Proceedings of the 1996 IEEE
international Conference on Robotics and Automation
Minneapolis, Minnesota - April 1996

Speeding Up Interference Detection
Between Polyhedra *

Pablo Jiménez

Carme Torras

Institut de Cibernética (CSIC — UPC)
Diagonal 647, 2 planta
08028 Barcelona, SPAIN

Abstract

A classical paradigm for interference detection
between polyhedra consists in testing all edges of
one polyhedron against all faces of the other one
for intersection. If the relative orientation of the
polyhedra is fized, only certain edge-face pairs can
intersect first, when the polyhedra come into contact.
These candidate pairs are efficiently determined
using a representation which we call Spherical Face
Orientation Graph. By applying the interference
test to candidates only, the computational effort is
significantly reduced, as shown by experimental results
with convez polyhedra. In the non-conver case, the
sirategy ts conservative, but it still leads to savings.

1 Introduction

Interference detection between polyhedra is a central
issue in the context of collision detection and robot
motion planning. The obvious way of performing
interference detection, if the polyhedra are described
using a boundary representation, is to decompose the
problem into elementary tests involving the boundary
primitives. If the complexity of the polyhedra is
high, procedures have to be devised that avoid having
to perform every elementary test. In this direction,
hierarchical representations may save a great amount
of computational work, if the interference situation
can be decided at the first levels of the hierarchy
or if its refinement can be restricted to the area
where interference is most likely to occur. Of
course, a preprocessing step is necessary in order
to obtain the hierarchical representation. Optimal
O(log nlog m) solutions exist for preprocessed convex
polyhedra having n and m edges [l], preprocessing

*This research has been partially supported by the ESPRIT
ITI Basic Research Actions Program of the EC under contract
No. 6546 (project PROMotion).

0-7803-2988-4/96 $4.00 © 1996 IEEE

requiring linear time. There also exists an O((n +
m + s)log(n + m + s)) intersection computation
algorithm between two preprocessed polyhedra, one
of which is convex [2], where s is the number
of edges of the intersection polyhedron. Both
methods, if applied to non-convex polyhedra, require
a previous step of decomposition of the polyhedra into
convex entities, since the hierarchical representation
exploits convexity. Although there exist very efficient
decomposition techniques [3], there are also many
situations where a large number of new faces will be
created by decomposition. Therefore, this previous
step may lead to a large increment in the global
complexity.

Thomas and Torras [4] have proposed an algorithm
for solving the interference detection problem between
non-convex polyhedra without decomposing them. It
is based on an edge-face intersection test, following
the line established in [5], which combines predicates
associated to basic contact functions [6] in a manner
similar to Canny’s disjunctive form [7], but being also
valid for non-convex faces.

Although the worst-case complexity of the algorithm
is necessarily quadratic (all edges of one polyhedron
may have to be tested against all faces of the other),
the aim of the research described in this paper is
to lower the computational cost as much as the
particular situation permits. The approach that has
been followed can be viewed as an alternative to
the methods based on hierarchical representations,
as far as the goal is also to restrict the number of
elementary tests to perform, but the key geometric
issue behind it is different: applicability instead of
proximity. While proximity has been applied in the
algorithms that determine interference by computing
the distance between the polyhedra, as in [1,8],
less use has been made of the applicability concept.
Applicability has only been implicitly used in [9] for
restricting the search space in an incremental distance

1485

computation algorithm between convex polyhedra.

The techniques developed here work for all kinds
of polyhedra where for every vertex the following
condition holds: The faces adjacent to the wverter
form a simple circuit (therefore, two pyramids joined
by their apices would be considered as two different
polyhedra, as the condition does not hold for the
common vertex if the whole is considered as a single
polyhedron). An additional requirement is that the
polyhedra have to be connected regularized sets.
Therefore faces may be convex as well as non-convex
polygons, edges may be convex or concave, depending
on their dihedral angle, and vertices may be convex
(all adjacent edges are convex), concave (all adjacent
edges are concave), or mixed (there are convex as well
as concave adjacent edges).

This paper is structured as follows: The first two
sections are devoted to previous results that are needed
for a clear understanding of the main contributions
of this paper, described in Sections 4, 5, and 6. In
Section 2, a brief description of Thomas and Torras’
elementary edge - face intersection test is given. In the
next section, the concept of applicability of a contact is
described, as well as the way it can be used to restrict
the set of candidates to undergo elementary edge-face
intersection tests. A new spherical representation of
polyhedra is introduced in Section 4, that allows to
efficiently determine these candidates in the convex as
well as in the non-convex case. Section 5 is devoted to
the algorithms that determine the set of candidates to
be considered: a general algorithm is presented, and
also a specific algorithm for the particular case where
the polyhedra are convex, which has already been
implemented and optimal results have been obtained.
Finally, some conclusions are given, as well as some
possible lines of further research, mainly oriented
towards a widening of the scope of applications of
the basic interference detection method towards more
general collision detection algorithms.

2 The edge - face intersection test

In what follows, vertices, edges, and faces are
referred to by position v, direction e, and normal
I vectors, respectively. The fundamental edge (e) -
face (f) test consists in determining whether edge e
intersects or not face f, which can be non-convex.
If intersection actually occurs, two conditions must
simultaneously hold:

e both extremes of the edge, 8te and &~ e, must
be in opposite halfspaces, of those defined by the
plane that contains the face f, and

1486

o the line supporting the edge e must intersect the
face f.

The basic predicate A, ; indicates in which
halfspace of those defined by the plane that supports
face f lies vertex v. The predicate is true if this
halfspace is the same where the normal vector of
the plane is pointing to, negative otherwise. This
truth value corresponds to the sign of the contact
function between the vertex and the face, which can be
calculated as a determinant involving the coordinates
of three points on the face and the coordinates of the
vertex. If the two predicates Ayt ; and Ay-, ; have
different truth values, the first condition for edge-face
piercing will be met. Therefore, the two predicates
have to be combined through the ezclusive OR (XOR,
denoted by @) operator.

As for the second condition, if a plane f. containing
edge e is constructed, the number of edges ef of f (i.e.,
ey € Of) piercing one of the halfplanes of f, have to
be considered, where these halfplanes are defined by
the line supporting edge e. If the number of edges
piercing any one of these halfplanes is odd, the line
that supports e intersects the face. Note that the face
may be non-convex. It can be shown [4] that this
condition holds iff

@ (A(;H'e,,fc b Aa"ef,f:) A (Aa—ef,fa ® Be,ej) (1)

es€df
is true. Here, a second type of basic predicate has
been introduced, Be .,, which is true iff {e x e;, § e —
0~ ey) is positive (where (-,-) stands for the inner
product), that is, its truth value depends on the
relative orientation of e and ey. The first part of this
formula is true if the edge ey is piercing plane f.. The
second part ensures that only the edges piercing one
of the halfplanes are taken into account.

Thus, the edge-face intersection test is based on the
truth value of the following composite predicate:

(A8+e,f ® Ac‘)“e,f)/\
[@efeaf(A3+€f,fg D Aa'ef,fc) A (Aa—ef,jc & Be,ef)]
(2)
To perform interference detection between the
boundaries of two polyhedra, this formula has to be
applied to all possible edge - face pairings. An AND-
OR-XOR tree represents the search space, where the
root i1s an OR node: it suffices that just one subtree
corresponding to a particular edge - face combination
(i.e., to Equation 2) be true in order to report that an
interference has been detected.

The situation in which there is no boundary
intersection, because = one polyhedron 18
completely inside the other (and therefore no edge-
face intersection actually occurs), can also be handled
by using the same basic predicates [4]. The idea is
to perform an edge-face intersection test, where the
“edge” consists in a segment drawn from an arbitrary
vertex of one polyhedron, say P, to “infinity” (any
point which is far enough). If P is inside the other
polyhedron, Q, an odd number of faces of Q will be
pierced by this straight halfline. The same test must
be performed reversing P and Q.

3 Applicability conditions and

geometric pruning

When two initially non-intersecting polyhedra
undergo an arbitrary relative translational motion
with respect to one another, only certain edge-face
intersections can occur first. In the context of Motion
Planning in Robotics it is often enough to determine
these first intersections. This is the aim of our
geometric pruning techniques.

These edge-face candidates can be easily obtained
using the applicability constraints, developed in [10]
for the case in which the polyhedra are convex. The
applicability constraints allow one to determine the
basic vertex - face and edge - edge contacts! that
are possible between two polyhedra whose relative
orientation remains fixed but which are allowed
to translate. The applicability constraints can be
expressed as follows [10]:

Type A contact For a given relative orientation
between two polyhedra, the contact between a
vertex v of one polyhedron and a face f of another
polyhedron is applicable iff Yv; adjacent to v,
(vi, f) = (v, f) > 0.

Type B contact For a given relative orientation
between two polyhedra, the contact between an
edge e, of one polyhedron and an edge e,
of another polyhedron is applicable iff k, #
ky, where k, = sign({T1, fp)) = sign((T3, f,)),
and ky = sign({T3, fp)) = sign((T4, fp)), with
T; = si - (fi x em), fi adjacent to e, Tj = s; -
(fi % en), fj adjacent to e,;s;,s; € {+1,-1}|T;
is oriented towards the interior of face f (see
Figure 1), and f, = e, X ey,.

If the contact between a vertex and a face is
applicable, only one of the edges adjacent to the vertex

!Every other contact between the features of two polyhedra
can be expressed in terms of these basic contacts.

1487

Figure 1: (a) Applicable vertez - face pairing. (b)
Applicable edge - edge pairing.

has to be considered as candidate for intersection with
the face. In the general case, where the situation is not
of parallel faces or an edge parallel to a face, only one
vertex will be applicable with respect to a given face.
Therefore, no more edges will have to be considered
as candidates for intersection with this face, following
this criterion. In a similar way, if the contact between
two edges is applicable, the candidate pairings to be
considered are formed by each one of the edges and
the adjacent faces to the other edge (see Figure 1).

By applying these criteria, the number of candidate
pairings is restricted considerably. On the one
hand, as mentioned before, following the vertex -
face applicability criterion, only one edge has to be
considered for every face, leading to a linear number of
candidate edge-face pairings. As for candidate pairings
arising from the edge - edge applicability constraints,
a worst case can be found with a quadratic number
of candidate edge - edge applicable pairs, therefore
leading to a quadratic number of candidate edge -
face pairings. The worst case arises in geometries
where, in both polyhedra, a set of edges approaches
a circumference and the cardinality of this set is of
the same order as the complexity of each polyhedron.
This happens for pyramids or bipyramids whose apices
are vertices of high degree, and where their height
(compared to the base) is small and/or their relative
orientation is close to perpendicularity. It happens
also for two prisms whose respective bases have a
large number of sides, for any orientation (except
perfect parallelism). Nevertheless, for most convex
polyhedra the number of candidate pairings is strongly
subquadratic and approaches linearity, as confirmed
by the results obtained in Section 5.2.

As mentioned before, applicability constraints were
originally developed for convex polyhedra. If the
polyhedra are non-convex, these constraints express
a necessary but not sufficient condition for contact.
It makes sense to talk about local applicability, as
far as only the adjacent features are considered in
the applicability constraints, but other features of the
polyhedra can keep the locally applicable contact from
being actually possible. In other words, size plays
now a role and it is not considered in the applicability
constraints. Figure 2 shows how a locally applicable
contact cannot be realized. Candidates arising from
such a situation will be called false candidates.

Figure 2: A locally applicable vertex - face contact that
cannot be realized.

On the other hand, as they are necessary conditions,
applicability constraints can still be used in the context
of a geometric pruning strategy: if they do not hold,
the corresponding pairing can be discarded in the
search of edge - face candidates for intersection. Of
course, this strategy i1s now conservative, in the sense
that false candidates may arise. A worst case can be
found where the number of false candidate pairings
is quadratic, but it is attached to a very specific and
unfortunate geometry (as, for example, the situation
depicted in Figure 3).

Some comiments about features that can be locally
applicable in the case of non-convex polyhedra: In
vertex - face contacts, no restriction exists about the
faces. As for vertices, they can be only of two types:
convex vertices or mixed ones that have a local convex
hull (pseudo-convex vertices). In Figure 4 a pseudo-
convex vertex and its local convex hull are shown.
Clearly, in edge - edge contacts, edges must be convex.

Now the issue is to find an efficient way of obtaining
the vertex - face and edge - edge pairs satisfying the
applicability constraints, without exploring explicitly
every vertex - face and edge - edge pair. The resulting
algorithm should be of the same complexity as its

1488

Figure 3: The number of false edge - face pairings is
quadratic.

output. The key is to make use of an adequate
representation.
4 The Spherical Face Orientation

Graph (SFOG)

Several authors have developed spherical repre-
sentations of convex polyhedra. In [11] a detailed
description of Eztended Gaussian Images (EGI) and
their properties can be found. In the case of polyhedra,
these images represent face orientations as points on
the unit sphere, and each point is weighted according
to the area of the face it represents.

A representation that explicitly captures both
geometrical and topological information is desired.
This can be done with the Spherical Face
Orientation Graph {SFOG), which is particularly
well suited for exploring the applicability constraints
in an efficient way. This representation is inspired by
the EGI, but it does not associate weights proportional
to the area of each face with each point (node) on
the sphere. Instead, topological relations of adjacency
between faces are explicitly depicted, with arcs joining
nodes that correspond to faces sharing an edge.
Geometric consistency is attained if these arcs are
not arbitrary but lie on great circles of the sphere®.
Convex edges are represented by means of the minor
arc, concave edges with the major arc. The resulting
spherical graph is not an unambiguous representation
of polyhedra, or, in other words, a polyhedron may
not be reconstructed from this representation, neither
in size nor completely in shape (for example, any
rectangular prism has the same SFOG representation),
but 1t preserves those geometric relations that are

2The normals of the planes that define these great circles
point in the same directions as the corresponding edges.

relevant to the applicability constraints.

A vertex is represented by means of a cycle of arcs
and nodes, corresponding to the adjacent edges and
faces. If the vertex is convex or pseudo-convex, there
exists always a subset of convex arcs that bound a
convex polygonal region on the sphere. For pseudo-
convex vertices several such regions may exist, but
only one is contained in every other one. This smallest
region represents the local convex hull of the vertex,
and will be called conver subregion (csr). Figure 4
shows a pseudo-convex vertex, its local convex hull,
and the corresponding csr on the SFOG.

€

Figure 4: (a) A pseudo-conver vertez, (b) its local
conver hull, and (c) the corresponding csr.

By superimposing the SFOG of one polyhedron with
the central symmetric image of the SFOG of another
polyhedron, a compact representation is obtained
from which the vertex-face and edge-edge applicability
relationships can be directly determined:

1. (Convex case) A given node falls into a certain
region if and only if the contact between the
vertex represented by the region and the face
represented by the node is applicable (Fig. 5(a)).

2. (Non-convex case) A given node falls into a
certain convex subregion if and only if the contact
between the vertex whose local convex hull is
represented by the csr and the face represented
by the node is locally applicable.

3. Two convex arcs of different SFOGs intersect if
and only if the contact between the corresponding

edges is (locally, in the non-convex case)
applicable (Fig. 5(f)).

These results can be easily proved by taking the
geometrical correspondence between arcs and edges
into account. For example, point 1 above can be
proved in the following way:

Consider the vertex v -face f applicability constraint
(Type A contact in Section 3). The interior of a convex
region on a sphere, formed by arcs of great circles, is
well defined: a point f lies in the interior of the region
v if, travelling counterclockwise along the perimeter,
f 1s on the left of every arc ¢, — ¢,. This condition is
expressed by the triple product (¢m x ¢4, f) > 0.
The product ¢, X ¢, defines the direction of the
corresponding edge. The arc ¢, — ¢, is common
to the region that represents v and the region that
represents an adjacent vertex, say vg. In other words,
it represents the edge from vy to v and, therefore,
dm X ¢n has the same direction as v — v;. Note that as
one of the SFOGs has been inverted, this implies that
(vi — v, f) > 0. Thus, the point-in-region inclusion
condition is equivalent to the vertex-face applicability
condition.

As for edge-edge applicability, the corresponding
result can be proved in a similar fashion, projecting
the directions of the tangent vectors (see Figure 1)
onto f,, whose direction is given by any one of the
intersection points of the great circles that contain the
arcs.

The previous results are consistent with several facts
concerning the applicability constraints (valid both in
the convex and non-convex case):

e Each SFOG defines a set of regions that covers
the sphere. Every node from one SFOG will be
contained into one region from the other or in its
border (it may fall on an arc or on a node). This
coincides with the fact that for every face of one
polyhedron there will be (at least) one applicable
vertex of the other polyhedron, as shown in Fig.

5(a).

e It may be that for a given region there is no node
of the other SFOG that falls into it. This is
coherent with the fact that there can be vertices
which are not applicable with respect to any face
of the other polyhedron (see Fig. 5(b)).

o It is also possible that two or more nodes are
contained in the same region. In fact, it is possible
that the same vertex be applicable to several faces

(see Fig. 5(c)).

e An arc can be intersected by one or several arcs
of the other SFOG, which means that one edge

1489

can be applicable to more than one edge of the
other polyhedron. It can also happen that no arc
intersects a given arc, i.e. there is no applicable
edge with respect to the edge represented by this
arc.

e Degenerate situations find their counterparts in
the representation:

— “A node fallson an arc” means that the edge
represented by this arc is parallel to the face
corresponding to the node (see Fig. 5(e)).

— “Two arcs are on the same maximal circle”
means that the represented edges are parallel
(see also Fig. 5(e)).

— “A node coincides with a node” means that
the two faces (each belonging to a different
polyhedron) are parallel (see Fig. 5(d)).

If the polyhedra are non-convex, another fact has to
be considered:

e Convex subregions may overlap. If a given node
is contained in one of these common areas, the
represented face will be simultaneously locally
applicable with respect to the corresponding
vertices.

5 Searching for candidate pairs

The next step is to develop an algorithm that
determines the applicable vertex-face and edge-edge
pairings, using the information contained in the
SFOGs. Once these applicable pairings have been
obtained, it is straightforward to obtain the candidate
edge-face pairs, as described in Section 3.

First, in Section 5.1, a general algorithm will be
sketched, that applies for convex as well as for non-
convex polyhedra. The amount of pruning that can be
done becomes particularly evident in the convex case.
Therefore, a simple algorithm has been developed and
implemented for the situations where the polyhedra
are known to be convex, as shown in Section 5.2, and
experimental results are also provided.

5.1 The general case

For non-convex polyhedra, convex subregions have
to be identified and arc crossings of two kinds (between
convex arcs of the same SFOG and between convex
arcs of different SFOGs) have to be distinguished.
The algorithm has to perform three main tasks: To
detect arc crossings, to detect regions overlap, and

Figure 5: The SFOG of a rectangular prism (heavy
lines) is combined with the ceniral symmetric image
of the SFOG of a tetrahedron (fine lines). Different
situations are represented: (a) applicable vertez-face
contact, (b) a wvertex of the prism whick is not
applicable to any face of the tetrahedron (no node of
the tetrahedron is inside the corresponding region), (c)
a vertez of the tetrahedron which is applicable with
respect to two faces of the prism simultaneously, (d)
parallel faces, (e) an edge which is parallel to a face,
(f) applicable contact between edges.

to detect node-in-region inclusions. At the base lies
the arc crossings detection procedure. It consists in
applying a modified version of segment intersection
detection algorithms through line sweeping, like that
n [12] (O(n + k)logn) or in [13] (O(k + nlogn), for
n segments and k£ intersections). This algorithm has
to be adapted for treating arcs on the sphere instead
of segments in the plane, as well as for distinguishing
between arcs of the same and of the other SFOG. The
sweep with a vertical line is replaced by a sweep with a
meridian. The partial ordering that this sweep induces
on the arcs is used to keep track of the regions that
are being swept and this, in turn, allows to perform
the other two tasks of region overlap and node-in-
region inclusion detection. In fact, these two steps
are merged together, as far as the aim of the region
overlay detection step is to allow knowing in which
regions a given node lies, that is, which vertices are
simultaneously applicable with respect to the same
face.

5.2 The convex case

The algorithm shown below considers nodes of one
SFOG and regions of the other one, and performs
the node-in-region inclusion and the arc crossings

1490

tests. Obviously, complexity will not be increased by
applying further the same algorithm to the nodes of
the second SFOG and regions of the first one.

As for data structures needed in the algorithm,
there are input graphs, the SFOGs and a Cycle
Graph (where nodes correspond to vertices of one
polyhedron), a vector FACE_APP[<node>] recording
the face-vertex applicability relationships and a vector
of lists EDGE_APP[<arc>] recording the edge-edge
applicability relationships, which are also the desired
outputs, and two commonly used lists in these search
algorithms [14], OPEN_NODES and OPEN_ARCS.

A brief description of procedures and func-
tions is needed for the clear understanding of
the algorithm. The procedure ordered_intersection
(node, ¥EDGE_APP) finds every intersection of arcs
stemming from node with the arcs of the cycle in
which node lies, and appends these intersections to
EGDE_APP. The arc_intersection(arc, cycle, edge)
function finds the intersection between arc and the arcs
of cycle different from edge, which is known to have
been crossed by arc in entering cycle. The function
Succ_Arcs(node) returns the arcs that “point out of”
node, in the sense that although we are exploring
an undirected graph, certain directions of the arcs
are implicitly imposed as some nodes are explored
before others and we want to avoid exploring a given
arc in both directions. The function succ_node(arc)
returns the unexplored extreme node of arc, and
succ.cycle(edge, arc) returns the cycle that cobounds
edge and where arc is “pointing to” (in the sense
that the other cobounding cycle will either contain the
node such that arc € Succ_Arcs(node) or will already
have an arc intersected by arc). Finally, the function
last(EDGE_APP[arc]) returns the last arc intersected
by arec.

The algorithm starts at a given point, which can
be considered without loss of generality as a “North
Pole”, and travels over the sphere towards the “South”
in a spiral-like fashion. Thus, it can be considered a
greedy or breadth-first algorithm [14].

SFOG SEARCH ALGORITHM

Choose North-pole;
Find North-region O North-pole;
FACE_APP[North-pole]:= North-region;
North-pole — OPEN_NODES;
while (OPEN_NODES # 0) or (OPEN_ARCS # ()
while (OPEN_NODES + §)
node — OPEN_NODES;
ordered_intersection(node, EEDGE_APP);
for every a € Succ_Arcs(node)

1491

if EDGE_APP[a] = 0 then
if FACE_APP[succ_node(a)]=) then
" FACE_APP[succ_node(a)]:=
FACE_APP[node];
succ_node(a) — OPEN_NODES;
endif
else
a — OPEN_ARCS;
endif
endfor
endwhile
while (OPEN_ARCS #0)
arc — OPEN_ARCS;
edge := last(EDGE_APP[arc]);
cycle := succ_cycle(edge, arc);
s := arc_intersection(arc, cycle, edge);
if s=0 then
" if FACE_APP[succ_node(arc)] = 0 then
" FACE_APP[succ_node(arc)] := cycle;
succ_node(arc) — OPEN_NODES;
endif
else
EDGE_APP[arc] — s;
arc — OPEN_ARCS;
endif
endwhile
endwhile
The algorithm has been implemented and experi-
ments have been carried out, consisting in the execu-
tion of the algorithm on pairs of polyhedra with a given
relative orientation. The set of polyhedra used in the
experiments covers the range from the tetrahedron to
a polyhedral approximation of the sphere with 128 tri-
angular faces. As can be seen in Figure 6, the number
of edge-face candidates found in the experiments grows
linearly with the complexity of the 34 pairs of convex
polyhedra considered. The two points that lie clearly
apart from the line correspond to the exceptional sit-
uations described in Section 3, bipyramids and prisms
with a large number of sides.

6 Conclusions and further research

Most known interference detection algorithms [1,8,
9], which have been mentioned in the introduction,
take advantage of the convexity of the polyhedra to
attain efficiency. Here, a general algorithm has been
described, which can be applied to convex as well as to
non-convex polyhedra, without the need of a previous
decomposition step.

The edge - face intersection test for interference
detection between polyhedra is simple and easy to
implement, and does not need sophisticated data

Edge-face tests to perform after pruning
T T T v T

800
«
700
~

éeou
2
2 500
3
2
§ 400 *
3
2 »
300, x
‘E %X
3 200 > x
z ¥ ¥ x

100 * .

o , . L " . . .
0 50 100 150 200 250 300 350 400

Total number of edges

Figure 6: Fzperimental resulls show a linear
relationship between the number of elementary edge-
face tests that have to be performed and the total
number of edges. Furthermore, the constant of
linearity is close to 1.

structures. Algorithms based on this paradigm have
a quadratic worst-case complexity. Nevertheless,
it has been shown that, using geometric pruning
techniques based on the applicability constraints,
an expected computation time that grows linearly
with the complexity of the polyhedra can be
attained, if they are convex. Note that this is the
same expected running time provided by algorithms
designed specifically for the convex case [8,9]. In
the non-convex case the expected complexity is also
subquadratic. The number of false candidates that
will be tested for interference depends not only on the
degree of non-convexity but also on the relative sizes
of the polyhedra.

A representation that captures the applicability
relations between the features of two polyhedra, which
we call SFOG, has been presented. It is particularly
well suited for the convex case, where an algorithm
based on this representation has been implemented
and results have been obtained that show its good
performance in the average.

Further work includes three main directions. First,
the general algorithm described in Section 5.1 has to be
implemented, in order to obtain experimental results
for the non-convex case. Second, rotation may be
considered, where the same representation can be used
to divide the rotational motion into intervals where
applicability constraints remain constant. Finally, the
obtained algorithms have to be integrated in a collision
detection scheme.

7 References

[1] D. Dobkin and D. Kirkpatrick, “Determining the
separation of preprocessed polyhedra -a unified
approach,” ICALP-90, 443, pp. 400-413, 1990.

[2] K. Mehlhorn and K. Simon, “Intersecting two
polyhedra one of which is convex,” Fundamentals
of Computation Theory 85, Lecture Notes in
Computer Science, 199, pp. 534-542, 1985.

[3] C. Bajaj and T. Dey, “Convex decomposition of
polyhedra and robustness,” SIAM J. Comput., 21,
no. 2, pp. 339-364, Apr., 1992.

[4] F. Thomas and C. Torras, “Interference detection
between non-convex polyhedra revisited with a
practical aim,” IEEE Proc. Int. Conf. Robotics
Automat., 1, pp. 587-594, May, 1994.

(6] J. W. Boyse, “Interference detection among solids
and surfaces,” Comm. ACM, 22, no. 1, pp. 3-9,
Jan., 1979.

[6] T. Lozano-Pérez, “Spatial planning: a configuration

space approach,” IEEE Trans. Comput., 32, no. 2,
pp. 108-120, Feb., 1983.

[7] J. F. Canny, “The complexity of robot motion
planning,” The MIT Press, Cambridge (MA), PhD
Thesis, 1988.

[8] E. G. Gilbert, D. W. Johnson and S. Keerthi, “A
fast procedure for computing the distance between
complex objects in three dimensional space,” IEEE
J. Robotics Automat., 4, no. 2, pp. 193-203, Apr.,
1988.

[91 M. C. Lin and J. F. Canny, “A fast algorithm for
incremental distance calculation,” IEEE Proc. Int.
Conf. Robotics Automat., 2, pp. 1008-1014, Apr.,
1991.

{10] B. R. Donald, “Local and global techniques

for motion planning,” Massachusetts Institute of
Technology, Masters Thesis, 1984.

[11] B. K. P. Horn, “Extended Gaussian Images,” Proc.

of the IEEE, 72, no. 12, pp. 1671-1686, Dec., 1984.

[12] J. L. Bentley and T. A. Ottmann, “Algorithms

for reporting and counting geometric intersections,”
IEEE Trans. Comput., 28, no. 9, pp. 643—647, Sept.,
1979.

(13] B. Chazelle and H. Edelsbrunner, “An optimal

algorithm for intersecting line segments in the
plane,” Journal of the ACM, 39, no. 1, pp. 1-54,
Jan., 1992.

(14] J. Pearl, Heuristics: Intelligent Search Strategies

for Computer Problem Solving. Addison-Wesley,
1984.

1492

