one solution with a cost that in-
creases linearly with the area of the pattern to reconstruct. However, if the complete set
of solutions is required, the number of solutions increases exponentially with the image
size. This suggests that local constraints are a must if binary images are required (see
[94] for details).
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Conclusions

14.1 Contributions

This section briefly enumerates the contributions achieved in this thesis.

1. The definition of a new set of global features, the accumulation moments, whose
main characteristics can be summarized in four points:

e they are related to the geometric moments through a one-to-one linear transfor-
mation so that the information contained in a finite set of geometric moments
is equivalent to that contained in the accumulation moments of the same order;

e they can be obtained using O(a?m) additions, where a and m refer to the image
size and the amount of required moments, respectively;

e they can be implemented using a simple hardware scheme of a basic structure
formed by a bit-serial adder and a feedback loop that includes shift registers;
and

e they can be used to accelerate the computation of geometric moments, its

associated invariants, and the actualization of moments in a sliding window.

Thus, any application involving geometric moments can benefit from the use of
accumulation moments due to their computational advantages.

2. The statement of the incorrectness of former methods used to reconstruct an image
from a reduced set of its moments in assuming that:
e the Legendre polynomials are orthogonal in the discrete domain; and
e the solution to the Maximum Entropy reconstruction method is always an

exponential function, as derived from the application of Lagrange multipliers.

However, we have shown that the errors due to the non-orthogonality of the Legendre
polynomials is almost negligible as their order increases.
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3. The introduction of a new reconstruction method: the backprojection reconstruction
method, that only requires O(m?) subtractions, where m refers to the number of
available moments.

4. A matrix-based reformulation of image series approximation from a finite set of
projection coefficients upon which two novel reconstruction methods have been pro-
posed:

e the Chebyshev method, based on orthogonal polynomials of discrete variables,
which provides a least-squares reconstructed image. In this case, ill-posedness
is solved by assuming that the coefficients obtained from projecting the im-
age onto the polynomial of order higher than the maximum order of available
moments are null; and

e the unitary transform method, based on orthogonal functions, which allows to
reconstruct a band-limited or resolution-limited image if Fourier or Haar basis
functions are used, respectively.

Moreover, these methods are general for any set of projection coefficients and any
set, of orthogonal functions.

The results have been implemented using MATLAB and IEEE floating-point standard
arithmetic. Numerical considerations have been taken into account to palliate the ill-
conditioning due to roundoff error. Under this consideration, it has been shown that,
in the reconstruction process, the truncation error decreases as the number of available
moments increases. However, if zero mean gaussian white noise is added to the input
data, the ill-conditioning of the linear set of equations amplifies these perturbations. In
this case, there exists a particular order of moment, that depends on the basis set used
in the reconstruction, for which the reconstruction error has its minimum value.

14.2 Open problems and future research

We have detected some points for future research, connected to our work, that deserve
further attention. We include some examples:

1. Hardware implementation

A hardware implementation scheme for accumulation moment computation has been
proposed. Since there exist multiple real-time applications that use geometric mo-
ments, it seems interesting to effectively implement the proposed hardware.

2. Moment-invariant low-pass filters

It is possible to obtain moment-invariant low-pass filters. For instance, we have
proved that a transfer function of the form H(s) =1 — (G(s))" , where

as+b
s24+as+b’

G(s) =
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is a moment-invariant low-pass filter that preserves moments up to order 2n (there
exists some other implementations of these kinds of filters used to generate orthog-
onal wavelets [35]). If the resulting image is subsampled without aliasing, it has the
same moments as the original one. Therefore, it should be possible to obtain the
geometric moments of the original image at a lower cost. However, since these filters
are not ideal, noise is introduced due to aliasing. Hence, it is possible to compute
moments from a subsampled moment-invariant low-pass filtered image if a tradeoff
between accuracy and speed of computation is accepted.

3. Tomographic applications

In [70], a relationship between the geometric moments of an image and those of its
Radon coefficients has been stated. Radon coeflicients are defined as

g(t,@)://f(:c,y)é(t—xcos@—ysin&)dwdy.

That is, for a fixed f, the Radon coefficients are the accumulated values of the image
along the m+ 6 direction. When 6 ranges from 0 to 27, a set of accumulation values
for different directions is obtained. Notice, from this observation, that accumulation
moments and Radon coefficients are intuitively related. Therefore, it seems inter-
esting to exploit this relationship to apply the reconstruction methods proposed in
this thesis to tomographic data.

4. Local constraints in binary image reconstruction

A recursive algorithm that sequentially generates all possible binary images that
have the same area and centroid has been proposed. The sequential nature of the
algorithm allows to introduce local constraints that exploit the neighborhood rela-
tionship so that it is possible to efficiently generate images eliminating meaningless
solutions prior to its completion. Therefore local constraints such as connectivity,
thinness or closed contours can be easily considered.
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