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Abstract This paper formalises the concept of safe working zone (SWZ) of
a parallel manipulator, which is a subspace of the workspace that is free of
singularities as well as issues of joint limits and link interference. It presents
further a generic scheme to identify such a space, and specialises the same for
the case of a convex SWZ around a chosen point of interest. The theoretical
developments are illustrated via an application on a three-degree-of-freedom
spatial parallel manipulator, namely, MaPaMan-I.
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1 Introduction

Parallel manipulators (PMs) offer better load-carrying capacity and accuracy
than their serial counterparts. Still, they are not as popular as the latter in
the industries. This may be attributed mainly to the complicated kinematics
of PMs, which in turn lead to small workspace volumes, rendered even smaller
by the existence of gain-type singularities inside the workspace. In addition,
joint limits and link interference further reduce the usable workspace.

Researchers have attempted to alleviate these problems in different ways.
Some have attempted to design the robot such that the singularities are ex-
cluded [9, 13]. Others have tried to find regions inside the workspace that are
free of singularities [3, 8]. The latter approach requires algebraic operations
on the analytical description of the singular manifold, which is very difficult
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Fig. 1 Definition and structure of W and Wc

in general, and may not be possible for all manipulators. This has motivated
the development of some numerical schemes to find singularity-free zones in-
side the workspace [6, 2]. In [4, 11, 5], additional kinematic constraints, i.e.,
joint limits and link interference, have been considered.

The ultimate objective of all of these, and similar works, is to identify a
subset of the workspace, in which the manipulator can move freely. This would
render the task of path planning trivial, so long as the manipulator stayed
inside the said space – which is very attractive from the point of view of
applications. In this paper, such a space has been defined as the safe working
zone (SWZ) of a PM. The criteria for the determination of the same, while
considering the singularities, kinematic constraints etc. have been laid down
clearly, which in turn have been used to develop a computational framework
to compute the SWZ. The theoretical development is then illustrated by
means of application to a newly introduced PM, namely, MaPaMan-I [12].
The scheme can be applied to any other PM, or even a serial manipulator.

The rest of the paper is organised in the following manner: in Section 2,
the concept of SWZ is formalised. Various boundary functions specific to
MaPaMan-1 are presented in Section 3, followed by the numerical results in
Section 4. Finally the conclusions are presented in Section 5.

2 Definition and structure of the SWZ

Various terms, such as practical/desired/specific workspace have been used
in literature to designate subsets of the workspace, which are either free of
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singularities, kinematic constraints, or both (see, e.g., [10, 4]). Such confusion
necessitates the formalisation of the definition of the SWZ.

Definition 1. The SWZ of a manipulator (denoted by W) is defined as the
subset of the workspace of the manipulator satisfying the following criteria:

1. W is contained inside the workspace, i.e., it is free of loss-type singularities.
2. W does not contain or touch the singular manifold, i.e., W is free of gain-

type singularities as well.
3. At no point of W there is an interference between the links, even when

the actual physical dimensions of the links are considered.
4. At no point of W does any joint violate a physical limit on its range of

motion. Once again, the actual physical dimensions are to be considered.
5. W is a connected set, containing a given point of interest, ‘o’.

The requirements 1-4 each define a subset of the workspace, which is bounded
by the zero level-set of a corresponding function:

• The workspace (denoted by W1), is bounded by the loss-type singularity
condition, given by S1 = 0.

• The region W2 containing o and free of gain-type singularities, is bounded
by the set of points defining the singular manifold which satisfy S2 = 0.

• The region that includes o and is free of link interference is denoted byW3,
and is bounded by the set satisfying S3 = 0.

• The set of points satisfying S4 = 0 bounds W4, the space containing o
that is free of joint-limit violations.

As seen in Fig. 1(a),W =
⋃4

i=1Wi
1. Note that in Fig. 1(b),Wk could beW3

orW4, or both. Physical considerations impose the following hierarchy:W ⊂
W3

⋃
W4 ⊂ W2 ⊂ W1. Moreover, it is generally preferred to identify a convex

set Wc ⊂ W. These observations motivate a scheme for the computation of
the final result, namely, Wc. The steps are described below.

1. Compute W1. Find its largest convex subset, Wc1 , centred at o. The re-
gion can be in the form of convex polyhedra, super-ellipsoids, ellipsoids,
etc. Without any loss of generality, and for the ease of computation,
in this work circles have been used in the 2-dimensional subsets of the
workspace (see Section 4). As shown in Fig. 1(b), the circle C1 boundsWc1 .

2. In a similar manner, find C2, which bounds Wc2 . Obviously, Wc2 ⊂ Wc1 .
3. Compute the corresponding entities, namely,Wc3 , C3,Wc4 , C4 accordingly.

Finally, find Wc =Wc3

⋃
Wc4 ⊂ Wc2 .

The above steps are obvious, as it is useless to consider points outside Wc1

while computing Wc2 , and so on. However, the implication of the hierar-
chy is very significant in the actual implementation of the scheme. Due to
the lack/complexity of analytical results, most often, the set boundaries

1 Note that not all manipulators have all the four requirements. In all serial manipula-

tors, W1 = W2, and as explained in Section 3, for MaPaMan-I, W3 = W4.
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mentioned above need to be computed through numerical searches (see,
e.g., [7, 10, 4, 2, 11]), and hence the progressively diminishing domain for
the search algorithm helps reducing the computational requirements for a
given desired level of resolution of the results obtained.

3 Formulation of the SWZ of MaPaMan-I
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Fig. 2 Prototype (left) and kinematic details of a leg (right) of MaPaMan-I

The generic theoretical framework described in Section 2 is illustrated
in this section by an application to the newly developed MaPaMan-I. It so
happens that for the physical dimensions of the present prototype described
in [12], the joints have limits on their motions, but there is no other form of
link interference. Thus, the computation of W3 (or, Wc3) is not required.

MaPaMan-I has 3-degrees-of-freedom similar to 3-RPS and its task-space
can be parametrised in terms of of roll (α), pitch (β) and heave (zc) [12]. The
coordinates of the end-effector pi (i = 1, 2, 3) are obtained from the task-space
coordinates x = (α, β, zc)

T . The input joint angles are: θ = (θ1, θ2, θ3)T , and
the passive joint angles are: φ, ψ and γ (see Fig. 2).

3.1 Condition for loss-type singularity (S1)

Following [14], kinematic constraints are first framed to relate the task-space
coordinates to the input coordinates. The length of the strut, ls, is fixed, hence

the loop-closure constraints can be cast as: fi(θi, ψi,x)
4
= ‖bi − pi‖ = ls,

i = 1, 2, 3. Likewise, the loop-closure equations for the four-bars (see Fig. 2),
upon elimination of the passive variable φi, become [12]: gi(θi, ψi) = l20 + l2cr
+ l2cp− l2r +2l0lcr cos θi+2l0lcp cosψi+2lcrlcp cos θi cosψi+2lcrlcp sin θi sinψi.
From each pair of fi and gi, the passive variable ψi is eliminated to ob-

Auth
or'

s v
ers

ion



Determination of the safe working zone of a parallel manipulator 5

tain hi(θi,x) = 0, i = 1, 2, 3. The condition for loss type singularity is given
by S1 = 0, where S1 = det

(
∂h
∂θ

)
, and h = (h1(θ1,x), h2(θ2,x), h3(θ3,x))T .

3.2 Condition for gain-type singularity (S2)

Following [12], the loop-closure constraints are cast in the form η(θ,ψ,γ) = 0,
which upon time-differentiation yield η̇(q) = Jηθθ̇ + Jηψψ̇ + Jηγ γ̇, where

Jηθ =∂η
∂θ , Jηψ = ∂η

∂ψ , and Jηγ = ∂η
∂γ . Considering the four-bar alone,

ψ̇ = Jψθθ̇, where Jψθ is always well-defined, since by design, the said four-

bars satisfy Grashoff’s condition. Therefore, (Jηθ +JηψJψθ)θ̇+Jηγ γ̇ = 0.
The gain-type singularity occurs when the passive velocity, γ̇, cannot be found
uniquely for a given θ̇ [1]. This leads S2 = 0, where S2 = det(Jηγ).

3.3 Condition for the violation of joint limits (S4)

The issue of the joints reaching their limits in the range of motion is observed
at the cranks, the strut-coupler rotary joints, and the spherical joints attached
to the end-effector. The following are various limiting conditions for the same:

• The crank is designed such that it is always above the base of the ma-
nipulator. From practical considerations, a restriction is imposed upon
the maximum and the minimum angle of rotation of the crank denoted
by θmin, and θmax, respectively (see Fig. 3(a)). Thus, 0 < θi < θmax,
i = 1, 2, 3. Hence the conditions defining the boundary of unacceptable
points are s1i = 0 and s2i = 0, where s1i = θi − θmin, s2i = θmax − θi.

• The angle made by the strut relative to the coupler is limited by the
physical joint limits as shown in Fig. 3(b), denoted by γmin and γmax,
where γmin < (π + γi − ψi) < γmax, i = 1, 2, 3. Thus the conditions
defining the boundary of the unacceptable sets are: s3i = 0, and s4i = 0;
where s3i = (π + γi − ψi)− γmin, s4i = γmax − (π + γi − ψi).

• The spherical joints have restricted motions due to the physical dimensions
of their constituent mechanical components. This can be modelled as a
limit imposed on the angle δi, such as 0 < δi < δmax (see Fig. 3(c)).
The angle δi is computed by first finding a vector along the direction of
strut (v1) and then measuring the angle between it and the normal (n)

to the end-effector: v1 = (b1 − p1)/ls, n = (p1 − p2) × (p3 − p1)/
√
3d2

t

2
and δ1 = arccos (n · v1). Similarly, δ2 and δ3 are computed. Therefore the
functions defining the boundary of the desirable set are given by s5i = 0,
where s5i = δmax − δi. The function S4 is obtained from the product of
individual functions: S4 =

∏
sij , where i = 1, . . . , 5, and j = 1, 2, 3.
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Fig. 3 Joint limits imposed by the physical dimensions of MaPaMan-I

Fig. 4 Zero level-sets of Si, and Ci in the α-β slice of the workspace at zc = 135mm

4 Numerical results

This section describes the results of the application of the above formula-
tion to the MaPaMan-I prototype, whose dimensions are given in Table 1
of [12]. The joint limits used are: θmin = 25◦, θmax = 90◦, γmin = 0◦, γmax =
120◦, δmax = 60◦. The task-space of MaPaMan-I is parametrised by (α, β, zc).
The functions Si are not available solely in terms of these variables. Therefore
instead of direct computation of the zero level-sets, these are found by using
a numerical scheme similar to those used in [4, 2]. Since it is computation-
ally demanding to search for solutions of Si = 0 in a 3-dimensional space,
2-dimensional slices in roll and pitch are considered instead, and the solutions
are evaluated in these slices for a sequence of heave values2. Fig. 4 shows the
zero level-sets of S1, S2 in the α-β plane obtained by slicing the workspace
at zc = 135mm. Note that the points satisfying S2 = 0 fall outside Wc1 ,
and therefore in this particular case, C2 = C1. The zero level-set of S4 = 0
is shown in the entire scan range in Fig. 4. However, only the parts of it

2 Zero level-sets of S1, S2, S4 have been computed using ContourPlot in Mathematica.
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Fig. 5 Left: Stack of C1, C2, C4 in MaPaMan-I, Middle: Wc as a cylinder for zc ∈
(98.4, 166.5)mm, Right: Wc as a cylinder for zc ∈ (111.3, 145.2)mm

appearing inside Wc2 (marked by thicker lines in Fig. 4) are considered for
the computation of Wc4 . As noted earlier, in this case, Wc =Wc4 . Naturally,
the stack of C4 obtained for all the slices when put together yields a subset
of W, that is convex in each slice. This does not necessarily imply that the
stack delimits a convex region as a whole. However, one can easily fit a de-
sired convex shape to obtain Wc in the (α-β-zc) space. Due to the nature of
the degree-of-freedom of the manipulator, a cylinder is chosen as the convex
shape to be fit inside W. Fig. 5 shows the stack of C1, C2 and C4 together
for the manipulator under consideration. Note how they follow the hierarchy
described in Section 2. As the stack of C4 has been obtained for the entire
range of heave, Wc can be obtained by fitting a convex shape to the stack
for any desired subset of the complete range of heave. Note that the radius
of the cylinder in the former case is 6.59◦ while it is 15.62◦ in the latter (see
Fig. 5). Thus, based on the intended application, a convex shape of interest
can be fit into W to obtain Wc desired.

5 Conclusion

In this paper, the concept of a safe working zone of a parallel manipulator
has been formalised, and a generic framework has been presented for its
computation. It has been shown that considering a convex subset of the same
can lead to a hierarchy in the subsets leading to the final result, reducing
the computational requirements significantly in the process. The formulation
has been demonstrated by means of an application on a newly developed
parallel manipulator, namely MaPaMan-I, whose workspace and singularities
were not reported previously. A single computational tool, namely a contour-
plotter in a 2-dimensional space, has been used to compute the SWZ and its
convex subsets. The generic and simple nature of the scheme presented in
this paper can help in identifying the SWZ in similar manipulators, as well
as be used in the design of manipulators for a desired SWZ.
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