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Abstract The direct geometrico-static problem of cable-driven parallel robots with
5 cables is presented. The study provides procedures for the identification of all
equilibrium poses of the end-effector when cable lengths are assigned. A least-
degree univariate polynomial in the ideal governing the problem is obtained, thus
showing that the latter has 140 solutions in the complex field. By a continuation
technique, an upper bound on the number of real solutions is estimated. An algo-
rithm based on parameter homotopy continuation is developed for the efficient com-
putation of the whole solution set, including equilibrium poses with slack cables.
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1 Introduction

Cable-driven parallel robots (CDPRs) use cables instead of rigid-body legs to con-
trol the end-effector (EE) pose. CDPRs are underconstrained when the number of
cables in tension (namely, active) is smaller than the number of degrees of freedom
that the EE possesses with respect to the base. In this case, only some freedoms
may be controlled, and the EE configuration depends on the applied forces, e.g.
gravity [13]. The displacement analysis of these robots requires the simultaneous
solution of both loop-closure and equilibrium equations. As a consequence, the di-
rect geometrico-static problem (DGP), which aims at finding all equilibrium poses
of the EE when cable lengths are assigned, is especially challenging [10, 12].

When the cable lengths of a CDPR with n cables, n ≤ 6, are assigned as inputs,
the number of active cables at the equilibrium is, a priori, unknown. Indeed, the EE
may reach an equilibrium pose with one or more cables being slack. Since multiple
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Fig. 1 A CDPR with 4 cables: geometric model (a) and static model (b).

stable configurations may exist, possibly characterized by different numbers of taut
cables, the robot may switch between them because of inertia forces or external
disturbances. Accordingly, the computation of the whole solution set for a given
DGP is essential for robust trajectory planning.

The authors have solved so far the DGP of robots with 2, 3 and 4 active ca-
bles [5, 3, 4]. These problems were proven to admit 24, 156 and 216 solutions in
the complex field, respectively. The DGP of a CDPR suspended by 6 cables ad-
mits 40 solutions, since it is equivalent to the forward displacement analysis of the
Gough platform [11]. The present contribution shows that the DGP of a CDPR with
5 active cables admits 140 solutions in the complex field, and it also estimates an
upper bound on the number of real configurations. Parameter homotopy continua-
tion is used to develop an efficient algorithm to determine the whole solution set.
The results reported in the paper complete the authors’ study concerning the DGP
of underconstrained CDPRs with generic geometry.

2 Geometrico-static model

The EE is connected to a fixed base by 5 cables, which are modeled as inextensible
and massless (Fig. 1). The ith cable, i = 1 . . .5, is assigned length ρi, it exits from
the base at point Ai, and it is connected to the EE at point Bi. A is a fixed Cartesian
coordinate frame with origin at A1, and B is a Cartesian frame attached to the EE
at point G. The EE pose is described by XT = [gT ;Φ

T ], where gT = [x, y, z]T is
the position of G in A, and Φ

T = [e1, e2, e3]
T is the array grouping the Rodrigues

parameters parameterizing the EE orientation with respect to A. The EE is acted
upon by force QLe, where Q is a constant magnitude and Le is the normalized
Plücker vector of the force line of action, passing through G and parallel to direction
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k, without loss of generality. The normalized Plücker vector of line AiBi is Li/ρi,
where LT

i =
[
(Ai−Bi)

T ;{(Ai−A1)× (Ai−Bi)}T
]
. If τi is the intensity of the cable

tensile force, the wrench exerted by the ith cable on the EE is (τi/ρi)Li, and static
equilibrium may be expressed as

5

∑
i=1

τi

ρi
Li +QLe =

[
L1 L2 L3 L4 L5 Le

]︸ ︷︷ ︸
M


(τ1/ρ1)
(τ2/ρ2)
(τ3/ρ3)
(τ4/ρ4)
(τ5/ρ5)

Q

= 0. (1)

If all cables are active, the following 5 geometrical constraints must be satisfied:

qi := ||Ai−Bi||2−ρ
2
i = 0, i = 1 . . .5, (2)

Equations (1) and (2) amount to 11 scalar relations in 11 variables, namely X and
τi, i = 1 . . .5. Following Refs. [5], cable tensions may be eliminated from the set of
unknowns by observing that Eq. (1) holds only if

p := detM = 0, (3)

which is a purely geometrical condition, since M only depends on X. Equations (2)
and (3) amount to 6 relations in 6 pose coordinates. Polynomials q1, . . . , q5 in Eq. (2)
have degree 4 in X, whereas polynomial p in Eq. (3) has degree 9 in X. The 0-
dimensional variety V of the ideal 〈J〉 generated by the set J = {q1, . . . , q5, p} yields
the solutions of the DGP at hand.

3 Problem-solving algorithm

Like in the studies concerning the DGP of robots suspended by 2, 3 and 4 ca-
bles [5, 3, 4], a formal proof about the number of solutions contained in V is
provided by implementing an elimination procedure based on Groebner bases and
Sylvester dialytic method. Then, a numerical algorithm based on homotopy contin-
uation is presented to compute the solution set in an efficient way.

3.1 The elimination approach

In order to ease numeric computation via a computer algebra system, namely the
GroebnerPackage provided within the software Maple15, all geometric param-
eters of the robot are assigned generic rational values. Accordingly, 〈J〉 ⊂ Q[X],
where Q[X] is the set of all polynomials in X with coefficients in Q. All Groeb-
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ner bases are computed with respect to graded reverse lexicographic monomial or-
ders (grevlex, in brief), which provide the most efficient calculations. In general, a
Groebner basis G[J] of 〈J〉with respect to grevlex(X), with variables ordered so that
z> y> x > e1 > e2 > e3, may be computed in a fairly expedited way. For instance,
for the robot reported in Table 1, Maple computes G[J] in roughly 3.3min, on a PC
with a 2.67GHz Intel Xeon processor and 4GB of RAM.

Once G[J] is known, the normal set N[J] of 〈J〉, i.e. the set of all monomials that
are not multiples of any leading monomial in G[J], may be easily computed. Since
N[J] comprises 140 monomials, this is also the number of complex roots in V and,
thus, the order of the least-degree univariate polynomials of 〈J〉 [14]. Any one of
these polynomials may be computed by the hybrid approach proposed in [3], based
on the cooperative use of the FGLM algorithm [9] and a dialytic procedure similar
to that presented in [7].

If Xl is a list of l variables in X and X\Xl is the relative complement of Xl in
X, a monomial order >l on Q[X] is of l-elimination type provided that any mono-
mial involving a variable in Xl is greater than any monomial in Q[X\Xl ]. If G>l [J]
is a Groebner basis of 〈J〉 with respect to >l , then G[Jl ] := G>l [J]∩Q[X\Xl ] is a
basis of the lth elimination ideal 〈Jl〉 := 〈J〉 ∩Q[X\Xl ] [6]. The FGLM algorithm
may be conveniently used to convert G[J] from grevlex(X) to >l , so that G[Jl ] may
be readily isolated from G>l [J]. In particular, the FGLM algorithm may be used to
compute the Groebner basis G[J3] of 〈J3〉, where the latter is the set of polynomials
of 〈J〉 that contain monomials in e1, e2 and e3 only. Eliminating more unknowns by
the FGLM algorithm is not convenient, since memory usage and computation time
exponentially increase with l. A more efficient alternative emerges by computing
a Sylvester-type eliminant matrix from the polynomials of G[J3]. Since G[J3] com-
prises 31 polynomials and 31 monomials in e1 and e2, if e3 is assigned the role of
‘hidden’ variable, the generators of G[J3] may be set up as

T(e3)E = 0, (4)

where T(e3) is a 31×31 matrix polynomial in e3, and E is a vector grouping the 31
monomials in G[J3] with variables in {e1, e2}. As expected, letting the determinant
of T(e3) vanish yields a spurious-root-free polynomial of degree 140 in e3.

Sylvester dialytic elimination may be applied to the Groebner basis of any elimi-
nation ideal 〈Jl〉 of 〈J〉. However, the smaller l, the higher the order of the eliminant
matrix, and the more onerous the expansion of its determinant. Accordingly, the
fewer variables are eliminated by the FGLM algorithm, the smaller the computation
burden of the FGLM step, but the more demanding the Sylvester elimination. Nu-
merical experimentation seems to indicate that the elimination of x, y and z by the
FGLM algorithm, and successively of e1 and e2 by a dialytic step, provides the best
compromise. The Maple implementation of the above procedure is able to com-
pute the univariate polynomial in e3 for the example reported in Table 1 in roughly
610min, which is a substantial achievement for a polynomial of order 140.
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3.2 Numerical computation of the solution set

The univariate polynomial obtained in Section 3.1 is important under a theoretical
viewpoint, but it has a too high degree for a practical use. For the numerical calcula-
tion of the solution set, homotopy continuation provides a more robust and efficient
alternative. In this perspective, the complexity and degree of polynomial p in Eq. (3)
are a disadvantage, since they slow down computation and cause stability problems
(cf. [4]). For this reason, the formulation of static equilibrium via Eq. (1) and a new
parametrization of the EE pose are preferable.

Without loss of generality, unit vectors u, v and w of the coordinates axes of
B may be chosen so that u is directed from G to B1, v lies in plane GB1B2, and
w = u×v. If [u]A = [u1, u2, u3] and [v]A = [v1, v2, v3] are the projections of u and v
in the fixed frame, the platform pose may be written as a function of the 9 variables
x, y, z, u1, u2, u3, v1, v2, and v3, which must satisfy the conditions

q6 := uT u−1 = 0, q7 := vT v−1 = 0, q8 := uT v = 0. (5)

Equations (1), (2) and (5) form a system I of 14 scalar equations in 14 variables, i.e.

Y = [x, y, z, u1, u2, u3, v1, v2, v3, τ1, τ2, τ3, τ4, τ5]
T . (6)

Though I involves more variables and more equations than J, it comprises sim-
pler lower-order polynomials, which are stabler when homotopy continuation is im-
plemented, thus leading to a faster computation. In particular, polynomials q1 and
q2 in Eq. (2) and q6, q7 and q8 in Eq. (5) have degree 2 in Y; q3, q4 and q5 in
Eq. (2) have degree 4 in Y; and all polynomials in Eq. (1) have degree 3 in Y.
On the basis of these degrees, the problem at hand may be cast into the larger
family of systems made up by 5 quadratic, 6 cubic and 3 quartic equations on
Y ∈ P14. By counting solutions at infinity, a general member of this family has a
number of isolated roots equal to the minimal multi-homogeneous Bezout num-
ber [14]. This is also the number of paths tracked by the homotopy-continuation
software used in this paper, i.e. Bertini [2]. By searching all possible multi-
homogenizations, the minimal Bezout number emerges when Y is partitioned as
[{x, y, z, u1, u2, u3}, {v1, v2, v3}, {τ1, τ2, τ3, τ4, τ5}], and it is equal to 11520.

When the isolated roots of the DGP of a generic robot are known, parameter-
homotopy continuation [14] may be used to find the solutions for any other DGP
of the same kind, in an efficient way. Since the coefficients of the equations in I
are continuous functions of the geometric parameters P of the robot, a continuous
path through parameter space determines a continuous evolution of the coefficients
and, generally, continuous paths for the solutions as well. Accordingly, if the 140
isolated roots of I are known for a generic P = P0, the solutions for any other P may
be found by tracking the homotopy

I (Y, (1− t)P0 + tP) = 0, (7)
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Table 1 Real equilibrium configurations with nonnegative cable tensions of a 5-cable robot with:
a1 = [0, 0, 0], a2 = [1, 2, −0.75], a3 = [3.5, 1, 1], a4 = [3.25, −1, 1], a5 = [1, −2, − .5], b1 = [−1,
0, −1], b2 = [−.5, 1, −1.25], b3 = [0.75, 0.75, −1.25], b4 = [0.5, − .75, −1.25], b5 = [−0.25, −
0.8, −1.5], (ρ1, ρ2, ρ3, ρ4, ρ5) = (4.5, 5, 3, 3.75, 4.75), Q = 10 and k = [0, 0, 1].

No. (x, y, z) (e1, e2, e3) (τ1, τ2, τ3, τ4, τ5) Hr

1 1.4589, −1.2145, 2.4744 30.8167, 76.5978, −18.4146 1.73, 0.66, 0.62, 1.72, 6.44, <
2 1.4441, −1.3000, 2.4723 14.9565, 39.3587, −10.5282 2.85, 0, 0.03, 2.75, 5.75, <
3 1.4227, −1.2821, 2.4725 19.3442, 45.2411, −12.2058 2.87, 0.10, 0, 2.70, 5.72, <
4 1.2273, −0.1010, 1.8629 30.4252, −1.1058, −3.3465 0, 5.27, 0.99, 0, 6.37, <>
5 2.3443, 1.0649, 2.1627 4.5139, 5.2434, 1.4044 0, 6.95, 3.15, 1.97, 0, <>
6 1.4384, −1.2969, 2.4722 15.5535, 39.7125, −10.6817 2.91, 0, 0, 2.78, 5.71, <
7 2.4803, 0.5613, 1.8416 53.8079, −123.9777, −16.1938 5.78, 0, 7.44, 0, 1.20, <>
8 2.1463, 0.2983, 5.3178 −0.1057, 0.0133, −0.0550 3.18, 0, 5.48, 0, 1.65, >
9 2.2516, 0.3107, 4.0816 −0.0967, −0.5150, 15.2829 4.75, 0, 6.96, 0, 3.96, <>
10 2.6647, 1.2853, 2.0725 7.4388, 42.2955, 13.4023 0.61, 5.33, 5.77, 0, 0, <>
11 2.5662, −0.1206, 1.4236 35.9962, −26.9853, 3.5481 0, 0, 7.04, 0, 8.28, <>
12 1.0000, −0.0768, 1.8522 19.0651, 1.5022, −2.5059 0, 6.27, 0, 0, 6.21, <>
13 2.6694, 1.3323, 2.0672 5.7677, 19.8499, 6.4974 0, 5.94, 5.60, 0, 0, <>
14 2.4243, 0.6927, 1.8269 −19.0280, 57.3828, 10.2733 7.05, 0, 7.66, 0, 0, <>

with t varying from 0 to 1 or, more robustly, along the curve t = γt ′/[1+(γ−1)t ′],
with t ′ ∈ [0, 1] and γ ∈ C. In this case, only 140 paths need to be tracked, and paths
corresponding to solutions at infinity are avoided. By this approach, Bertini con-
verges to the solutions of the example reported in Table 1 in roughly 4.28min (with
the default settings). Among these solutions, only 2 are real, and only 1 has positive
tension in all cables. The latter solution is listed in row 1 of Table 1.

3.3 Maximum number of real-valued solutions

The DGP of a CDPR suspended by 5 cables has 140 solutions in the complex field.
However, since some roots may remain complex no matter how robot parameters are
varied, the maximal number of real solutions may be smaller than 140. Determining
a tight bound for this count is a challenging task. By a continuation procedure orig-
inally proposed by Dietmaier [8], and recently adapted by the authors to the DGP
of underconstrained CDPRs [1], several sets of geometric parameters for which the
DGP provides at the most 74 real configurations have been found so far. An ex-
ample is as follows: a2 = [1.44417, 0, 1.20333], a3 = [0.302415, 1.26206, 0.55533],
a4 = [−0.711127, 0.808726, 0.810451], a5 = [0.749568, 0.761578, − 0.469085],
b1 = [2.16169, 0, 0], b2 = [−0.125711, 0, 1.32615], b3 = [−0.412791, 0.0211425,
0.449869], b4 = [−0.16265, − 0.468249, − 0.399945], b5 = [1.59653, 1.31446,
0.96224], (ρ1, ρ2, ρ3, ρ4, ρ5) = (2.46449, 1.99586, 1.20622, 1.42395, 2.4302).

Auth
or'

s v
ers

ion



Direct Geometrico-Static Problem of Under-Constrained CDPRs with 5 Cables 7

4 Equilibrium configurations with unloaded cables

When cable lengths are assigned as inputs, nothing ensures, a priori, that when the
EE reaches its stable equilibrium pose all cables are in tension, since configurations
may exist in which the EE is supported by only m cables, with m ≤ 5 and 5−m
cables being slack. Accordingly, the overall solution set emerges by solving the DGP
for all possible constraint sets {‖ A j−B j ‖= ρ j, j ∈ W}, with W ⊆ {1, 2, 3, 4, 5}
and card(W) ≤ 5. Clearly, when the kth cable is slack, the distance ‖ Ak−Bk ‖
cannot be greater than the assigned ρk. Hence, for any subsetW , only the solutions
for which ‖ Ak−Bk ‖≤ ρk, for all k /∈W , must be retained. In general, for a robot
with 5 cables, 31 DGPs need to be solved, namely 1 DGP with 5 active cables, 5
DGPs with 4 active cables, 10 DGPs with 3 active cables, 10 DGPs with 2 active
cables, and 5 DGPs with 1 active cable.

Table 1 shows the overall results for an exemplifying geometry. Due to space lim-
itations, only the real solutions with nonnegative tension in all cables are reported.
These comprise 1 configuration with 5 cables in tension (row 1), 2 configurations
with 4 cables in tension (rows 2−3), 7 configurations with 3 cables in tension (rows
4− 10), and 4 configurations with 2 cables in tension (rows 11− 14). Stability is
assessed by means of a reduced Hessian matrix Hr, as proposed in [5]. Symbols >,
< and <> denote, respectively, a positive-definite, a negative-definite and an indef-
inite matrix. A solution is stable when Hr is positive-definite. For the case at hand,
the robot has a single stable configuration, with 3 cables in tension.

5 Conclusions

This paper studied the direct geometrico-static problem (DGP) of underconstrained
cable-driven parallel robot with 5 cables. The task consists in finding all equilibrium
configurations that are compatible with the assigned cable lengths. Since the equa-
tions governing the problem comprise both geometrical and static constraints, the
DGP is a challenging task.

A least-degree univariate polynomial was numerically obtained by an elimination
procedure, thus showing that 140 solutions exist in the complex field. A continuation
algorithm was then developed to identify a robot geometry leading to the highest
number of real equilibrium configurations. A bound of 74 real configurations was
estimated. After the solutions with nonnegative tension in all cables are sifted and
stability is considered, the number of feasible configurations decreases remarkably.

For the efficient computation of the whole solution set, including configurations
with slack cables, an algorithm based on parameter homotopy continuation was de-
veloped. The algorithm is the foundation of the software DGP−Solver, which is
currently being developed by the authors to automatize the computation of all equi-
librium configurations of a CDPR with an arbitrary number of cables.
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real postures. In: J. Lenarčič, M.L. Husty (eds.) Advances in Robot Kinemat-
ics: Analysis and Control, pp. 7–16. Kluwer Academic Publishers, Dordrecht
(1998)

[9] Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
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