Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems

Learning to Avoid Obstacles through Reinforcement:
Noise-tolerance, Generalization and Dynamic Capabilities

José del R. MILLAN
Institute for System Engineering and Informatics
Commission of the European Communities. Joint Research Centre
TP 361. 21020 ISPRA (VA). ITALY
e-mail: j_millan@jre.it

Carme TORRAS
Institut de Cibernética (CSIC—UPC)
Diagonal, 647. 08028 BARCELONA. SPAIN

e-mail: torras@ic.upc.es

Abstract—We have argued elsewhere that the robot
path finding problem should be solved in two
stages, the former involving symbolic planning and
the latter relying on subsymbolic obstacle-avoidance
capabilities. This paper focusses on the second
stage which is characterized by (¢) a continuous set
of robot configurations and of robot actions, (i)
a partially unknown and dynamic environment,
and (#1) a need of coping with unexpected events
and of making real-time decisions. We present
a reinforcement connectionist system able to find
and learn the suitable situation-action rules so as
to generate feasible paths characterized by strong
performance demands for a mobile robot in a
2D environment, while appropriately dealing with
the three problem characteristics above. The
codification scheme adopted and the algorithm
used to discover stable solution paths not only lead
to very quick learning, but are also responsible
for three additional positive features of the path-
finder reported in this paper, namely its noise
tolerance, its generalization capabilities and its
ability to cope with dynamic environments.

0-7803-0737-2/92$03.00 1992@IEEE

I. INTRODUCTION

We have argued in [1, 2] that the robot path finding
problem should be solved in two different stages. Firstly,
a coarse-level path is computed in physical space —
i.e. disregarding both the shape and the kinematics of
the robot. Secondly, this path is refined to obtain a
continuous, obstacle-avoiding trajectory in configuration
space —which, roughly speaking, is the space of degrees
of freedom of motion.

Having decomposed the robot path finding problem into
a two-stage process, it comes out that planning methods
are appropriate for handling the first stage but are not
suitable for dealing with the second stage. The part of
the problem tackled at this second stage is characterized
by (i) a continuous set of robot configurations and of
robot actions, (i7) a partially unknown and dynamic
environment, and (#4) a need of coping with unexpected
events and of making real-time decisions. In [1, 2] we have
explained why subsymbolic techniques are appropriate for
handling this second stage of processing, and in [3] we
have reviewed previous subsymbolic attempts to tackling
the problem. Furthermore, some directions on how to
interface a symbolic path-planner with a subsymbolic
system of the kind described in this paper were provided
also in [2, 3].

The work reported here represents a progress in build-
ing a subsymbolic system which deals adequately with all
the above-mentioned charateristics of the problem. We
present a reinforcement connectionist system able to find
and learn the suitable situation-action rules so as to gener-
ate feasible paths for a mobile robot in a 2D environment.
The criterion used for evaluating the quality of a path is
a compromise between minimizing path length and max-
imizing the distance to the obstacles.

Discovering suitable situation-action rules by using only
a reinforcement signal is a very general approach whose

1801

Raleigh, NC July 7-10, 1992

simplest formulation could be characterized as a weak
search method. This means that reinforcement methods
have theoretically limited learning abilities; i.e. they
might require heavy learning phases and they might be
unable to capture complex features of the problem. These
theoretical limitations can be overcome if domain-specific
heuristics are incorporated into the basic reinforcement-
based search method [4]. The codification scheme adopted
in the present work and the algorithm used to discover
stable solution paths ate instances of such heuristics for
the path finding domain. The latter allows to learn
the necessary situation-action rules in a wvery reduced
time and to deal with continuous-valued actions. The
former, besides contributing to solving the problem in
a short time, is responsible for the generalization skills,
for satisfying the strong performance demands concerning
path length and clearance and, partially, for the ability
to cope with dynamic environments ezhibited by the path-
finder. One additional feature of the path-finder reported
in this paper is its noise tolerance.

II. REINFORCEMENT LEARNING

It is our believe that the most suitable connectionist ap-
proach to learning situation-action rules is reinforcement
learning. Our statement is mainly supported by the fol-
lowing fact. Unlike agents built through supervised learn-
ing, reinforcement-based agents can adapt autonomously
to new environments since they do not require a teacher.

Simply stated, a reinforcement task is that of learning
to associate with each stimulus X the action Y that
maximizes reinforcement z —either present, future or
cumulative. The reinforcement is a performance feedback
signal, that in our case is calculated by the system itself.

The path-finder is made of two elements, namely the
step generator and the critic, and interacts with its
environment as depicted in Fig. 1. At each time ¢, the
path-finder perceives the stimulus X(t), which is fed to
both the step generator and the critic. The step generator
produces instantaneously an action Y (t). At time ¢ + 1,
the path-finder perceives a new stimulus X(¢ -+ 1) and
computes the environmental reinforcement signal z(t+ 1),
ie. the appropriateness of the action Y(t) for the
stimulus X(#). Nevertheless, the step gencrator does
not use directly the environmental reinforcement signal
for learning. Instead, it uses the heuristic reinforcement
signal h(t + 1) elaborated by the critic.

The reason why the critic is needed is that the value
of z(t) is only meaningful when compared to past values
of z associated to actions taken in response to same —or
similar— situation X(¢).

Py
N * d N
! Path-Finder i
\ \
N 5 z
\ e
VP cnie [Y o
§ { environmental
“ N
N ¢ reinforcement
N \
N . N
3 heuristic }
: reinforce- }
E ment 5
: 'Y
y > Step : Environ-
Y
E N i ment
: Generator| }action
\

N M
} :
A e <

stimulus

Fig. 1. A connectionist reinforcement path-finder.

III. CODIFICATION SCHEME

The input to the path-finder consists of an attraction
force and several repulsion forces exerted simultaneously
by the goal configuration and the obstacles, respectively,
on the current configuration. The robot does not perceive
all the obstacles at the same level, but devotes much more
attention to its immediate surroundings.

Let the shortest path line (SPL) and the shortest path
vector (SPV) be, respectively, the line and the vector that
connect the current and the goal robot configurations.
The direction of the attraction force is that of the SPV,
its Intensity being an inverse exponential function of the
distance between the current and goal configurations.

Each repulsion force represents the resistance of an
obstacle to the fact that the robot follow the SPV. Each
such force has the direction of a bisector of the SPL and its
perpendicular, starting at the current configuration and
heading the opposite quadrant to that where the obstacle
lies. Because the directions of the repulsion forces are
specified with respect to the direction of the attraction
force, they are implicit in the codification and therefore
are not included in the input to the system. The intensity
of each repulsion force depends on three factors. The first
factor is aimed at avoiding obstacles in the proximity of
the SPV. The second allows to avoid obstacles near to
the robot current configuration. The third ensures that,
in the case that the SPV intersects an obstacle, the next

1802

robot movement is the more distant from the SPV, the
deeper is the penetration into the obstacle.

The SPL and its perpendicular divide the workspace
into four quadrants. Repulsion forces in a quadrant
try to deflect the robot move toward the center of the
opposite quadrant. Thus all the information related to the
repulsion forces can be reduced to four signals: intensity
of the environmental repulsion from each quadrant.

In short, the number of input signals to the path-finder
15 independent of the environment, and these signals are
five: the intensity of the attraction force and the four
environmental repulsion intensities. Since the output of
the path-finder is computed with respect to the direction
of the attraction force (see below), this direction needs
not be included in the input to the system. Each input
signal is codified as a real number in [0, 1].

The output of the path-finder represents the step taken
by the robot and it is codified as a move in relative
cartesian coordinates with regard to the SPV. That is,
the axis X is the SPL. Both coordinates take real values
n {1, 1]. The maximum distance the robot can coverin a
single step is limited by the perception range. Otherwise,
the robot could collide with obstacles “not completely”
perceived since the robot concentrates on its immediate
neighbourhood.

Two important consequences of the manner in which
the output signals are codified and postprocessed are
that the space of aitainable configurations is coniinuous
and that the system itself decides aboui the direction and
length of each step, with the only constraint imposed by
the perception range.

The reinforcement signal is a measure of how good is
the answer of the system to a particular stimulus. It is
calculated on the basis of the quality of the configuration
reached by the robot —a combination of the attraction
and repulsion factors— and the way in which this config-
uration has been reached. It is a real value in [—1, 1].

The determination of both the input and goodness
degree is reminiscent of the potential field approach to
path planning [5].

Three are the benefits of this codification scheme. First,
since the goal is codified in the input information and
the input is independent of the environment used during
the learning phase, it allows to transfer the knowledge
acquired for a situation to a different one.

Second, the output postprocessing offers the robot the
possibility of coping with dynamic environments. Because
the robot does not move beyond its perception range, the
step it takes is aimed at avoiding neighbouring obstacles.
So, the probability of colliding with a mobile obstacle is
low.

Finally, it allows to reduce the complexity of the task
to be solved. In the tobot path finding problem, the
consequences of an action can emerge later in time.

Thus, actions must be selected based on both their short-
and long-term consequences. Since the environmental
reinforcement signal is computed using global information
—i.e. it is based not on the current robot configuration
but on the SPV—, the path-finder gets a measure of the
short- and long-term consequences of an action only one
time-step after it has been executed. Thus the task is
reduced to learn, for each stimulus, to perform the action

which maximizes the environmental reinforcement signal.
IV. LEARNING ALGORITHM

Of the two kinds of reinforcement learning algorithms
proposed in the literature, namely associative reward-
penally, Ar_p, [6] and associative search, AS, [T, 8, 9], we
adopt the second one because it fits best the specifications
of the input, output and reinforcement signals we have.

A central issue for any reinforcement system is to ex-
plore alternative actions for the same stimulus. Stochastic
units provide this source of variation. But the stochastic
behavior of the path-finder should tend to be deiermin-
tstic with learning. Otherwise, the path-finder could not
generate stable solution poths after it eventually discov-
ers them. By using a suitable algorithm for transforming
the stochastic units into deterministic ones [10] the path-
finder not only can discover the suitable situation-action
rules, but also does this in a very short time.

A. The Basic AS Algorithm

Continuous stochastic units compute their output in
three steps [11], as expressed in Equations (1) through
(5). The only difference with respect to Gullapalli’s
formulation is the way in which the variance is computed.

Since the signals we are interested in are continuous, a
separate control of the location being sought (mean) and
the breadth of the search around that location (variance)
is needed. The first step is to determine the value of
these parameters. The mean g should be an estimation
of the optimal output. A simple way is to let g(¢) equal
a weighted sum of the inputs s;(t) to the unit 4 plus a
threshold 6;(t):

n

wi(t) = Y (wij (8)s; () + 6:(2)- (1)

i=1

The standard deviation o should be small if the expected
output of the step generator is close to the optimal, and
it should be high in the opposite case. Since the heuristic
reinforcement signal provides this comparative measure of
the output goodness, o(t) should depend on the ezpected

heuristic reinforcement, ﬁ(t):

o(t) = ko * R(1), (2)

1803

where k, is a constant and /};(t) is a trace of the absolute
value of past heuristic reinforcement received:

B(t) = € xabs(h(t)) + [1 — €]h(t — 1), (3)

with ¢ being a constant in [0, 1].
As a second step, the unit calculates its activation level
a;(t) which is a normally distributed random variable:

ai(t) = N (ui(t), o(t)). (4)
Finally, the unit computes its output s;(¢):

2

= TFepam !

si(t) = f(ai(t))) (5)
where 3 is a constant in [0, 1].
A deterministic unit computes its output as a weighted

sum of its input:

k13

si(t) = £ | D (wis(0)s; (1) +6:i(1) | (6)

7=1

where f(-) is the same function as in Equation (5).
In the AS family of algorithms, the weights are modified
according to the following general expression:

Aw;i(t) = ah(t)eij(t - 1), (M)

where « is the learning rete and e;; is the eligibility factor
of w;;. The eligibility factor of a given weight is a measure
of how influential that weight was in choosing the action.
Each particular version of this general algorithm differs
from the others in the way h and e;; are calculated:

In the experiments reported here, we use the version
of the AS algorithm that best suits the robot path
finding problem. This version has been identified after
a comparative study on twenty five versions of the basic
AS algorithm [12]:

h(t) = =(1) - 2(t - 1), (8)

Bwij
eij(t) = si(t) = s;(t),

where 2 is the ezpecied primary reinforcement calculated
by the critic. In order to undertake this prediction task,
the critic is built as a second network out of deterministic
units, and since it is provided with input/output pairs,
a supervised algorithm is used. e;j is calculated in two
different manners according to the kind of units of the
step generator. If the units are stochastic, it is computed
in such a manner that the learning rule corresponds to a

gradient ascent mechanism on the expected environmental
reinforcement [9]. If the units are deterministic, it is the
Hebbian rule.

B. Discovering Stable Solutions

It has been stated above that in order to obtain
stable solution paths, stochastic units should become
deterministic as learning proceeds. The way in which &
is computed guarantees that the breadth of search will
diminish asymptotically to zero as the path-finder learns.
But this is not acceptable to solve the problem efficiently.

A mechanism for accelerating the generation of stable
solution paths is the following. When the path-finder
discovers, after a certain experience with the environment,
acceptable paths, it might be more suitable to search
the solution paths in a more “controlled” manner by
transforming the stochastic units of the step generator into
deterministic units. Nevertheless, as explained in [12], the
process for discovering a stable solutions requires further
refinements.

V. SYSTEM PERFORMANCE

As it is usual in the reinforcement-learning paradigm,
the path-finder consists of a step-generator and a critic. It
has been implemented in Common Lisp on a VAX station
2000. The step-generator we have used to carry out the
simulations has three layers of units, all the units in a
layer being connected to all the units in all the layers
above. The hidden layer is made of four units. As
usual, the functionality of an input layer consists simply
in forwarding the signal it receives. The hidden and
output units of the step-generator are stochastic units
that become deterministic as learning proceeds. The step-
generator is built in two phases [12]. The critic has a
hidden layer of four deterministic units and, obviously,
one output deterministic unit.

2 and 3 show the behavior of the path-finder
once the learning phase is finished. Fig. 2 depicts the
paths generated by the path-finder from every starting
configuration in the training set. Obstacles are shown
as circles and every initial configuration and the goal are
represented by a triangle and a square, respectively. In
Fig. 3, instances of the situation-action rules discovered
by the path-finder are illustrated; for every starting
configuration considered —little circles— the move to be
taken by the robot is shown. The path-finder is able
to produce stable collision-free paths from almost all the
initial configurations in the training set. The number of
steps required to reach this state of the path-finder has
been 77315. The only situations not properly handled by
the path-finder are a subset of the most difficult ones,
that is those in which an obstacle lies in between the

Figs.

1804

goal and the current robot configuration and is very close
to this configuration. These situations may be handled
by getting appropriate guidance from a symbolic path-
planner [2].

Until now, we have assumed that the robot can perceive
the workspace perfectly. Nevertheless, a robot navigating
in a real environment is subject to noisy and inaccurate
measurements. To test the ability of our path-finder
to work under real conditions, a 20% of white noise is
added to the sensory input. Fig. 4 depicts the resulting
behavior. Comparing this figure with Fig. 3 it is evident
that the path-finder exhibits a large noise tolerance, since
both “maps” are very similar.

Fig. 3 illustrates some of the generalization abilities
of the path-finder. It tackles many more situations than
those perceived during the learning phase. In addition,
the path-finder is also able to navigate in workspaces
different from that used during learning. Figs. 5
through 7 show the behavior of the path-finder when
only the goal is changed, more obstacles are added to the
original workspace, and both the goal and the number
and location of obstacles have changed. The results of
these three experiments show that the situation-action
rules learned are workspace-independent.

Finally, Figs. 8 and 9 show how the path-finder copes
with dynamic environments. If the robot has taken one or
more steps toward the goal and either the goal (Fig. 8) or
the obstacles (Fig. 9) move, the path-finder is still able
to generate feasible paths. In the first case, the goal is
moving toward the northeast and the path-finder tracks
it. In the second case, the obstacles are moving toward
the northwest, therefore approaching the goal, and the
path-finder avoids them. This ability could be enhanced
if a more powerful perception module were incorporated
into the system. This module should predict where the
goal and the obstacles would be placed at each time step.

ACKNOWLEDGMENT

Carme Torras acknowledges partial support from the
ESPRIT Basic Research Action number 3234.

REFERENCES

[1] C. Torras, “Motion planning and control: Symbolc
and neural levels of computation,” Proc. 3rd COG-
NITIVA Conference, pp. 207-218, 1990.

J. del R. Milldin and C. Torras, “Learning to avoid
obstacles through reinforcement,” in Machine Learn-
tng: Proceedings of the Eighth International Work-
shop, L. Birnbaum and G. Collins, Eds. San Mateo,
CA: Morgan Kaufmann, 1991, pp. 298-302.

J. del R. Millan and C. Torras, “Connectionist
approaches to robot path finding,” in Progress in

[4]

1805

Neural Networks Series, vol. 3. O.M. Omidvar, Ed.
Norwood, NI: Ablex, in press.

P. Langley, “Learning to search: From weak methods
to domain-specific heuristics,” Cognitive Science, vol.
9, pp. 217-260, 1985.

O. Khatib, “Real time obstacle avoidance for manip-
ulators and mobile robots,” The International Jour-
nal of Robolics Research, vol. 5, pp. 90-98, 1986,

A. G. Barto and P. Anandan, “Pattern-recognizing
stochastic learning automata,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 15, pp. 360-
374, 1985.

A. G. Barto, R. S. Sutton, R.S., and P. S. Brouwer,
“Associative search network: A reinforcement learn-
ing associative memory,” Biological Cybernetics, vol.
40, pp. 201-211, 1981.

R. S. Sutton, “Temporal credit assignment in rein-
forcement learning,” Ph.D. Thesis, Dept. of Com-
puter and Information Science, University of Mas-
sachusetts, Amherst, 1984.

R. J. Williams, “Reinforcement-learning connection-
ist systems,” Technical Report NU-CCS-87-3, Col-
lege of Computer Science, Northeastern University,
Boston, 1987.

J. del R. Millan and C. Torras, “Reinforcement learn-
ing: Discovering stable solutions in the robot path
finding domain,” Proc. 9th European Conference on
Artificial Intelligence, pp. 219-221, 1990.

V. Gullapalli, “A stochastic algorithm for learning
real-valued functions via reinforcement feedback,”
Technical Report COINS-88-91, Dept. of Computer
and Information Science, University of Massachu-
setts, Amherst, 1988.

J. del R. Millan and C. Torras, “A reinforcement
connectionist approach to robot path finding in non-
maze-like environments,” Machine Learning, in press.

Q)

RN

