Publication

Numerical model for polymer electrolyte membrane fuel cells with experimental application and validation

Journal Article (2009)

Journal

Asia-Pacific Journal of Chemical Engineering

Pages

55-67

Volume

4

Number

1

Doc link

http://dx.doi.org/10.1002/apj.195

File

Download the digital copy of the doc pdf document

Abstract

Abstract:





The aim of this paper is to present a simple 3D computational model of a polymer electrolyte membrane fuel cell (PEMFC) that simulates over time the heat distribution, energy, and mass balance of the reactant gas flows in the fuel cell including pressure drop, humidity, and liquid water. Although this theoretical model can be adapted to any type of PEMFC, for verification of the model and to present different analysis it has been adapted to a single cell test fixture. The model parameters were adjusted through a series of experimental tests and the model was experimentally validated for a well-defined range of operating conditions: H2/air O2 as reactants, flow rates of 0.5-1.5 SLPM, dew points and cell temperatures of 30-80 °C, currents 0-5 A and with/without water condensation. The model is especially suited for the analysis of liquid water condensation in the reactant channels. A key finding is that the critical current at which liquid water is formed is determined at different flows, temperatures, and humidity.

Categories

control theory, power system control.

Author keywords

numerical modeling, PEM fuel cell, temperature distribution, pressure drop, parameter identification, experimental validation

Scientific reference

J. Alonso, A.P. Husar, M. Serra and J. Riera. Numerical model for polymer electrolyte membrane fuel cells with experimental application and validation. Asia-Pacific Journal of Chemical Engineering, 4(1): 55-67, 2009.