PhD Thesis

Understanding Human-Centric Images: From Geometry to Fashion

Work default illustration

Information

  • Started: 01/09/2011
  • Finished: 06/07/2015

Description

Understanding humans from photographs has always been a fundamental goal of computer vision. Early works focused on simple tasks such as detecting the location of individuals by means of bounding boxes. As the field progressed, harder and more higher level tasks have been undertaken. For example, from human detection came the 2D and 3D human pose estimation in which the task consisted of identifying the location in the image or space of all different body parts, e.g., head, torso, knees, arms, etc. Human attributes also became a great source of interest as they allow recognizing individuals and other properties such as gender or age. Later, the attention turned to the recognition of the action being performed. This, in general, relies on the previous works on pose estimation and attribute classification. Currently, even higher level tasks are being conducted such as predicting the motivations of human behaviour or identifying the fashionability of an individual from a photograph.

In this thesis we have developed a hierarchy of tools that cover all these range of problems, from low level feature point descriptors to high level fashion-aware conditional random fields models, all with the objective of understanding humans from monocular RGB images. In order to build these high level models it is paramount to have a battery of robust and reliable low and mid level cues. Along these lines, we have proposed two low-level keypoint descriptors: one based on the theory of the heat diffusion on images, and the other that uses a convolutional neural network to learn discriminative image patch representations. We also introduce distinct low-level generative models for representing human pose: in particular we present a discrete model based on a directed acyclic graph and a continuous model that consists of poses clustered on a Riemannian manifold. As mid level cues we propose two 3D human pose estimation algorithms: one that estimates the 3D pose given a noisy 2D estimation, and an approach that simultaneously estimates both the 2D and 3D pose. Finally, we formulate higher level models built upon low and mid level cues for understanding humans from single images. Concretely, we focus on two different tasks in the context of fashion: semantic segmentation of clothing, and predicting the fashionability from images with METAData to ultimately provide fashion advice to the user.

In summary, to robustly extract knowledge from images with the presence of humans it is necessary to build high level models that integrate low and mid level cues. In general, using and understanding strong features is critical for obtaining reliable performance. The main contribution of this thesis is in proposing a variety of low, mid and high level algorithms for human-centric images that can be integrated into higher level models for comprehending humans from photographs, as well as tackling novel fashion-oriented problems.

The work is under the scope of the following projects:

  • PAU+: Perception and Action in Robotics Problems with Large State Spaces (web)
  • ViSen: Visual Sense, Tagging visual data with semantic descriptions (web)