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Abstract The approximate synthesis of RCCC linkages for motion generation, a.k.a.
rigid-body guidance, is the subject of this paper. A formulation is proposed here
based on dual algebra, thereby leading to a dual, constrained, nonlinear least-square
problem. The dual normality conditions necessary to obtain a feasible least-square
approximation are established, following which an algorithm for the solution of the
problem is proposed.
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1 Introduction

The general problem of linkage synthesis consists in finding the dimensions of a
linkage of a given topology—number of links, number of joints, types of joints,
and number of kinematic loops—for a designated task. In this paper the task of
interest is rigid-body guidance, as defined by Ludwig Burmester (1840-1927) [1]
for the planar case, for which reason the problem is also named after Burmester. It
is known that the planar and spherical Burmester problems allow for the synthesis
of a four-bar linkage to guide their coupler link through up to five prescribed poses.
For the spatial case, the four-bar linkage becomes of the RCCC type, where R stands
for revolute, C for cylindrical joint. The linkage is usually synthesized via its two
defining dyads, RC and CC; then, of the multiple solutions obtained for each dyad,
one RCCC linkage is assembled upon coupling the dyads by means of the coupler
link. Now, the number of parameters that determine a dyad as well as the number
of constraints that each dyad type must satisfy are different for each of the two
foregoing dyads. The maximum number of coupler poses that each dyad can visit
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2 Jorge Angeles

exactly is five for the CC dyad, three for the RC (or CR) dyad [2]. Apparently, the
maximum number of poses that a RCCC linkage can visit exactly is three, which
is rather limited. However, if a condition is imposed that leads to a coupling of the
two dyads, e.g., robustness to variations in the selection of the intermediate poses,
as reported in [3], then a maximum of four poses can be visited with the RCCC
linkage. The number of poses that can be met exactly is thus still limited, whence
the motivation behind this paper.

In practice it is seldom required that intermediate poses be visited exactly. For
example, if the linkage under design is to be used to deploy and retract an aircraft
landing gear, only the deployed and the retracted poses of the wheel are to be met
exactly, the intermediate ones being free to deviate from a prescribed trajectory, in
pose space, as long as the deviations are within reasonable, prescribed limits and
the various moving links do not collide with the fuselage or between themselves. It
is thus apparent that the intermediate poses can be visited approximately, thereby
allowing for approximate synthesis, the subject of the paper.

Approximate linkage synthesis is a classical subject, treated in some books [4],
[5], [6], that has been approached as a problem of least squares.

2 Problem Formulation
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Fig. 1 A generic RCCC linkage

The linkage under synthesis bears the generic geometry depicted in Fig. 1, where
link 1 is fixed, link 3 is the coupler, to which a frame F {X , Y,Z} has been attached
with origin at point R, while links 2 and 4 are coupled to link 1 by means of a R
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and a C joint, respectively, to link 3 by means of C joints. Moreover, links 2 and
4 are the RC and the CC dyads, respectively. Thus, axes Z1 and Z2 play the role
of the center points, while axes Z3 and Z4 those of the circle points of the planar
motion generator [7]. Apparently, axes Z1 and Z2 are grounded, and hence, remain
stationary during the linkage motion, their counterparts Z3 and Z4 becoming lines
of corresponding hyperboloids of revolution of axes Z1 and Z2, respectively. As a
matter of fact, axes Z3 and Z4 become generators of the hyperboloids, which, in the
general case, of arbitrary—not axially symmetric—single-sheet hyperboloids, are
reguli of these surfaces. For these reasons, Z1 and Z2 will be termed the axis lines,
or A -lines, Z3 and Z4 the regulus lines, or R-lines of the dyads under synthesis.
For simplicity of notation, axes Z1, . . . , Z4 will be denoted henceforth B, A , C , D ,
respectively. Moreover, A0 and C0 denote axes A and C at the reference pose of
F , with A j and C j denoting the location of A and C when F finds itself at its jth
pose, for j = 1, . . . ,m.

Moreover, the motion under study is described by a set of poses P = {r j, Q j }m
1 ,

where r j is the position vector of R j and Q j is the orthogonal matrix that rotates
frame F from its reference pose with origin at R0 and orientation Q0 ≡ 1 to its jth
pose. The purpose of linkage synthesis for motion generation in the case at hand
consists in finding lines A0, B, C0 and D that define completely the RCCC linkage,
so that F will visit the set P with a minimum error. A word of caution is in order:
vectors r j having units of length and matrix Q j being nondimensional, the error in
missing a prescribed pose cannot be defined. In planar-linkage synthesis, the error is
measured indirectly, in terms of the deviations of the various locations of the circle
points from lying in a circle with center at one center point. In the same vein, the
error in this case is measured as the distance of one R-line from its corresponding
axially symmetric hyperboloid. The error will be measured by mimicking exactly
what is done in planar linkage synthesis: first find the circle that best fits a set of m
center-point locations in the least-square sense; then, find the minimum distance of
the putative center point in question to the circle, which is measured along the line
that joins the putative circle point with the “center” point. In the spatial case under
study, the distance from the R-line to its corresponding A -line consists of two
items, the length of the segment of the common normal between A and R and the
angle between the two lines, which can best be described by means of dual algebra
[8]: Let a, . . . ,d denote the unit vectors parallel to axes A , . . . , D , respectively, the
moments1 of axes A , . . . , D being denoted by ao, . . . , do.

The problem can now be stated as: Given the set P of m > 4 poses that the
coupler link of a RCCC linkage is to visit, find lines A0, B, C0 and D that define
the RCCC linkage that carries its coupler link through the set P with a minimum
error in the least-square sense.

In order to formulate the problem, dual algebra [9], [10] is invoked. A dual unit
vector l̂ = l+ ε lo represents a line L of direction given by the unit vector l and of
moment lo with respect to the origin. In this vein, the lines defining the RCCC link-

1 The moment of a line in a given coordinate frame is defined as the cross product of the position
vector of any point of the line times the unit vector parallel to the line. The mechanical interpreta-
tion of this concept is the moment of a unit force whose line of action is the line at stake.
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age of Fig. 1 are represented by the dual unit vectors â, b̂, ĉ and d̂. Correspondingly,
â0 and ĉ0 represent lines A0 and C0, respectively, i.e., the reference locations of A
and C , with a similar notation for A j and C j, for j = 1, . . . , m > 4. Therefore,

â j = Q̂ jâ0, ĉ j = Q̂ j ĉ0, j = 1, . . . m (1)

with Q̂ j = Q j + ε Qo j denoting the dual orthogonal matrix that carries F from
its reference pose to its jth pose. In this notation, Q j denotes a rotation matrix,
while Qo j ≡D jQ j, and D j denotes the cross-product matrix (CPM) of vector d j that
represents the translation of point R. The cross product matrix of a 3-dimensional
vector u is defined as U = CPM(u)≡ ∂ (u×v)/∂v, for any 3-dimensional vector v.

The angle between two dual unit vectors û and v̂, representing lines U and V ,
respectively, is denoted as θ̂ . This angle occurs in the dot and the cross products of
the two given vectors, in the form:

ûT v̂ = cos θ̂ , û× v̂ = ŵsin θ̂ (2)

where ŵ is the dual unit vector normal to both û and v̂, i.e., a line that is normal to
the two lines represented by û and v̂ and intersecting the two lines. Moreover,

cos θ̂ = cosθ − ε d sinθ , sin θ̂ = sinθ + ε d cosθ (3)

with d denoting the distance between U and V . The dual angle θ̂ thus represents
the dual distance between the two given lines. Representing the rigid-body condition
that links 2 and 4 must obey at every prescribed pose is now straightforward: the dual
distance between lines A j and B as well as that between C j and D must remain
equal to that between their reference counterparts A0 and B and, correspondingly,
C0 and D , i.e., in light of eqs.(1),

b̂T Q̂ jâ j = b̂T â0, d̂T Q̂ j ĉ j = d̂T ĉ0, j = 1, . . . m

or, in homogeneous form,

ϕ̂ j ≡ b̂T (Q̂ j −1)â0 = 0, ϕ̂ j+m ≡ d̂T (Q̂ j −1)ĉ0 = 0, j = 1, . . . m (4)

which represent 2m dual synthesis equations in the four dual unknown vectors â0,
b̂, ĉ0 and d̂. As each equation involves two real equations, one for its primal, one for
its dual part, the total number of real equations is 4m. Likewise, each dual unknown
vector entails two 3-dimensional dual vectors, the total number of unknowns is 24.
However, each dual unit vector must obey the unit-vector constraints:

ĥ1 ≡∥â0∥2−1 = 0, ĥ2 ≡∥b̂∥2−1= 0, ĥ3 ≡∥ĉ0∥2−1= 0, ĥ4 ≡∥d̂∥2−1 = 0 (5)

Again, each of the foregoing equations represents two real equations, one for its
primal, one for its dual parts, thereby obtaining a total of eight real constraints.
Moreover, the primal part refers to the normality of the primal unit vector, the dual
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part to the Klein condition2. The foregoing conditions apply to dyads of the CC
type. The RC dyad must obey one more condition: the sliding of the joint coupling
link 2 with link 1 must vanish, which can be enforced by stating that all common
normals N j to A j and B must intersect N0, the counterpart normal to A0 and
B. Let n̂0 represent N0, n̂ j representing N j. The intersection condition can be
expressed via the dual unit vectors representing the lines of interest. Indeed, from the
expansion of cos θ̂ in eq.(3), it is apparent that the intersection condition is that the
dual part of n̂T

j n̂0, represented as du(n̂T
j n̂0), vanish, whence m additional constraints

are obtained, namely,

h4+ j ≡ du(n̂T
j n̂0) = 0, j = 1, . . . m (6)

Further, the 12-dimensional dual vector of unknowns x̂ is introduced:

x̂ =
[

âT
0 b̂T ĉT

0 d̂T
]T (7)

together with the 2m-dimensional dual vector ϕ̂(x̂) of synthesis equations, whose
components are ϕ̂ j and ϕ̂ j+m, as defined in eq.(4), and the (4+m)-dimensional dual
vector of constraints ĥ(x̂), whose components are defined in eqs.(5) and (6). Notice
that, contrary to the exact synthesis case, here the synthesis equations need not be
exactly satisfied; a reasonable approximation to those equations suffices. However,
the 4+m constraints must be met exactly—up to roundoff error, of course. The
optimization problem is now stated as one of constrained nonlinear least squares:

f̂ (x̂)≡ 1
2

ϕ̂(x̂)T Wϕ̂(x̂) → min
x̂

(8a)

subject to
ĥ(x̂) = 04+m (8b)

In the problem statement (8a), W is a symmetric, positive-definite weighting
matrix that is introduced to allow for assigning different relevance to different poses.
For example, the mth pose may be given much higher relevance than its intermediate
counterparts. A better approach would be to raise the mth pose to the category of
constraints, so that it would be met exactly. However, the total number of constraints
should be smaller than 12, the number of unknowns; else, the problem would be
overconstrained and no solution would be possible, i.e., m < 8.

3 The Dual Normality Conditions

The first-order normality conditions (FONC) for a constrained nonlinear program-
ming problem, the class to which problem (8a & b) belongs, are well known in the

2 This condition states that the primal and the dual parts of a dual unit vector must be mutually
orthogonal.
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case of problems defined by vectors over the real field [11]. In our case, all vectors
are defined over the ring of dual numbers3. Paraphrasing those normality conditions,
we have, for the case at hand:

∇ f̂ + ĴT λ̂ = 02m (9)

where λ̂ is the (4+m)-dimensional vector of dual Lagrange multipliers that are
needed to take the constraints into account, and Ĵ is the 2m × (4 + m) Jacobian
matrix of the constraints, i.e., the gradient of ĥ. Moreover, by virtue of the form of
the objective function f̂ , ∇ f̂ takes the form

∇ f̂ = Φ̂T Wϕ̂ (10)

with Φ̂ defined as ∇ϕ̂ . Now, if the expression for the derivative of a dual function
f̂ (x̂) with respect to its dual argument is recalled, with f̂ and x̂ given by f̂ = f +ε fo
and x̂ = x+ ε xo, namely [12],

d f̂
dx̂

=
d f
dx

+ ε
d fo

dx
=

d f̂
dx

(11)

then Φ̂ and Ĵ become Φ̂ = ∂ ϕ̂/∂x and Ĵ = ∇ĥ = ∂ ĥ/∂x, i.e., only the derivatives
w.r.t. the primal part of the dual argument come into play in the foregoing gradients.

What condition (9) states is that, at a stationary point of problem (8a), ∇ f̂ need
not vanish, but must lie in the range of ĴT , i.e., the overdetermined system (9) of
2m linear equations in the 4+m (< 12) unknowns, the number of dual Lagrange
multipliers in λ̂ , must admit an exact solution. The FONC can be stated in two
alternative forms:

[1− ĴT (ĴĴT )−1Ĵ]Φ̂Wϕ̂ = 04+m, L̂T Φ̂T Wϕ̂ = 04+m (12)

with 04+m denoting the (4+m)-dimensional zero vector.
The matrix inside the brackets in the first of the foregoing equations can be read-

ily identified as a projector that maps n-dimensional vectors onto the null space of
Ĵ. Matrix L̂ in the second equation is a 12× (n−4−m) orthogonal complement of
Ĵ, i.e, ĴL̂ = O, with O denoting the (4+m)× (n−4−m) zero matrix.

These conditions are necessary for a value of x̂ to be a stationary point of the
problem under study. For this point to be a minimum, the second-order normality
condition must be satisfied. In nonlinear-programming problems, this condition is
that the reduced Hessian of the problem under study be positive-definite at a sta-
tionary feasible point, i.e., at a point that satisfies both the FONC, eqs.(12), and
the constraints, eqs.(8b). In our case, such a point, designated by x̂∗, is assumed to
have been found, vector ϕ̂(x̂∗) being represented by ϕ̂ ∗

. The reduced Hessian matrix
takes the form

3 While vector spaces must be defined over a field, in our context we need to define them over the
set of dual numbers, that do not form a field, but rather a ring. This difference does not pose any
technical problem to the developments in the balance of the paper.
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Ĥr = L̂T

[
Φ̂T WΦ̂ +

∂ (Φ̂T Wϕ̂ ∗
)

∂ x̂
+

∂ (ĴT λ̂ )
∂ x̂

]
L̂ (13)

In our case, the second-order normality condition for a minimum is that the primal
part of Ĥr be positive-definite.

4 The Dual Orthogonal-decomposition Algorithm

The orthogonal-decomposition algorithm (ODA) was developed by the author and
his team to solve equality-constrained problems in mathematical programming [13].
When applied to the RCCC approximate-synthesis problem, the algorithm takes the
form described below: it is assumed that a feasible approximation to the optimum
has been obtained at the kth iteration, x̂k, an increment ∆ x̂k being sought that will
yield an improved approximation x̂k+1. The strategy consists in decomposing the
increment in two parts, namely,

∆ x̂k = ∆ v̂k + L̂k∆ ûk (14)

with L̂k denoting the orthogonal complement L̂ evaluated at x̂k. Moreover, ∆ v̂k is
the minimum-norm solution of the underdetermined linear system of dual equations

Ĵk∆ v̂k =−ĥk (15)

in which Ĵk and ĥk denote the Jacobian Ĵ and vector ĥ evaluated at x̂k. The
minimum-norm solution of eq.(15) can be expressed in terms of the dual right
Moore-Penrose generalized inverse [14], namely,

∆ v̂k =−Ĵ†
k ĥk, Ĵ†

k ≡ ĴT
k (ĴkĴT

k )
−1 (16)

where Ĵ†
k is to be calculated with the dual QR-decomposition of ĴT

k . The QR-
decomposition for real matrices is well documented in the literature on numerical
analysis [15]. With ∆ v̂k computed, ∆ ûk is computed as the least-square approxima-
tion of an overdetermined system of linear equations:

VΦ̂kL̂k∆ ûk =−V(ϕ̂ k
+ Φ̂k∆ V̂k), W ≡ VT V (17)

whence the solution ∆ ûk is computed with the left Moore-Penrose generalized in-
verse of the product VΦ̂kL̂k:

∆ ûk =−(VΦ̂kL̂k)
I(ϕ̂ k

+ Φ̂k∆ v̂k), (VΦ̂kL̂k)
I ≡ (L̂T Φ̂T WΦ̂L̂)−1L̂T Φ̂T V (18)

thereby completing the (k + 1)st iteration. The procedure stops when the FONC,
eqs.(12), are verified to a prescribed tolerance.
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5 Conclusions

The foundations for the approximate synthesis of RCCC linkages for motion gen-
eration were laid down. It was shown that, by virtue of the normality conditions
that the dual unit vectors that represent the linkage four joint axes must observe, the
number of prescribed poses of the coupler link is limited to being smaller than eight.
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