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Abstract

The inverse kinematics of a robot is the mapping that, given a goal position, calculates a set of
joint positions so as to place the robot’s end effector in the specified goal. As this is a relevant
issue to move the robot, there has been a lot of work about obtaining a fast and robust inverse
kinematic algorithm. In this work we present the main concerns on finding an inverse kinematics
algorithm for a serial redundant manipulator.

We firstly comment on our motivation, the state of the art and set our objectives, to later
briefly expose some necessary concepts. Then the work is divided into two parts: the first
one, describing analytical methods for solving inverse kinematics, and the second one about
control-based methods.

In the analytical methods, we will see how difficult it may be to have a closed analytical form,
in particular for redundant manipulators, and we will try to solve, not always with success, the
inverse kinematics of some robots.

Then we will move into control-based algorithms, which are iterative methods using the Jacobian
matrix of a robot, and we will firstly discuss the concerns of these methods, which mainly are:

• Convergence: Achieving the specified goal from a given starting position.

• Joint limit avoidance: Given the valid interval for each joint, the algorithm should not
give a solution which cannot be reached due to the joints physical limitations.

• Robustness: When a singularity occurs, the algorithm must be capable of not getting stuck
or become chaotic.

• Cost: The time it takes to find a solution.

We will present a survey on the most used existing control-based algorithms. We point out the
drawbacks of each one of them, to later propose a new way of numerically filtering the Jacobian
matrix, and also a new method to avoid step-depending convergence issues, while respecting joint
limits, to have a very smooth and robust algorithm. All these methods have been implemented
using Matlab to solve the inverse kinematics of some robots. The results of two of them, a 4R
planar robot and the Barrett’s WAM arm, are shown so as to draw conclusions.

To end up, we discuss the convergence of these methods, and the global use of them. The algo-
rithm we propose has the advantadge of successfully respecting joint limits and its convergence
is not being step-dependent makes it more robust. Nevertheless, we also discuss the need of,
when the goal is far from the starting position, add path planning methods to approach the
target.
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1 Preliminaries

1.1 Motivation

Year after year, more complex serial robots are designed and built. Many of them with multiple
limbs (arms / fingers) and redundant, in the sense that they are overarticulated. This overartic-
ulation gives more flexibility, and now robots can not only reach a position, but also reach it in
several configurations, and so secondary goals can be achieved.

Nevertheless, this complexity on the robots has a drawback, which is the computation of their
kinematics. The kinematics map of a serial robot is not a bijection. In particular, the kinematics
of a serial robots is a surjective function with its reachable workspace (i.e.: a mapping f : X → Y
so that ∀ y ∈ Y , there exists one or more x ∈ X so that f(x) = y), in the sense that two different
joint states can give the same position of the end effector of a robot.

The initial aim of this project has been to find an efficient, continuous solution for the inverse
kinematics of the Barrett’s WAM arm, a robot available in the Institut de Robòtica i Informàtica
Industrial (IRI), whose of-the-shelf inverse kinematics series algorithm is not optimum. This
aim has been focused on analysing its inverse kinematics by analytical methods, but also with
control-based methods, to compare their solutions.

1.2 State of the art

Inverse kinematics algorithms have been an issue to focus on since the first robots were built.
To do so, the most popular methods have been the analytical (and so exact) ones. Nevertheless,
an exact solution does not always exist, and when one has to look for an alternative solution,
the most popular methods are the control-based ones, although there also exist methods based
on learning, neural networks [22], interval methods [16], or based on distances [15].

On control-based methods, the first approaches were developed in the 60s-70s, when Whitney
[23] used the pseudoinverse of a matrix to solve the problem. Although other methods such as
the Jacobian transpose [24], which can be faster, were used as well. Lately in the 1980s, with
the rising computation capability of computers, Baillieul [1] presented an extended Jacobian,
which was computationally more complex, with second-order derivatives. Also in the 80s, the
manipulability index was defined by Yoshikawa [25], a term to optimize when having a redundant
robot.

Since then, many ways of improving the performance of these algorithms have been proposed.
Siciliano and Slotine presented in 1991 a hierarchical way to priorisize different tasks [19], and
parallelly, the damping of the Jacobian, a way of avoiding the discontinuity of the pseudoinverse
operator when the Jacobian matrix of a robot looses rank, was presented and analised [6] with
its variants [5]. In the 90s is when it began to be also very common to weight the Jacobian
matrix of a manipulator in order to prioritisize joints or tasks over others [3], or even block
certain movements with these weighting matrices.

But it has not been until the 2000s that the continuity of these methods started having a
relevant paper in the design of algorithms. In [17], Raunhart and Boulic try to continuously
block the motion of a joint, and finally in [13], Mansard, Remazeilles and Chaumette define a
new pseudoinverse operator to be smooth with respect to the joint/task blocking, to be used
later in [12], combining this continuous pseudoinverse operator with a task priority scheme.

1.3 Objectives

As commented on the motivation, our objective is to find an analytical solution for the inverse
kinematics of redundant robots, and regarding control-based methods, to obtain the smoothest
algorithm as possible, leading to a robust iterative method.
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To do so, our intention is, after considering the analytical ways of solving the problem, to
describe the most popular existing control-based methods, trying to point out their limitations
and difficulties, in a survey-like way, to then try to take the best of each of them and find a
robust solution, checking its behaviour and comparing it to the analytical one.
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2 Introduction

Controlling the position of a robot is not as trivial as one could think. Serial robots are com-
posed of concatenated joints, forming an open chain structure. With this structure, the inverse
kinematic problem, that is, relating the position and/or orientation of the end effector of the
manipulator with the position of each joint, might not have a closed analytical solution. Not
having such an analytical solution can force the user to search for alternative solutions to the
kinematics of the robot. And even when a closed analytical form exists, its equations may have
multiple solutions.

Ever since the first industrial robots appeared, there has been a big concern about computing
kinematics in a simple, reliable and fast way in order to optimize the robot performance. In
this work, we analyse the state of the art on the computation of inverse kinematics, pointing
out the weaknesses of all the methodologies considered, and aiming to take the best of them
to obtain an inverse kinematics algorithm which is robust and reliable, with special attention
to redundant robots (those with more degrees of freedom than supposely needed to perform a
specified task).

2.1 Forward and inverse kinematics of a serial manipulator

Let us consider a serial robot with m joints, and let W ⊆ Rn be its workspace (reachable
positions) in a space of dimension n (n=2 for planar position, 3 for planar position+orientation
or spatial position, 6 for spatial position+orientation, etc.). Then we define:

• The Forward Kinematics as the function that maps a joint position of the set Q of
feasible joint positions into a cartesian position in the workspace W

f : Q ⊆ Rm → W ⊆ Rn

q 7→ x

The forward kinematics function is easily obtained for serial manipulators with theDenavit-
Hartenberg coefficients (see section 4.4.3). By construction, W = ImQ(f)

• The Inverse Kinematics is the inverse mapping of the Forward kinematics, i.e.: the
function that maps a position in the workspace to a joint position:

h : W ⊆ Rn → Q ⊆ Rm

x 7→ q

Note that h can have multiple solutions for a single x, or even infinite solutions in case m >
n or in a degenerate position. Finding a closed expression for h can be very complicated or
even impossible, and when handling with trigonometric functions, more than one solution
may arise.

2.2 Denavit-Hartenberg parameters

When considering a serial open-chain manipulator, a systematic way of expressing its forward
kinematics is using the Denavit-Hartenberg convention. This consists in defining the relative
position and orientation of two consecutive links, and determining a transformation matrix
between them, by performing the following operations (see Figure 1):

First, consider axis zi−1 as the axis of the joint between link i-1 and link i. To define the
homogeneous transformation between frames i-1 and i :

• Set axis zi as the axis of rotation or movement of joint i+1.
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Figure 1: Denavit-Hartenberg parameters calculation

• Find the common normal line s between zi−1 and zi, Define the origin of frame i in
Oi = s

⋂

zi, and also O′
i = s

⋂

zi−1

• Define the axis xi in the direction of s, from joint i to joint i+1.

• yi = zi × xi, defined following the right-hand rule.

Now, we define:

• ai is the distance (with sign) from O′
i to Oi along axis xi.

• di is the distance (with sign) from Oi−1 to O′
i along axis zi−1.

• αi is the angle (with sign following the right-hand rule) from axis zi−1 to zi around xi
• θi is the angle (also with sign following the right-hand rule) from axis xi−1 to xi around

zi−1

The parameters αi and ai are always constant, while θ is a variable if joint i is rotational
and d is a variable if joint i is prismatic.

Also, one must consider some ambiguity situations:

• The first frame has only z0 direction defined, so O0 and x0 can be chosen arbitrarily.

• For the last frame (n), as no joint n+1 exists, zn is not uniquely defined and can also be
chosen.

• When two consecutive axes intersect, xi is arbitrarily chosen.

• When two consecutive axis are parallel, zi can be placed along a set of parallel lines.

• When joint i is prismatic, then the parameter d calculated is taken as an offset on the
variable di.

• When joint i is revolute, then the parameter θ calculated is taken as an offset on variable
θi.

With these parameters and considerations, the homogeneous transformation from frame i-1
to frame i is:

T i−1
i =









cos(θi) −sin(θi) · cos(αi) sin(θi) · sin(αi) ai · cos(θi)
sin(θi) cos(θi) · cos(αi) −cos(θi) · sin(αi) ai · sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1









And for a several joints manipulator, the homogeneous transformation of the end effector
has the form: T b

ee = T b
0 ·T 0

1 · ... ·Tm−1
m ·Tm

ee , where T
b
0 is the homogeneous transformation between

a base frame and the joint 1 frame. Tm
ee is the tool end effector relative position to the end joint.
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3 Robot positioning

Positioning a robot in its workspace requires calculating its inverse kinematics. In this section,
we introduce the basic concepts for understanding the following sections in a very practical and
focused way.

3.1 Robot differential kinematics

There is much literature about differential kinematics, in terms of joints and position velocity
and accelerations, etc. But here we will focus on what will be used later. For further reading,
we recommend [20], chapter 3.

Given a serial manipulator, one might want not only to know its direct and inverse kinematics,
but also its differential kinematics. In this sense, a fundamental tool is the Geometric Jacobian
of a manipulator at a given joint state θ, which gives the differential position/orientation first-
order variation of the end effector of a manipulator, depending on the differential first-order
variation of each joint, i.e.:

ẋ = J · θ̇, (1)

where θ̇ is the time-derivative of the joints, and x is the generalized coordinate vector in the
cartesian space:

x =

(

xe
φe

)

,

φe being a set of Euler angles describing the orientation of the end effector.

Column i of the Jacobian J represents the effect of ith joint on the generalised coordinates
of the end effector.

To compute this Jacobian in a m-link robot, this formula can be applied (see [20], pp
111-113):

J =

[

JP1 ... JPm

JO1 ... JOm

]

,

where:

[

JPi

JOi

]

=

[

zi−1

0

]

if the joint is prismatic, and

[

JPi

JOi

]

=

[

zi−1 × (Pe − Pi−1)
zi−1

]

if the joint is revolute,

where Pe is the position of the end effector of the robot and Pi−1 is the position vector of
the origin of frame i-1, both expressed in the base frame.

3.2 Desired position and error representation

Depending on the type of robot and the task to be performed, the state vector may vary from a
2 -dimentional position (x, y) to a generalized 6-dimensional position and orientation vector. In
any case, a planar position is a projection of the generalised coordinate vector.
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Now, to express the orientation error, given a desired position and/or orientation, if we take
the non-minimal representation of the actual orientation as the rotation matrix

Re(θ) =
(

ne(θ) se(θ) ae(θ)
)

,

and equally with the desired orientation:

Rd =
(

nd sd ad
)

,

then the orientation error can be represented as (see [20], pp 137-140):

eo =
1

2
(ne(θ)× nd + se(θ)× sd + ae(θ)× ad), (2)

while the position error is:

eP = xd − xe(θ) (3)

This error representation will be useful to perform control-based methods for inverse kine-
matics.

3.3 Criteria for optimizing redundant degrees of freedom

When dealing with redundant manipulators, as the robot has more degrees of freedom than
necessary to perform a certain task, the remaining degrees of freedom give a set of feasible
solutions of the inverse kinematics. Among these solutions, it is recommended to choose the one
satisfying a certain criterion: A secondary goal, an additional restriction, etc. For almost every
possible task, a potential function can be created; if H : Rm → R is a cost function, a gradient
of the form ~h = −▽H can be used. Now we will describe some criteria that are often used.

3.3.1 Manipulability

The manipulability of a robot in a given configuration θ was first introduced by Yoshikawa [25],
and it is defined as: w(q) =

√

|det(J(θ) · J(θ)T )|.
With a singular value decomposition, and using det(AB) = det(A)det(B), it can be easily

proven that w(q) =
∏

σi, the product of the eigenvectors of J, and now we will see some
properties of interest of this term:

Consider the set of joint velocities of constant unit norm

θ̇T · θ̇ = 1. (4)

Assuming full-rank matrix J, we can set a minimum norm solution of the inverse kinematics
from (1)

θ̇ = J† · ẋ, (5)

where J† = JT · (J ·JT )−1 is the Moore-Penrose pseudoinverse matrix of J. This set of velocities
maps, through equations (4) and (5), to a corresponding set of cartesian space velocities (using
pseudoinverse properties and assuming full-row rank of J):

vTe · (J†T · J†) · ve = vTe · (J · JT )−1 · ve = 1,

which is the equation of the points on the surface of an ellipsoid in the end effector velocity space.
The eigenvectors of matrix J · JT give the principal axes of the ellipsoid, and its eigenvalues
give the width of the ellispoid along the corresponding eigenvectors. This ellipsoid gives an idea
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Figure 2: Manipulability ellipsoids (scaled to fit in the image). Here it can be seen that,
when approaching a singularity, the task Jacobian looses rank, and the manipulability
ellipsoid’s area becomes zero.

of the behaviour of the end effector in the neighbourhood of the actual state, and its volume is
proportional to w(θ) =

√

|det(J(θ) · J(θ)T )|. What has to be considered with manipulability is
the fact that if one eigenvalue of J · JT is zero, so is the manipulability index, meaning that if
J is rank-deficient, the robot is in a singular position. Also, the higher the manipulability, the
less excentricity the manipulability ellipsoid will have, the farther the robot from a singularity
will be, and the more isotropic the movement capabilities of the robot are in that position.

In Figure 2 we can see how the manipulability ellipsoid varies with position for a 4R planar
robot, and has 0 area at a singularity.

The convenience of using this criterion has been longly discussed, and a similar term as a ma-
nipulability polytope (see [10]) may reflect the robot’s behaviour better, but it is computationally
slower.

3.3.2 Joint limit avoidance

Another criterion used in inverse kinematics algorithms is to avoid joint limits. This can be
done by optimizing a potential function with very high values in the neigbourhood of a limit.
For example, as used in some literature:

w(q) =
1

2m

m
∑

i=1

qmax
i − qmin

i

(qmax
i − qi)(qi − qmin

i )
(6)

This function gives, as we can see in Figure 3, a very high potential when approaching a
joint limit, and a minimum value at the mid point.

3.3.3 Other Criteria

More criteria can be used in an optimization, for instance, distance to an obstacle, defined as
H(q) = minp,o‖p(q)− o‖, where p is a point on the robot and o is a point on the obstacle.
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Figure 3: The potential function rises when approaching joint limits.

Another example would be, for a mobile robot, to keep the vertical projection of its center of
mass inside a region, which could be the polygon defined by the feet in contact with the ground
(legged robot), or its wheels (wheeled robot) , to mantain its equilibrium.
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4 Analytical methods for inverse kinematics

When trying to compute inverse kinematics of a manipulator, a recommended first approach is
to compute an analytical solution, as it will be an exact solution, and usually faster to compute
than any other.

4.1 General procedure

As for a serial robot direct kinematics equations are often easy to obtain (in complex serial
robots, the use of the D-H parameters might be useful, although other methodologies exist), a
way to start is trying to find the inverse function of the direct kinematics. As many trigonomet-
ric functions may appear when dealing with rotational joints, this inversion can require some
algebraic skills, as it will usually be non-trivial, or even impossible. Moreover, multiple solutions
of trigonometric functions must be considered. This derives in multiple solutions of the inverse
kinematics, called assembly modes.

Now we will show an example of how difficult this operation can be for a simple manipulator
as a 3R (a robot with 3 chained rotational joints as shown in Figure 4).

4.1.1 3R manipulator

Figure 4: 3R serial robot

By analysing a bit the geometry of the robot, one can easily extract its direct kinematics:

x = l1cos(θ1) + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 + θ3)

y = l1sin(θ1) + l2sin(θ1 + θ2) + l3sin(θ1 + θ2 + θ3)

φ = θ1 + θ2 + θ3, (7)

In fact, we can compute point P as P = (x− l3cos(φ), y − l3sin(φ)) and so we have

Px = l1cos(θ1) + l2cos(θ1 + θ2)

Py = l1sin(θ1) + l2sin(θ1 + θ2) (8)

Using cos(θ1 + θ2) = cos(θ1)cos(θ2) − sin(θ1)sin(θ2) and sin(θ1 + θ2) = sin(θ1)cos(θ2) +

cos(θ1)sin(θ2), we have P 2
x + P 2

y = l21 + l22 + 2l1l2cos(θ2) ⇒ cos(θ2) =
P 2
x+P 2

y−l2
1
−l2

2

2l1l2
. For the

sine of θ2, we can use sin(θ2) = ±
√

1− cos(θ2), and so calculate the sign-sensible arc tangent:
θ2 = atan2(sin(θ2), cos(θ2)) for the two solutions of θ2

Now, given the value of θ2, and inserting it in equation (8), we get the following linear
system:

(

Px

Py

)

=

(

l1 + l2cos(θ2) −l2sin(θ2)
l2cos(θ2) l1 + l2cos(θ2)

)

·
(

cos(θ1)
sin(θ1)

)

,
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which can be solved to obtain cos(θ1), sin(θ1) and so θ1. Note that these equations have two
solutions for θ1, so two sets of solutions θ1, θ2, θ3 are obtained. These two solutions correspond to
different assembly modes, which are different joint configurations for a non-redundant situation
that give the same end effector position. In some ways, it can be seen as inner/outer elbow
situation, as we can see in Figure 5.

Figure 5: 3R serial robot with two assembly modes

Once θ1 and θ2 are known, it is inmediate to obtain θ3 = φ− θ1 + θ2.

As we have seen, it is not straightforward to obtain the inverse kinematics of a simple 3-joint
manipulator. This complexity grows with the complexity of the robot geometry, and it is very
useful to split the problem into several ones when possible. One such case of this situation is
when having a spherical wrist.

4.2 Spherical Wrists

A typical architecture for spatial robotic arms is that the robots last degrees of freedom form a
so-called spherical wrist (see Figure 6),

link ai αi di θi
i 0 −π/2 di θi
i+1 0 π/2 0 θi + 1
i+2 0 0 di+2 θi + 2

With this set of DH-parameters, the forward kinematics can be expressed as:

i

i+2

i+2

i+2

i+1

i+1

i

i+1

i-1

i-1

i

i+2i+1

Figure 6: Spherical wrist. Picture from [20].
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Figure 7: Maximum and minimum angle θ1 in a 3R manipulator

T i−1
i+2 = T i−1

i ·T i
i+1·T i+1

i+2 =









cici+1ci+2 − sisi+2 −cici+1si+1 − sici+2 cisi+1 cisi+1di+2

sici+1ci+2 − cisi+2 −sici+1si+1 − cici+2 sisi+1 sisi+1di+2

−si+1ci+2 si+1si+2 ci+1 ci+1di+2

0 0 0 1









With this transformation, supposing a robot of m degrees of freedom, the last 3 of them
corresponding to a spherical wrist. Then, given an objective homogeneous transformation for
its end effector, T 0

ee, we have T 0
ee = T 0

m−3 · Tm−3
m · Tm

ee , where Tm−3
m = TSW is the spherical wrist

homogeneous transformation. Then: T 0
m = T 0

m−3 · TSW ⇒ (T 0
m−3)

−1 · T 0
m = TSW .

Then, when having a robot ending in a spherical wrist, one can compute the wrist point
Pw = Pe − di+2ze, where Pe is the end effector point and ze is the desired end effector z-axis
orientation. Then compute the inverse kinematics of the rest of the robot to reach the position
Pw and, when done, take RSW =

(

n s a
)

, and the spherical wrist solutions are:

θ4 = atan2(ǫay, ǫax)

θ5 = atan2(ǫ
√

a2x + a2y, az)

θ6 = atan2(ǫsz,−ǫnz),

where ǫ = ±1 (a spherical wrist has two sets of solutions).

4.3 Redundant degrees of freedom optimization

Sometimes the robot has more degrees of freedom than supposely needed for achieving a task.In
[18] and [21], it is proposed for some robots to find a parametric expression of the redundant
degrees of freedom to perform optimization on the parameters.

4.4 Examples

Now we will show how to compute analytically the inverse kinematics of three redundant robots,
to show how difficult it might be.

4.4.1 3R redundant planar manipulator

First, we will find a solution for the robot of Figure 4 assuming that the task is only to set the
end effector in a 2-dimensional position (x, y) without concerning the orientation. To do so, we
propose a geometric solution.
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Pee

Origin

Figure 8: Graphical solution of inverse kinematics

First, given Pee, the end effector desired position, and the 3 links lengths, we can find the
maximum and minimum values of θ1 as seen in Figure 7.

With these values, what can be done is to choose an arbitrary value of θ1, and obtain point
A as in ( 8):

A =

(

l1cos(θ1)
l1sin(θ1)

)

,

and then:

A+

(

l2cos(θ2)
l2sin(θ2)

)

= Pee −
(

l3cos(θ3)
l3sin(θ3)

)

,

so

(

l1cos(θ1) + l2cos(θ2)
l1sin(θ1) + l2sin(θ2)

)

=

(

PX
ee − l2cos(θ2)

P Y
ee − l2sin(θ2)

)

which is a system with 2 equations in 2 variables that can be solved to get θ2 and θ3 (with 2
solutions for each θ1).

With this method, an optimization can be performed to improve a cost function on the
parameter θ1.

4.4.2 Laparoscopic robot

Now an example of a laparoscopic robot will be presented. These robots are used to perform
laparoscopic surgery and usually have up to 4 arms to work, but here we will focus on only one
arm robot as shown in Figure 9.

In every laparoscopic surgery, there is an entrance point P , with a trocar, to insert the robot.
The link between points P and ee must enter through that point. The patient is then inflated
with the end effectors in it, to generate enough workspace to move the tools.

According to the Denavit-Hartenberg convention, the robot has the following parameters:
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Figure 9: Laparoscopic robot. In orange, the different degrees of freedom of the robot,
with their axes in blue. The passive joints’ rotation axes are drawn in green, and the end
effector’s tool axes in grey. The trocar is marked in red.

link ai αi di θi θmin
i θmax

i

1 0 0 d1+0.165 0 −π/2 π/2
2 0 π/2 0 θ′2 − π/2 −π/2 π/2
3 a −π/2 l2 θ′3 −π/2 π/2
4 0 0 0 θ′4 −π/2 π/2
5 0 π/2 0 θ′5 −π/2 π/2
6 0 −π/2 l3 θ′6 + π/2 −π/2 π/2
7 0 π/2 0 θ′7 −π/2 π/2
8 0 π/2 l4 θ′8 − π/2 −π/2 π/2
9 0 π/2 0 θ′9 − π/2 −π/2 π/2
10 0 π/2 0 θ′10 − π/2 −π/2 π/2

where d1, θ2, θ3, θ4 and θ5 are the

positioning active degrees of freedom, θ6 and θ7 are two passive joints that ensure the robot
enters the patient through the trocar (rotational around axes z6 and z7 in Figure 9) and θ8, θ9,
θ10 are the joints forming a spherical wrist to orientate the end effector.

• Inverse kinematics equations
To perform the inverse kinematics of the manipulator on the position (without consid-
erating orientation), given a desired end effector position, Xee, and assuming the trocar
position is known (previously calculated), we have that in frame 0: C0 = Xee+ l4

P−Xee

‖P−Xee‖
,

and so, by the Denavit-Hartenberg parameters, we have

C0 = T 0
1 (d1)·T 1

2 (θ2)·T 2
3 (θ3)·T 3

4 (θ4)·T 4
5 (θ5)·









0
0
l3
1









, which leads to the following equations:

C0
x = c2(l3c3c4s5 + l3c3s4c5 + a1c3c4) + s2(l2 − a1s4 − l3(s4s5c4c5))

C0
y = −c2(l2 − a1s4 − l3(s4s5c4c5)) + s2(l3c3c4s5 + l3c3s4c5 + a1c3c4)

C0
z = d1 + (s3c4s5 + s3s4c5)l3 + s3a1c4 (9)

which can be combined to obtain:

(C0
xc2 + C0

ys2)s3 + (z − d1)c3 = 0 (10)
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Now, having 5 degrees of freedom and a positioning task of 3 degrees of freedom, we can
fix the values of d1 and θ2, to obtain two solutions for θ3 in (10). These solutions can
then be inserted onto (9) to obtain the other two angles θ4 and θ5. Again, we can see two
assembly modes, one for each of the solutions of θ3, both reaching the same position of C.

What we can see now is that we have to choose two of the degrees of freedom, thus having
2 dimentions to optimize the final position. What we can do is to calculate the passive
joints with an initial solution and try to optimize, for example θ5 when the other angles
are known.

• Passive joints calculation.
To obtain the passive joints θ6 and θ7, knowing joints θ1, ..., θ5 and the trocar point P , we
can calculate the passive joints’ values by calculating the end effector position in frame 5:

X5
ee = T 4

5 (θ5)T
5
6 (θ6)T

6
7 (θ7)X

7
ee = T 4

5 (θ5)T
5
6 (θ6)T

6
7 (θ7)









0
0
l4
1









and, on the other hand:

X5
ee =

(

T 0
5 (θ1, ..., θ5)

)−1 ·X0
ee =:









Qx

Qy

Qz

1









Combining both expressions we have:








Qx

Qy

Qz

1









=









l4c6c7
l4s6s7

l4c7 + l3
1









which gives the solution, if θ7 6= 0, π:

θ6 = atan2(Qy, Qx)

c7 = Qz − l3

s7 =

{

Qx/(l4c6) if θ6 6= ±π/2
Qy/(l4s6) else

• Analytical optimization.
Nevertheless, in this kind of robots the positioning is recommended to be done so as to
respect some restrictions, like the robot entering the patient from above, or to have a
passive joint θ7 as close to π/2 to optimize maneuverability. So assuming that d1 only acts
as an offset for the vertical height z, we can compute, given θ2, θ3, θ4, the value of θ5 that
minimizes ‖θ7 − π/2‖.

To do so, knowing the trocar point in the base frame, P 0, and the first degrees of freedom,
we have

P 4 = (T 0
4 )

−1P 0 =









x4
y4
z4
1









is known and, on the other hand:
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Figure 10: Barrett’s WAM arm

P4 = T 4
5 (θ5) ·T 5

6 (θ6) ·T 6
7 (θ7)









0
0
γ
1









=









γc5c6s7 + s5(γc7 + l3)
γs5c6s7 − c5(γc7 + l3)

γs6s7
1









, where γ = ‖Xee−P 0‖

Combining the first two terms we have: x4s5 − y4c5 = γc7 + l3, which can be solved when
y 6= 0 (details of this deduction have been considered not relevant) to get:

θ5 = atan2(x,−y) + acos

(

γc7 + l3
√

x2 + y2

)

, (11)

which has a solution when | γc7+l3√
x2+y2

| < 1.

All these calculations might help when solving the inverse kinematics of this robot, but
are not a closed form and the best way of calculating this inverse kinematics might be to
use them in an iterative algorithm.

4.4.3 Barrett’s WAM arm

The Barret’s WAM arm (see Figure 10) is a 7-dof arm with the following Denavit-Hartenberg
parameters:

link ai αi di θi θmin
i θmax

i

1 0 −π/2 0 θ1 -2.6 2.6
2 0 π/2 0 θ2 -2.0 2.0
3 a −π/2 d3 θ3 -2.8 2.8
4 -a π/2 0 θ4 -0.9 3.1
5 0 −π/2 d5 θ5 -4.8 1.3
6 0 π/2 0 θ6 -1.6 1.6
7 0 0 d7 θ7 -2.2 2.2

where d3 = 0.55, d5 = 0.3 and d7 = 0.06

Now, for solving its inverse kinematics, we have to keep in mind that this robot has one
redundant degree of freedom. So what can be done is to solve the system with one fixed angle,
and then perform some optimization. The value of this fixed angle may come for a reference
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position, such as could be a rest position, or just the previous position in a trajectory to be
performed.

It is also relevant in this robot that the last 3 dof consist of a Spherical wrist, which can then
be treated independently. So to compute the inverse kinematics of the robot given a desired
homogeneous transformation:

Tobj =

(

Rx Ry Rz Pobj

0 0 0 1

)

, (12)

we can consider the spherical wrist center as Pw = Pobj − d7 ·Rz.
This reduces the 7-variable problem to a 4-dof positioning problem, where the task is to

reach point Pw (dimension 3), without paying attention (a priori) to the orientation of the end
effector.

Now, back to the problem, we have a 4 dof robot with a 3-D task. And the first question to
ask is which angle to fix to calculate a first solution.

When looking at the robot, one might think that the closest angle to represent the redun-
dancy of this robot might be θ3. But in fact, after comparing the solutions of fixing any of
the first 3 joints, it has been concluded that the best joint to be fixed when solving the inverse
kinematics is the first one, mainly because it moves all the inertia of the robot, and minimizing
its angle variation will reduce the total energy in a movement.

First, we can compute the angle θ4 with the equation of the distance from the origin to the
spherical wrist point:

‖P 0
w‖2 = ‖T 0

1 (θ1) · T 1
2 (θ2) · T 2

3 (θ3) · T 3
4 (θ4)‖2 = ...

= d23 + d25 + d27 + 2(d5 · a+ a · d3)sin(θ4) + 2(d3 · d5 + a2)cos(θ4),

which can be solved to obtain two possible values of θ4, called inner elbow and outer elbow
configurations, depending on the sign of θ4.

And then, knowing that P 4
w =









0
0
0.3
1









, we can express

T 2
3 (θ3)T

4
3 (θ4) · P 4

w = (T 1
2 (θ2))

−1(T 1
0 (θ1))

−1 · P 0
w :















0.3 c3s4 − 9
200 c3c4 +

9
200 c3

0.3 s3s4 − 9
200 s3c4 +

9
200 s3

11
20 + 0.3 c4 +

9
200 s4

1.0















=

=















s1c2(P
0
w )x + s1c2(P

0
w )y − s2(P

0
w )z

−s1(P
0
w )x + c1(P

0
w )y

c1s2(P
0
w )x + s1s2(P

0
w )y + c2(P

0
w )z

1















,

from where, knowing θ1 and θ4, we can obtain the two solutions of θ2 by solving:

11
20 + 0.3 c4 +

9
200 s4

= c1s2(P
0
w )x + s1s2(P

0
w )y + c2(P

0
w )z

(13)

and, with θ2, we obtain c3 = cos(θ3):



Section 4 Analytical methods for inverse kinematics 19

CU

CJ

CL

Pw

Pee

θ2

Figure 11: Barrett’s WAM arm

0.3 c3s4 −
9

200
c3c4 +

9

200
c3 = s1c2(P

0
w )x + s1c2(P

0
w )y − s2(P

0
w )z (14)

and s3 = sin(θ3):

0.3 s3s4 −
9

200
s3c4 +

9

200
s3 = −s1(P

0
w )x + c1(P

0
w )y (15)

To finally get θ3 = atan2(sin(θ3),cos(θ3)). The rest of the angles (θ5,θ6,θ7) are obtained as
a spherical wrist.

This set of equations finds, if possile, the joint position of the WAM arm verifying θ1 = θ01.
If no solution is found, another value of θ01 can be used to find a solution. Usually starting at a
reference value and making bigger changes on it until a solution is found.

In [11] one can find a package with an inverse kinematic algorithm that performs this search
around θ3. This algorithm searches for the solution with the closest θ3 angle to the initial one.
As we have commented, we find it more adequate to search over θ1.

Now, to perform an optimization of the joints position of the robot, knowing a first solution
of its kinematics, [18] and [21] propose that, for these kind of robots their redundant degree of
freedom comes from the elbow rotating about the axis s from the base of the robot to its wrist.

To do such a rotation, knowing points CL, CU, CJ as defined in the Figure 11, we can rotate
them an angle φ around s with the equation:

Cφ = RφC

being Rφ = I3 + sin(φ) [usw×] + (1− cos(φ)) [usw×]2, being usw the skew-symetric matrix of a
vector.

Note that usw is an eigenvector of eigenvalue 1 of Rφ:

Rφ · usw = usw + sin(φ) [usw×]usw + (1− cos(φ)) [usw×]2 usw = usw, as [usw×]usw = 0

And so, we obtain the new rotated points CLφ, CUφ and CJφ.

We can compute the new angles θ1 = atan2(CLy, CLx) and θ2 = acos(CLz/d3), and θ3
solving the system:

(CJ − CL)/a =





cos(θ1)cos(θ2) −sin(θ1)
sin(θ1)cos(θ2) cos(θ1)

−sin(θ2) 0



 ·
[

cos(θ3)
sin(θ3)

]
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Figure 12: WAM arm optimization. In red, the first solution found. In blue, the optimal
solution, and in black, all the solutions found and evaluated.

As the end effector’s position has not changed with a rotation of the solution, the angle θ4
will be the same if the elbow configuration (sign of θ4) is constant.

Note that, if [θ1, θ2, θ3, θ4, θ5, θ6, θ7] is a solution of the inverse kinematics, so it is [θ1 ±
π,−θ2, θ3 ± π, θ4, θ5 ± π,−θ6, θ7 ± π]; thus for each solution on θ4, we have 4 solutions of the
inverse kinematics, where it is recommended to use the one closer to a reference position (or the
previous position), and then one can solve for the rest of the angles as a spherical wrist, to obtain
new rotated solutions, and so perform an optimization of a defined cost function depending on
φ.

To do such a performance, we have decided to take a weighted norm of the solution vector
‖θsol − θinit‖2 = (θsol − θinit)

T · diag(2.5, 2, 2, 1.5, 1, 1, 1) · (θsol − θinit), with θinit a vector of
zeros and perform optimization to minimize this norm. In fact, with the equations exposed in
this section we find a first solution being the one minimizing this norm, but with a weighting
matrix of W = diag(1, 0, 0, 0, 0, 0, 0), and the one on the commented [11] is the one satisfying
W = diag(0, 0, 1, 0, 0, 0, 0). Nevertheless, any optimization function can be used.

In Figure 12 we see an example of this rotations, using the joint vector norm as an optimiza-
tion criteria.
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5 Time-discrete control-based methods

Sometimes it is not possible to find a closed-form analytical solution to the inverse kinematic
problem of a manipulator, and this becomes even harder in the case of a redundant manipulator,
where infinite solutions may exist, forming a subset of the joint space. In these cases, control
methods are often applied to solve the problem of the inverse kinematics of the manipulator.

In this section, we analyse the state of the art on inverse kinematics with control methods,
commenting the advantages and disadvantages of the different methods on the literature, and
we try to find a method which is robust when handling joint limits, convergence issues and
singularities.

We must point out that all these methods are first-order derivative methods, whose systems
are linear. There are also other linear methods such as the extended Jacobian (proposed initially
by Baillieul [1] and further developed in [9]), which are not considered here because of their
need to compute the 2nd order Jacobian, which makes the computational complexity of the
method grow.

5.1 General schemes

The typical inverse kinematics method has a scheme as in Figure 13, where a desired position
xd is taken as a reference, and comparing to the actual state x, an error e is obtained. This
error is then used in a function h, not necessarly lineal, to obtain a joint state θ which is then
used to, with the forward kinematics (f in the figure) of the manipulator, obtain the new state
x.

Xd

X

e
+
-

q

f(·)

h(·)

Figure 13: General scheme of an inverse kinematics controller

5.2 About the convergence of control-based methods

A major problem found in the literature is that, in many cases, convergence of a method is
demonstrated by means of its continuous version, taking a valid Lyapunov function which indeed,
demonstrates its stability. But in a discrete-time controller, as in these results might not be
valid. In fact, as the solution to the inverse kinematics problem is calculated as θk+1 = θk+∆θ,
for some computed ∆θk = αh(θk)(xd − f(θk)) and a step α which is usually a computation
step T times a scalar step γ. A continuous-time solution would mean an infinitely small step α
which, by computation restrictions, is impossible.

Although there exist discrete-time versions of Lyapunov Theory, such as [8], its application
is not as trivial as it would be in a continuous-time problem.

There is also some literature about the convergence of these methods which takes the discrete-
time system as a succesion and proves its convergence. [7] finds an upper bound of the step
α which guarantees convergence, but restricting the operational space to a subset where the
Jacobian is full-rank, smooth and bounded, so its application is not general. Nevertheless, it
points out the relevance of the initial error dependency of these methods to converge, so the
closer to the goal, the better these methods perform, as we will see later.
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The problem of finding a step which, on the one hand, ensures convergence and, on the other
hand, gives an acceptable computational cost, is then an issue to focus on.

Using first order derivative methods of the robot’s motion has the drawback that, depending
on the method and the goal position, an algorithm can get stuck at an algorithmic singularity,
which is when we arrive at a point where the error e belongs to the kernel of the inverted
Jacobian, or in a multiple-task method, a secondary task joint variation takes the contrary
value of the primary task.

5.3 Methods from literature

In the next sections, we will describe different control-based methodologies for obtaining the
inverse kinematics, we will apply them to a simple robot such as a 4R with all joint limits set
at [−π/2, π/2]. Most of the methods are based on the pseudoinverse of the Jacobian. With
this, one may ask why not using J−1. In fact, the inverse matrix does not exist for a non-
squared or non-full ranked matrices and also its terms tend to infinite as the matrix approaches
a singularity. To our criteria, we will mainly prioritize the following:

• Desired position convergence.

• Joint limit avoidance.

• Robustness when a singularity occurs.

• Computational cost.

From now on, a set of methods will be described. For each of them, we will first explain
its main idea intuitively, and then present its algorithm, to later on show their behaviour with
examples and comment their advantages and disadvantages. To illustrate, we will use a 4R planar
robot for a positioning 2-dimensional task, which gives a remaining of 2 redundant degrees of
freedom with the following Denavit-Hartenberg parameters:

link ai(m) αi di θi θmin
i θmax

i

1 0.4 0 0 θ1 0 0
2 0.3 0 0 θ2 0 0
3 0.2 0 0 θ3 0 0
4 0.1 0 0 θ4 0 0

To start, we will present the two most simple methods: the Jacobian pseudoinverse and the
Jacobian transposed. We will comment their drawbacks, and we will present some variations
over those methods so as to reduce the effect of their main concerns, which are:

• Jacobian with very small eigenvalues (singularities). To solve this problem, the
typical solution applied is to damp or filter the Jacobian matrix when calculating its
inverse, or even damp selectively according to the joint’s movements.

• Secondary tasks. When possible, secondary tasks, apart from reaching the goal can be
added to an algorithm. To this purpose, we present the gradient projection method, its
generalisation, the task-priority methods, and also the Jacobian weighting methods.

• Joint limit avoidance. To avoid joint limits, apart from considering it as a secondary
task or even a primary one, joints can be blocked when necessary. This can lead to a
discontinuous activation and deactivation of blocking tasks, so a continuous clamping is
also presented.
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5.3.1 Jacobian pseudoinverse

The Jacobian pseudoinverse method consists in directly inverting the matrix J in the first-order
differential equation ẋ = Jθ̇ (discretized as ∆x = e = J∆θ. The point is that, on redundant
manipulators, J is not a square matrix, so a more general inverse matrix, called Moore-Penrose
pseudoinverse, is used so as to invert J and solve the problem. This inverse operator has also
the property to give the least-squares minimum norm solution. so the solution ∆θ gives the
minimum value of ‖J∆θ − e‖.

As we have just said, the Jacobian pseudoinverse method is based on the Moore-Penrose
pseudoinverse matrix, which is defined as J† = JT · (J · JT )−1 when J · JT is invertible. For
non full row rank matrices, the pseudoinverse is defined more generally as the matrix verifying
JJ†J = J .

With this matrix, we define the method as:

∆θ = α · J† · e,

being α the method step, J† the pseudoinverse of the geometric Jacobian of the manipulator,
and e the task error.

In some cases, when a robot is in a singularity, the method might get stuck in a point or have
too large values on the pseudoinverse matrix. This can be easily seen if we take the formula of
the Jacobian pseudoinverse matrix: J† = JT · (J · JT )−1. If the Jacobian matrix is close to a
singularity, then J ·JT will have very small terms, which will translate to very large terms when
inverting the matrix.

To verify that, if we take the singular value decomposition of J :

J = U · Σ · V T , (16)

where U, V are orthonormal matrices (if J is n × m, being m the number of joints and n the
task space dimension, then U is m × m and V is n × n) and Σ is a diagonal m × n matrix
with σi its diagonal elements, where σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0. (Note that σi may be zero if J is
rank-deficient).

Then if we define r = maxi{i | σi > 0}, we have that r = rank(J), and we can write
(considering m ≥ n):

J =
m
∑

i=1
σiuiv

T
i =

r
∑

i=1
σiuiv

T
i , with ui and vi being the ith columns of U and V, respectively.

Now, as U and V are orthonormal matrices, we can compute the pseudoinverse of J as

J† = V · Σ† · UT =
r
∑

i=1

1
σi
viu

T
i .

With this expression of the Jacobian pseudoinverse, we clearly see that when the robot gets
close to a singularity, one σj becomes very small and so 1

σj
can be very large. As limσj→0

1
σj

= ∞,

this implies very large gains when computing ∆θ = J† · e.
With this representation, the reconstruction error of the method, i.e. the difference between

the error and the variation of position in the task space, at a differential level, can be expressed,
for α = 1 as [4]:

ẋe − J · q̇ =
m
∑

i=r+1

u
T
i ·ẋe

σi
vi.

Now we will show the results of the pseudoinverse method, using the scheme ∆θ = J†e, with
a step α = 1.

The three results shown are those obtained in a planar 4R robot, with a position tracking
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Figure 14: Behaviour of the pseudoinverse method in a singular objective. On the upper
left plot, the green line shows the evolution of end effector’s position, while the robot
structure is drawn evolving from yellow to blue.

(not considering orientation) for an initial configuration of θ =









0
0
0
0









and three different desired

configurations, with a tolerated error of 1 cm. This error might be considered too high for real
tasks, but we have considered it is small enough to these illustration purposes.

The results are shown in 4 plots, as we can see in Figure 14: The first of them is the trajectory
of the robot, plotted in yellow for the initial position, and evolving to blue, whith its end effector’s
trajectory plotted in green. The upper left plot corresponds to the individual trajectory of each
joint, with their limits marked as horizontal lines. The lower-left plot corresponds to the error
of the end-effector positioning, and last, the lower-right plot shows the step α taken at each
iteration.

• Vertical singular end position.

In this case (Figure 14), we show the results for a desired goal xd =

(

0
1

)

. The algorithm

is very fast, with a computation time of 0.0630s. Nevertheless, as we can see in the figure,
the first step is a big leap.

• Joint limit forcing.

Now the desired goal is xd =

(

0
0.1

)

, what causes the robot to quickly approach its joint

limits, set at [−π/2, π/2] for all joints. As it could be expected, now the joint limits are
not respected, as seen in Figure 15.

• Horizontal end position. In this case, what happens in Figure 16 is that the robot does
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Figure 15: Behaviour of the pseudoinverse method when the goal vulnerates joint limits
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Figure 16: Behaviour of the Jacobian pseudoinverse method on a controllability singular-
ity
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Figure 17: Behaviour of the Jacobian transpose method when the goal is a singular po-
sition

not move at all. The Jacobian matrix in this case has the form J = [ 0 v ] and the error
vector e = [ex 0]T . When we calculate the pseudoinverse of J , it only has rank 1 so its
product with e is 0 and the robot won’t move.

5.3.2 Jacobian transpose

To gain speed, the Jacobian transpose method uses, instead of an inverse of the matrix J, its
transpose. This might be compared as if we were considering matrix J as a kind of orthonormal
matrix. Nevertheless, it can be proved in terms of Lypaunov theorem that, for a sufficiently small
step α, the control scheme converges to zero error.

As said, now the control rule using the scheme in Figure 13 is: ∆θ = αJT e ,where JT is now
the transpose of the geometric Jacobian of the manipulator.

This method is computationally very fast step by step, although it may require more steps
than other methods, and it does not consider joint limits.

When choosing α, some literature recommend taking the value that would make the norm

of the change in the task space equal to the norm of the error. That is α = <JJT e,e>
<JJT e,JJT e>

.
Now we will show some examples of the behaviour of this method for the mentioned 4R

manipulator, using (with < ·, · > the dot product):

∆θ =
< JJT e, e >

< JJT e, JJT e >
JT e. (17)

• Vertical singular end position.
In Figure 17, the computation time has been 0.3085s, which is quite fast, althought it
presents some chattering when reaching the goal. This is due to the fact that the second
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Figure 18: Behaviour of the Jacobian transpose method when the objective vulnerates
joint limits

row of the Jacobian matrix has very small values, compared to the first row, as the robot
approaches the singularity on the goal, so a gain on vertical position implies more variation
in the horizontal direction. This chattering makes the algorithm find the solution much
slower, loosing the computational speed gained in avoiding to invert the Jacobian matrix.

• Joint limit forcing.
In Figure 18, we see that, as the Jacobian transposed method does not take into account
joint limits, those are easily surpassed.
What could be done to avoid surpassing these joint limits is to assign the maximum or
minimum value for the joint if it is surpassed, but this does not work well, as the joint is
forced to keep moving towards the joint limit and it gets blocked, possibly blocking the
other joints, as we can see in Figure 19.

• Horizontal end position.
Now the same problem as with the Jacobian pseudoinverse method happens when the
horizontal position is the goal, avoiding the robot to move in that direction.

5.3.3 Jacobian damping and filtering

As commented on the Jacobian pseudoinverse method, when close to a singularity, the pseu-
doinverse method can have very large gains. In addition, the pseudoinverse operator has a
discontinuity w.r.t. the eigenvalues of J in σ = 0. To avoid this discontinuity and reduce these
large gains, which imply a large condition number of the Jacobian, meaning numerical error, the
Jacobian pseudoinverse can be damped.

There are some ways of trying to avoid discontinuities on the singularities, such as damp-
ing/filtering the Jacobian matrix, a good view of these methods can be found in [6] and [4].
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Figure 19: Behaviour of the Jacobian transpose method with joints being blocked at their
limits

• Jacobian damping. If we take an alternative expression of the pseudoinverse, called

damped pseudoinverse, defined as: J †̂ = J · (JJT + λ2I)−1 =
r
∑

i=1

σi

σ2

i +λ2
viu

T
i

which is, for some small λ, almost the same matrix as the ordinary pseudoinverse when
σ2
i ≫ λ2 ∀i, and when some σj is close to zero, limσj→0

σi

σ2

i +λ2
= 0, instead of ∞.

This avoids the large gains commented, but also adds a chattering to the solution when
close to a singularity. This chattering must be avoided, commonly picking a very small
value of λ, as the new reconstruction error will be, for α = 1

ẋe − J · q̇ =
r
∑

i=1
λ2 (u

T
i ẋe)−σi(v

T
i q̇0)

σ2

i +λ2
vi +

m
∑

i=r+1

u
T
i ·ẋe

σi
vi

which evidentiates the possible need of varying the damping factor λ, as it adds a new
error. This is also commented in [6].

Now, testing this method on the 4R manipulator: ∆θ = αJ ·(JJT+λ2I)−1e = α
r
∑

i=1

σi

σ2

i +λ2
viu

T
i e

– Vertical singular end position, as seen in Figure 20, with a computation time of
0.0525s. The method presents no problems as expected.

– Horizontal end position. The same as in Figure 16 happens. This is due to the fact
that the damping is effective in a neighbourhood of a singularity, but, looking at the
singular value decomposition of the method, we can see that σi

σ2

i +λ2
= 0 for σi = 0.

• Numerical filtering. A way of reducing the mentioned reconstruction error in the Ja-
cobian damping methods is to define a singular region and apply the damping factor only
when entering it [5].



Section 5 Time-discrete control-based methods 29

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Trajectory

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

iteration

qi
 (

ra
d)

Joint trajectory

 

 
q1
q2
q3
q4

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5
Absolute Error

 

 
x error
y error
error norm

Damped jacobian, Vertical singularity end, step=1

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Step

Figure 20: Damped Jacobian method in a vertical singularity end position. The method
converges

To this purpose, we define a variable damping factor as

λ2 =

{

0 if σn ≥ ǫ
(1− (σn

ǫ )2)λmax if σn < ǫ
(18)

where σn is the smallest eigenvalue of the Jacobian matrix, ǫ is the width of the singular
region (in terms of singular values) in which the damping factor takes non-zero value, and
λmax is the maximum damping factor. And so, the new filtered pseudoinverse matrix is
J‡ = J · (JJT + λ2unu

T
n )

−1, where un is the eigenvector corresponding to the smallest
eigenvalue.
Again, now the reconstruction error at a differential level, for a step of α = 1 is

ẋe − J · q̇ = λ2 umẋe−σm(vT
mq̇0)

σ2
m+λ2 um.

Testing it for the 4R planar robot: ∆θ = α
n−1
∑

i=1

1
σi
viu

T
i e+

σn

σ2
n+λ2vnu

T
ne

– Vertical singular end position. See Figure 21. As it could be expected, this case
presents no difficulties.

– Horizontal end position. Figure 22 As in the damped least squares, the effect is
the same as in Figure 16. But if we add a random perturbation of order 10−6, this
method allows the convergence to the goal, although it does so with very large gains.

5.3.4 Selectively damped least squares.

As we have seen, some methods make big leaps in their firs steps. This is due to the fact that
a small eigenvalue causes the Jacobian pseudoinverse method to have big gains in all directions,
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Figure 21: Filtered Jacobian method.
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Figure 22: Filtered Jacobian method with a perturbation on the initial singular position.
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even if these small eigenvalues are damped or filtered. In [2], a new way of damping is defined,
which consists in damping differently the effect of each one of the components of the position
error, expressed in the base of the singular value decomposition of J , so small eigenvalues of the
Jacobian, which would turn into large gains, are damped more severely.

First, consider the singular value decomposition of the Jacobian matrix, and the pseudoin-
verse algorithm:

J = UΣV T =
n
∑

j=1

uiσiv
T
i .

∆θ = J†e =

n
∑

j=1

σ−1
i viu

T
i e,

where ui are the eigenvectors of J in the task space.

Then if we consider a unitary error in the direction of one of the eigenvectors in the task
space (columns of U), e = ui, then the pseudoinverse method would give a variation of joint j
of ∆θj = σ−1

i vj,i(u
T
i ·ui) = σ−1

i vj,i, which translates in a movement of the robot in the direction
of ui of σ

−1
i vj,iJj , being Jj the jth column of the Jacobian matrix. Thus it is defined:

Mi = σ−1
i

m
∑

j=1

|vj,i|‖Jj‖, (19)

where Jj is the jth column of the Jacobian matrix of the manipulator, and Mi estimates the
sum of the distances moved by the end effector caused by the individual changes in joint angles.

Now, defining a maximum angle change γmax, we can bound the angle change in response
to the ith component (in base U) of the error e as:

γi = min(1, 1/Mi)γmax.

The idea is that, whenMi is small, the joints’ changes of each error component have cancelled
each other, and so a higher response is needed, but only in the affected direction (ui), as with
the pseudoinverse method the same gain is applied to all coordinates.

Now this γi is used to damp the gain on each column of matrix U

∆qi =

{

wi if ‖wi‖∞ ≤ γi
γi

wi

‖wi‖∞
otherwise

being wi = σ−1
i vi(u

T
i · e) (wi = 0 in case σi = 0)

And finally damping the total motion by

∆θ =

{

∆θ̂ if ‖∆θ̂‖∞ ≤ γmax

γmax
∆θ̂

‖∆θ̂‖∞
otherwise

Where ∆θ̂ =
∑

i|σi 6=0

∆qi

Now, using this method with a 4R planar robot, we have:

• Vertical singular end position. Computation time of 0.0642s. As we can see in Figure 23,
the method converges fastly, and smoothly.

• Joint limit forcing. (Computation time of 0.0890s) Although the steps are very uniform,
as we can see in Figure 24, joint limits are not respected because they are not considered
in the algorithm.

• Horizontal end position. In this case, it also happens to be that the initial error belongs
to the kernel of the algorithm, so the robot won’t move as in Figure 16.
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Figure 23: selectively damped least squares method. Vertical singular goal.
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Figure 24: Joint limit forcing, selectively damped least squares.
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5.3.5 Gradient projection

With the pseudoinverse method, we find the solution of the least-squares problem. Nevertheless,
when having redundant degrees of freedom, we can optimize according to another criterion, and
one way of doing so without altering much the zero-error tracking is to create a secondary task
as a gradient of a function, and projecting to the kernel of the primary task.

When we have a redundant manipulator, we can add a secondary objective to the solution
of the inverse kinematics. An easy way of doing so is to create a cost function H, calculate its
gradient ∇H, and project it to the kernel of the matrix J . Why projecting into the kernel of
J? Knowing that for any position of the manipulator, ẋ = J · q̇, this means that if θ̇ ∈ ker(J),
then ẋ = 0, so it would not affect the error. In practice, as the step is not infinitely small,
the linearization done by projecting the vector to the nullspace would indeed generate some
additional error.

This projection can be done multiplying any vector v by the matrix P = (I − J† · J).
Proof: if P · v = (I − J† · J) · v ∈ ker(J), ∀v ∈ R7 then J · (P · v) = 0.
so J · (P · v) = J · (I − J† · J) · v = (J − J · J† · J) · v = (J − J) · v = 0, ∀v ∈ R7.
And this method would be expressed as:

∆θ = α · J† · e+ µ(I − J† · J) · ∇H, (20)

with µ a scalar indicating the magnitude of the projection, and ∇H the vector to project.
And in this case, the reconstruction error at the differential level, for α = 1 is:

ẋe − J · θ̇ =
m
∑

i=r+1

u
T
i ·ẋe

σi
vi + J ·

m
∑

i=r+1
(vT

i ∇Ḣ) · vi =
r
∑

i=1

u
T
i ·ẋe

σi
vi, if ∇Ḣ ∈ Ker(J).

Now, after some experimentation, we have seen that the gradient projection method pushes
the joints away from their limits, but its effect is hierarchically under the 0-error tracking, and
so it does not effectively avoid joint limits.

So we will experiment with the manipulability gradient (∇M) and a joint-centering function
H = −λθ projected onto the kernel of the Jacobian matrix, this would, supposedly, solve the
stucking problem on singularities. Using:

∆θ = αJ†e+ µ(I − J†J)∇M , being µ = 0.2 and α with a small value (the least eigenvalue
of matrix J) in the cases where singularity-avoidance is more relevant, or ∆θ = αJ†e + µ(I −
J†J)∇H, with H the joint-centering function otherwise.

• Vertical singular end position using M .
Computation time of 0.0914s.As we can see in Figure 25, the method converges fastly as
without the kernel projection (Figure 14).

• Joint limit forcing. With a computation time of 0.3307s, we now show the effect of project-
ing the gradient of the H function (Figure 26) which, theorically, pushes the joints away
from their limits. We can see that, even with a small step, the fact that the joint limits
are only treated on the kernel of the main task is not enough to ensure those are avoided.

• Horizontal end position. we can now see in Figure 27 (with a computation time of 0.1021s)
that the gradient of the manipulability (∇M) has overcome the problem of getting stuck
in the initial singularity.

5.3.6 Task priority

Task priority algorithms are a generalization of the gradient projection methods. The main idea
is to have an ordered set of tasks, and project each task onto the kernel of the previous tasks

When dealing with redundant degrees of freedom, sometimes we have many tasks to perform.
One example would be a humanoid robot trying to reach an object with its hand, respecting its
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Figure 25: Gradient projection with pseudoinverse method. Vertical singular goal.
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Figure 26: Joint limit forcing, gradient projection with pseudoinverse method.
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Figure 27: Gradient projection on pseudoinverse method

joint limits and keeping its gravity center on a region to maintain equilibrium. This example
illustrates that sometimes there are tasks that are more important than reaching a position. We
do not care if we can reach an object if the robot will fall because it did not keep its equilibrium.

For this kind of purposes, Siciliano and Slotine [19] generated a method to prioritisize a list
of tasks, in a defined hierarchical order. The idea is to define a set of tasks t1, ..., tk, and their
errors e1, ...ek. Then to compute a Jacobian matrix for each task, and perform task 1, then
project task 2 into its kernel, and project task 3 into the kernel of tasks 1 and 2, etc.

So let e1 be the error of task 1, and let J1 be its Jacobian J1 = ∂e1
∂θ .

Then we calculate ∆θ1 = J⋆
1 e1, where ⋆ is an inverse operator (commonly pseudoinverse).

Then, for each i from 2 to the number of tasks k, we do

∆θi = ∆θi−1 + (Ji · PA
i−1)

⋆(ei − Ji∆θi−1), (21)

where PA
i−1 = I−JA

i
⋆
JA
i is the kernel projection operator and JA

i is an augmented Jacobian

JA
k =







J1
...
Jk






.

Typical application

Now an application of this structure would be to generate an algorithm where the first task
(most priority) is to avoid joint limits, and as a secondary task, the positioning goal.

We can define, for a robot, J1 = Hm, m being the number of joints of the manipulator, and
matrix Hm defined with the function (28) as

Hm = diag(1− hβ(θi)). (22)
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Figure 28: Task Priority method.

By observing Figure 30 this means that, as approaching ith joint limit, the ith value of the
diagonal of Hm becomes smaller, and 0 at the limit, blocking the joint.

We also define the main task error as e1 = −λJL · θ, being λJL a scalar to weight the
importance of joint limits. Typically,λJL = 0.1÷ 0.5

With this definition of e1 and J1, ∆θ1 will be zero when the joints’ positions are away from
their limits (at a distance β for each joint), and will have a push-to-center value when in the
limits neighbourhood. On its kernel (i.e.; the joints which are not forced to move to the center
due to their proximity to the limit), it is applied a second task to reach the goal with:

J2 = J the Jacobian matrix of the robot.
e2 = xd − x the positioning error.
And then the method following a task-priority hierarchy is:

∆θ = J1e1 + J2(Im − J†
1J1)

†(e1 − J2J1e1) (23)

Now we can see a clear example of what has been exposed about the continuity of the
pseudoinverse operator:

• Vertical singular end position. Now the discontinuity on the operator † triggers the acti-
vation of the secondary task (which is to reach the goal) as seen in Figure 28. This makes
a very variable dimension of the joints vector space that tries to achieve the goal (i.e., the
kernel of the main task), causing many oscillations, even for a small step.

5.3.7 Jacobian Weighting Methods

Apart from gradient projection methods, there are other ways to perform optimization of the
redundant degrees of freedom, or avoiding joint limits. One of them is to penalize the motion
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of some of the joints, depending on a weighting matrix. This weighting matrix will modify each
joint’s response according to a specified criterion.

In [3], Chan and Dubey define the ∆θ which minimizes

‖θ‖W =
√
θTWθ, (24)

where W is an m × m diagonal matrix reflecting a weight on each joint, depending on its
relevance (according to a specified criteria) instead of the common euclidean norm ‖θ‖ =

√
θT θ.

To this purpose, a new set of joints can be defined as

θW = W 1/2θ, (25)

then

ẋ = Jθ̇ = JW−1/2W 1/2θ̇ = JW−1/2θ̇W = JW θ̇W (26)

and we can compute the pseudoinverse of JW

J†
W = JT

W (JWJT
W )−1 = W−1/2JT (JW−1/2W−1/2JT )−1 = W−1/2JT (JW−1JT )−1

And if θ̇W = J†
W ẋ, we have θ̇ = W−1JT (JW−1JT )−1ẋ.

This pseudoinverse matrix of JW can also be damped or filtered, but then always premulti-
plied by W−1/2, which comes from the change of θW to a joint change on θ.

The influence of ωi = Wi,i is that, the greater the ωi, the less θi will vary in the step.

With this structure created, one can take W = diag(ω1, ...ωm), where ωi = 1 + |∂H∂θi |, being
H : Q ⊆ Rm → R a scalar value to minimize. A typical choice of H is like in eq. (6). What
translates into:

∂H
∂θi

=
(θmax

i −θmin
i )2(2θi−θuimax−θmin

i )

2m(θmax
i −θi)2(θi−θmin

i )2

Nevertheless, in [3] it is pointed out that this gradient does not give information about
whether a joint is moving towards its limit or away from it, so it might be reducing a movement
that, not only is valid, but also sends the joint to a more central position. To this purpose,
in [3] it is defined, for two consecutive steps k and k+1 ∆HiK = |∂H∂θi |k − |∂H∂θi |k−1 and redefine

ωiK =

{

1 + |∂H∂θi | if ∆HiK ≥ 0

1 if ∆HiK < 0

With this new weight, if the robot is moving towards a joint limit, the joint is weighted to
reduce its influence and so, avoid it. And it moves away from a joint limit, the joint is not
affected by a weight.

To perform some examples, the case of a vertical singular end position presents no prob-
lems, while the horizontal end position does have the problem as in the Jacobian transposed or
pseudoinverse methods. Now when forcing a limit:

• Joint limit forcing. Figure 29 (computation time of 0.0622s) we can see the behaviour is
better than with the gradient projection method, and it does push joints back to their
range, although it does not achieve such task 100% efficiently.

5.3.8 Joint Clamping

An intuitive way of avoiding to surpass a joint limit, is to block the value of the joint trying to
surpass its limit. We call this clamping a joint.
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Figure 29: Activation of a joint depending on its normalised value between −1 and 1
using a β = 0.2 threshold.

In [17], a method is defined by adding a term when updating the joint state: θ = θ+H ·∆θ, in-

stead of θ = θ+∆θ, where H can be a diagonal matrix, with: Hi,i =

{

0 if qi > qmax
i or qi < qmin

i

1 otherwise
This control law clamps any motion that violates joint limits, but it does not push the joint

away from them. In this way, when the robot reaches a joint limit, it looses this degree of
freedom, and goes on with the others to reach the target. Nevertheless, when a joint is clamped,
a discontinuity in the movement occurs, which we will see.

Another way of representing the clamping of joints, is to treat it as if it was a weighting
matrix, and then define the method as:

H∆θ = αH(JH)†e. (27)

In fact, in a task-priority based method, some degrees of freedom can be blocked in some
tasks, to be used in others tasks. When this happens, we can also analyse whether this method
is continuous with respect to the activation matrix H or not. If we want αH(JH)† to be
continuous, the following parts must be continuous with respect to H:

• The step α, will not usually depend on H, so α will be continuous with respect to H.

• The matrix JH. As, by construction, J is a constant w.r.t H, it is continuous.
Now for JH to be continuous, it is only needed that H is continuous. To this purpose, an
alternative of H that is continuous can be defined by setting a threshold β to the upper
and lower joint limits, use a continuous function that evolves from 0 at a distance β from
the joint limit to 1 on the joint limit, such as the one proposed in [12].
βi = β · (qmax

i − qmin
i )

and then
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Figure 30: Deactivation of a joint close to its limit.

Hi,i =







































1 if qi > qmax
i or qi < qmin

i

fβi
(βi + qmin

i − qi) if qi ∈ [qmin
i , qmin

i + βi]

fβi
(βi − qmax

i + qi) if qi ∈ [qmax
i − βi, q

max
i ]

0 otherwise

(28)

where ∀x ∈ [0, β], we define fβi
(x) = 1

2(1− tanh( 1
1−x/βi

− βi

x ))
This new matrix H gives a continuous clamping behaviour as in Figure 30, which ensures
continuity of JH w.r.t. H.

• The matrix H is also continuous with the same criteria as for JH.

• the operator †.
We already know this operator is continuous with respect to J when its rank is constant.
Otherwise, the pseudoinverse operator presents a discontinuity:

As seen before, J† =
m
∑

i=1

1
σi
uiv

T
i =

r
∑

i=1

1
σi
uiv

T
i , where r is the rank of matrix J . Then we

have that, limσj→0
1
σj

= ∞, but when a singular value of the matrix J equals zero, by

construction of the pseudoinverse matrix, the eigenvalue 0 is taken, so the pseudoinverse
operator is discontinuous when matrix J looses rank. This can be avoided by damping or
filtering the Jacobian matrix as we have seen in the previous sections.
When looking to the continuity of the operator † with respect to H, we will prove that it

is not continuous: let’s define a joint activation matrix as H =

(

h 0
0 I

)

, with h a scalar

and I the (m− 1)× (m− 1) identity matrix.
Now, we will check the continuity of pseudoinverse operator at h = 0. To do so, it is
great help the Theorem 4.2 in [13], which states that, ∆θ = (GJ)†Ge, being G a diagonal
activation matrix, then it is:
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Figure 31: Clamping joints.

(GJ)†Ge = (ĜJ)†Ĝe, where Ĝ is a different diagonal activation matrix, with the only
restriction that Ĝi = 0 ⇔ Gi = 0, ∀i. This is equivalent to say H(JH)†e = Ĥ(JĤ)†e
(equation (27)) for any matrix Ĥ verifying Ĥi = 0 ⇔ Hi = 0, ∀i.
In words, it means that the effect of nonzero diagonal elements on G does not depend on
their values, if they are not zero.
The same theorem is valid for the case of restricting joints, with method ∆θ = H(JH)†e
so we have

limh→0

(

h 0
0 I

)[

J

(

h 0
0 I

)]†

= limh→0

(

1 0
0 I

)[

J

(

1 0
0 I

)]†

=

=

(

1 0
0 I

)[

J

(

1 0
0 I

)]†

= J†

as the effect of hi,i 6= 0 is the same as hi,i = 1.
On the other hand, we have that, for h = 0, the first column of JH will be zero, and so
the first row of (JH)†, thus the operator is discontinuous at h = 0.

Now, using the method as ∆θ = αH(JH)†e, we can see it gets stuck easily because of this
clamping, even with the continuous clamping function.

• Vertical singular end position. As we can see in Figure 31, at the first step one joint
reaches its maximum. Then this joint is blocked and does not move again on the following
iterations, the robot being unable to reach the goal. This evidentiates that clamping is
not enough to reach the target while avoiding joints, these have to be pushed away from
joint limits.
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5.3.9 Continuous Clamping

To solve the discontinuity on the activation/deactivation of joints, a new inverse operator has
been created to assure the continuity of the method when the activation of tasks or joint is
triggered. These inverse operator will be defined so as to take the value of the Moore-Penrose
pseudoinverse when joints are fully active or blocked, and with this inverse operators a continuous
task-priority method can be used. For practical reasons, we recommend reading [12] to better
understand the definition of this inverse

As we have seen, the pseudoinverse operator is not continuous when dealing with activation
matrices or task priority. To this purpose, as introduced, [14] and [13] propose a continuous
w.r.t activation matrices inverse, based on a diagonal activation matrix to clamp tasks, and also
joints on an algorithm.

• Task Clamping. The original purpose of [14] and [13] is to create a control scheme in
which tasks may vary its activation, named varying-feature-set tasks, which are tasks with
the form eq = Ge, G being a diagonal continuous matrix with its values in the interval
[0, 1]. When gi = Gi,i = 1, the task is active. On the other hand, when gi = Gi,i = 0, task
i becomes inactive.
An example for this would be, in an oriented spatial robot (where the task space has 6
degrees of freedom, 3 for position and 3 for orientation), to activate the orientation tracking
on the Jacobian matrix of a manipulatori only when the robot is close enough to the goal.
Then, matrix G would be:

G =

(

I3 03×3

03×3 A

)

, where

A =







03×3 if e > emin − ǫ
f(e, emin, ǫ) · I3 if emin > e > emin − ǫ
I3 if e < emin



 ,

being f(e, emin, ǫ) a smooth function as in equation (28).

To this purpose, a control method as ∆θ = (GJ)†Ge could be used, but it would have
the continuity problem as previously commented. To solve it, a new inverse operator is
defined in these articles, as

⊕ : Mn×m(R)×Mn×n(R) → Mm×n(R)
(A,G) 7→ A⊕G

to verify:
- Given a matrix A, ⊕ is continuous with respect to G.
That is to avoid the discontinuities caused by the change of task activation on matrix G.
- if ∀i = 1..n, gi ∈ {0, 1}, then A⊕G = (GA)† = (GA)†G
This means that when matrix G is a binary diagonal matrix, the operator must have the
same values as the Moore-Penrose pseudoinverse. This is to keep consistence with the
standard pseudoinverse.

With these specifications, a set of auxiliar matrices are defined: The Coupling Matrices
of a Matrix J are n ×m matrices indexed by the elements of the power set ℘ (the set of
subsets) of N = {1, ..., n}
if P = ∅, X∅ = 0m×n

else ∀P ∈ ℘(N), XP = J†
P −

∑

Q(P

XQ
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where JP = G0J , being G0 a binary diagonal matrix with G0i = 1 if i ∈ P and 0 otherwise.

With these coupling matrices, the Continuous Inverse of a Matrix J with task activation
given by G is defined as:

J⊕G =
∑

P∈℘(N)

(
∏

i∈P

gi)XP =
∑

P∈℘(N)

(
∏

i∈P

gi)(
∏

i/∈P

(1− gi))J
†
P (29)

And it is proven, again in [14], that this pseudoinverse operator verifies the two properties
required.

Also, in [12] this pseudoinverse is generalised for the case of a non-diagonal activation
matrix, say W. If we use the singular value decomposition of W, then W = USUT and
(WJ)†W = (SUTJ)†SUT , and the Continuous Inverse if a Matrix J with task activation
given by a non-diagonal matrix W is

J⊕W = J⊕S
U UT =

∑

P∈℘(N)

(

∏

i∈P

σi

)

XJU
P UT , (30)

where XJU
P are the task-coupling matrices of JU = UTJ .

• Joint Clamping. As seen before, what we expect to do is to restrict a joint movement
to avoid its limits in spite of a task. To this purpose, our starting control scheme would
have the form
∆θ = H(JH)†e, but defining an operator

⊕ : Mn×m(R)×Mm×m(R) → Mm×n(R)
(A,H) 7→ AH⊕

we can calculate the adapted Continuous Inverse of a Matrix J with joint activation given
by H as:

JH⊕ =
∑

Q∈℘(M)

(
∏

i∈Q

hi)YQ =
∑

Q∈℘(M)

(
∏

i∈Q

hi)(
∏

i/∈Q

(1− hi))J
†
Q (31)

With its coupling matrices now defined as
if Q = ∅, X∅ = 0mxn

else ∀Q ∈ ℘(M), YQ = J†
Q − ∑

R(Q

YR

where JQ = JH0, beingH0 a binary diagonal matrix withH0i = 1 if i ∈ Q and 0 otherwise.

This matrix is also defined in [12] as a left-activated continuous inverse from the task-
clamping continuous inverse:
JH⊕ = ((JT )⊕H)T

Note that, then it is ((JT )⊕H)T =
∑

Q∈℘(M)

(
∏

i∈Q

hi)(
∏

i/∈Q

(1 − hi))YQ (i.e.: both definitions

match)
Proof
By definition, we have that ((JT )⊕H)T =

∑

P∈℘(N)

(
∏

i∈P

gi)(
∏

i/∈P

(1 − gi))X
T
P , being XP the

taks activation matrices of JT .
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It is then enough to demonstrate that XT
P = YP , for a diagonal activation matrix H, and

using JT for computingXP . And this demonstration can be reduced to view ((H0J
T )†)T =

(JH0)
†:

Consider a full rank matrix J (the generalization for degenerate matrices is trivial). Then
we have, by definition of the Moore-Penrose pseudoinverse:
for an m× n matrix, the pseudoinverse of a full ranked matrix is defined as
(ATA)−1AT if m > n,
AT (AAT )−1 if m < n.
Then it is (H0J

T )† = (H0J
TJHT

0 )
−1(H0J

T )T

As H0 is diagonal, it is HT
0 = H0 and H0J = JH0, thus:

(

(H0J
T )†
)T

=
(

(H0J
TJHT

0 )
−1(H0J

T )T
)T

= (H0J
T )
(

(JTH0H
T
0 J)

−1
)T

=
= (JH0)

T (JH0H
T
0 J

T )−1 = (JH0)
†
�

By analogy to the previous case, a non-diagonal joint activation matrix D = V ΣV T can
be used, and so

JD⊕ = JΣ⊕
V =

∑

Q∈℘(M)





∏

i∈Q

σi



V Y JV
Q , (32)

being Y JV
Q the coupling matrices of JV = V J .

On [12], these inverse operators are combined with the task-priority method used as in
(23), generate the following algorithm: ∆θ1 = J⊕H

1 e1, being H the same matrix as defined
in (22)
And then the following tasks defined as:

∆θi = ∆θi−1 + J
P i−1

⊕
⊕

i (ei − Ji∆θi−1), (33)

where P 0
⊕ = I, and P 1

⊕ = P i−1
⊕ − JP i−1

⊕
⊕Ji is the kernel projection operator.

In [12] it is demonstrated that the projector operator P i−1
⊕ ⊕ makes the secondary task

not to affect the primary, i.e.:

Ji−1J
P i−1

⊕
⊕

i+1 = 0
Now we show the results for this method, with the task order as in (23):

∆θ = ∆θ1 + J
P 1

⊕
⊕

2 (e2 − J2∆θ1) (34)

With ∆θ1 = JH⊕
1 e1 = IH⊕

m (−λjlθ) = H(−λjlθ), as J1 = Im and e1 = −λjlθ so we finally
have:

∆θ = H(−λjlθ) + J
(Im−H)⊕
2 (e2 − J2H(−λjlθ))

– Vertical singular end position. As we can see in Figure 32, this solution respects
the joint limits. When a joint limit is surpassed, it is forced back to a feasible joint
configuration. What arises now is that, as the goal position has only one solution

θ =









π/2
0
0
0









, with coordinate 1 being a joint limit. This solution is not fully reached

due to the priority to avoid joint limits as the first task. There is an equilibrium
between the primary task: pushing away the first joint from a value of π/2, and the
secondary task, pushing its value to π/2. Nevertheless, the solution is approached
correctly, although on the first step, the initial singularity causes a big step.
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Figure 32: Continuous clamping task priority algorithm.

– Horizontal end position. For this case, as could be expected, the robot won’t move.
This is because it has been assured a continuity depending on the activation matrix,
but no filtering or similar has been applied to solve singularities.

– Joint limit forcing. Now we could expect a correct behaviour of the robot when trying
to force its limits. In spite of this, what we find is in Figure 33. This is due to the fact
that the solution to this desired goal does not exist, so the algorithm keeps looking
for an equilibrium point, that can only be an algorithmic singularity.

5.4 Proposed methods

Apart from what we have been exposing, now we propose two new methods. The first one,
is a new way of filtering the Jacobian matrix, so as to effectively avoid large gains and large
condition numbers of the Jacobian matrix, while the second one is a mixture of the continuous
task-priority clamping algorithm with the selective damping, to find a very smooth algorithm,
as we will see.

5.4.1 Smooth eigenvalue filtering.

Although it may seem that the Jacobian damping and filtering would solve any problem when
a singularity occurs, if we analise the behaviour of the function

fλ : R → R

σ 7→ fλ(σ) =
σ

σ2+λ2

we can see that its derivative w.r.t σ is
∂fλ
∂σ = λ2−σ2

(σ2+λ2)2
= 0 ⇔ σ = ±λ
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Figure 33: Continuous clamping task priority algorithm.

For λ 6= 0, we have fλ(λ) =
1
2λ . This means that, although this damping ensures continuity

at σ = 0, for small values of σ close to λ, fλ(σ) takes very large values, which will not solve
from a practical point of view the discontinuity of the singularity itself.

For this reason, we propose a new filtering of the Jacobian matrix, so if

J =
m
∑

i=1

σiuiv
T
i ,

we define

Ĵ =
m
∑

i=1

hν,σ0
(σi)uiv

T
i ,

where hν,σ0
(σi) =

σ3+νσ2+2σ+2σ0

σ2+νσ+2
is our proposed rational function with:

For a suitable shape factor ν (it has been checked that a value of 10 works correctly).
It can be easily seen that hν,σ0

(σi) verifies:

• hν,σ0
(σi) is continuous and differentiable everywhere if λ2 < 8, and for λ2 > 8 it has two

discontinuities, both for negative σ. So hν,σ0
(σi) is differentiable on the positive side of R

which is where the eigenvalues of the Jacobian matrix are.

• limσ→0 hν,σ0
(σi) = σ0, ∀ν , so σ0 is the minimum value we will allow for the eigenvalues of

the Jacobian matrix.

• m = limσ→∞
hν,σ0

(σi)
σ = 1, ∀ν and ∀σ0

n = limσ→∞ hν,σ0
(σi) − m · σ = 0, so hν,σ0

(σi) has an asymptote of equation y = σ for
σ → ∞.

So what we have is that Ĵ has lower-bounded eigenvalues and tends to J when its eigenvalues
move away from 0, which is what we needed.
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Figure 34: Eigenvalue distorsion when applying function hν

In addition, by construction, we have ker(Ĵ) = ker(J) when J is full-ranked, so secondary
tasks on the kernel of J are not affected. Moreover, as the singularity sets are often a subspace
of the joint space with zero measure, we only care about the neighbourhood of a singularity,
more than about the exact singularity. The only case in which these kernels could be different
is when starting at an exact singularity on a simulation. There it could be a first step in which
those kernels are different. During the simulation, if the measure of the singularity set is zero,
the probability of numerically being in an exact singularity drops to zero. In fact, reducing the
dimension of the kernel of the Jacobian reduces, in this case, the probability of getting stuck in
an algorithmic singularity (see Section 5.2).

The advantages of this method can be seen in Figure 35, where we plot the condition number
of different methods when approaching a singularity in a 4R planar manipulator, for a damping
factor of λ = 2 · 10−4, which is a strong damping, and allowing a maximum damping factor on
the filtering algorithm (variable damping factor) as in (18) of λmax = 5λ. As we have already
commented, the pseudoinverse algorithm’s condition number tends to infinity.

We can also see that the filtered and the damped Jacobian methods have an identical be-
haviour in the sense of the condition number of the Jacobian inverse, and they present a maxi-
mum at σ = λ, with a maximum condition number of almost 3000. This means that, although
very close to 0, the condition number might be smaller than the proposed method on the region
around σ = λ, the filtered or damped Jacobian methods only work well in this small region.

On the other side, the proposed method (with σ0 = 0.005) presents a lower dependency on
the lowest eigenvalue, when reaching the singularity.

We can also analise the behaviour of the condition number for different σ0 values (Figure 36),
where we can see that, even for a small value of σ0, the algorithm is still stable.

Then we can compute Ĵ† =
r
∑

i=1

1
hν,σ0

viu
T
i , being r = rank(J) (assuming σi > σi+1 ∀i), to

use it instead of the common pseudoinverse.
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Figure 35: for σ0 < 0.01 the difference between the eigenvalues becomes very small.
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Figure 37: Smoothly-filtered Jacobian method. With a big step of α = 1, the method
converges fastly, although it keeps doing big steps.

Now, we can see the results when testing this method ∆θ = Ĵ†e, with step α = 1:

• Vertical singular end position. With a computation time of 0.0620s, this method converges
even with big step α = 1 (Figure 37)

• Horizontal end position. Even when the starting position is at a singularity, the method
converges fastly (Figure 38) in a computation time of 0.0645s.
In this case we can see in Figure 39 that, using a step of the least eigenvalue, the trajectory
is very smooth, in the sense that it does not make leaps at the firsts steps.

5.4.2 Continuous Clamping combined with Selective Damping

Apart from smoothly filtering the Jacobian matrix, without altering it much, now we will pay
attention to the algorithm of equation (33):

∆θi = ∆θi−1 + J
P i−1

⊕
⊕

i (ei − Ji∆θi−1),

and the version used in equation (34) ( as J1 = I and, for the identity matrix, I⊕H = H. We
can reorder the terms and split the position error-depending terms (e2) from those which don’t
depend on it):

∆θ = H(−λjlθ) + J
(Im−H)⊕
2 (e2 − J2H(−λjlθ)) =

∆θ =
(

I − J
(Im−H)⊕
2 J2

)

H(−λjlθ) + J
(Im−H)⊕
2 e2 = ∆θ∗1 +∆θ∗2 (35)
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Figure 38: Smoothly-filtered Jacobian method. With the horizontal end position, the
proposed method does not get stuck and converges in only 6 iterations..
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Figure 39: Smoothly-filtered Jacobian method
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Figure 40: non smoothly-filtered Jacobian continuous clamping

This algorithm continuously avoids the joint limits, and the problems associated with the
task clamping. Nevertheless, as we have seen in Figure 32, the first steps of the algorithm are
large, and depending on the initial error, its behaviour can be a bit chaotic as in Figure 33.

For example, using the algorithm in equation (33) with a step of α = 1 for the vertical
singularity end, it gives an undesirable behaviour as seen in Figure 40, and smoothly filtering
the Jacobian reduces this behaviour making it converge faster, but it does not solve it, as in
Figure 41

To improve this behaviour, what we intend is to apply the ideas of the Selectively damped
least squares method explained in Section 5.3.4. We will damp selectively each one of the task
space eigenvectors of the Jacobian matrix J2, taking care of the dependency of the position
variation J2∆θ with respect to the position error e2.

To do so, we have to find a bound for J2∆θ, i.e.: the position variation after each step, which
can be written, using equation (35) as:

J2∆θ = J2

(

I − J
(I−H)⊕
2 J2

)

He1 + J2J
(I−H)⊕
2 e2 = J2∆θ∗1 + J2∆θ∗2, (36)

which can be splitted into:

FA = J2∆θ∗1 = J2

(

I − J
(I−H)⊕
2 J2

)

He1

FB = J2∆θ∗2 = J2J
(I−H)⊕
2 e2.

Now, having calculated J
(I−H)⊕
2 , we can use its singular value decomposition, keeping in

mind that the result of this decomposition has to be expressed knowing J
(I−H)⊕
2 is an inverse
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Figure 41: smoothly-filtered Jacobian continuous clamping

of J2, thus

J
(I−H)⊕
2 = V̂ Σ̂−1ÛT =

n
∑

i=1

σ̂−1v̂iû
T
i .

And by analogy to Section 5.3.4 assuming as in the selectively damped least squares algo-
rithm, e2 = us, with s = 1..n, we have (uTk · e2) = (uTk · us) = 1 for k = s and 0 otherwise, so we
have

J (I−H)⊕e2 =
n
∑

i=1

σ̂−1
i v̂iû

T
i ,

and
J (I−H)⊕us = σ̂−1

s v̂se2,

which has an effect on each joint of:

∆θsj = σ̂−1
s J j

2 v̂j,s.

where vj,s is the jth position on the sth column of matrix V , and J j
2 is the jth column of matrix

J2.
Therefore, adding the norms for all joints as with Mi in equation (19), we have:

Ms = σ̂−1
s

m
∑

j=1

|v̂j,s|‖J j
2‖,

This Ms is a bound of the position change gain in the task space generated by the error-
depending part of the algorithm, for each component of the error, and so with it we can set, for
each s = 1..n, the maximum joints change:
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γs = min(1, 1/Ms)γmax

And now, proceed exactly as in Section 5.3.4.
Joints change for each error component (m-dimensional vector):

ws = σ̂−1
s v̂s(û

T
s · e2)

Damping these joints change:

∆qs =

{

1 if ‖ws‖ < γs
ws

‖ws‖γs if ‖ws‖ ≥ γs
(37)

And then, we have to add the non error-dependent part of the algorithm to the sum of each

component : ∆θ̂ = (I − J
(I−H)⊕
2 J2)He1 +

∑

s
qs

To finally damp the total step value:

∆θ =

{

1 if ‖∆θ̂‖ < γmax

∆θ̂
‖∆θ̂‖

γmax if ‖∆θ̂‖ ≥ γmax
(38)

Now we will show the improvements of this method (with a previous filtering of the Jacobian
as proposed in Section 5.4.1) with the same examples that we have been showing.

• Vertical singular end position. Now the computation time has been a bit longer, 0.1351s,
but still affordable. As we can see in Figure 42, the method converges fastly and the error
decreases at each step.

• Joint limit forcing. Now we can see in Figure 43, that the method arrives at its joint
limits and begins with some chattering, as the goal cannot be achieved. Nevertheless,
its behaviour is now much better than in the non selectively damped method, shown in
Figure 33.

• Horizontal end position. Now, the algorithm solves the initial singularity, and converges
fastly in 0.1654s with smooth steps and, looking at the joint trajectory, we can see that
when joint 3 is approaching its minimum value of π/2, its tendency is damped so as to
respect this limit.
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Figure 42: Proposed method for selectively damping the task-priority with continuous
activation method. Bottom right graph plots the values of γs, for s = 1, 2
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Figure 43: Proposed method for selectively damping the task-priority with continuous
activation method
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Figure 44: Proposed method for selectively damping the task-priority with continuous
activation method
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6 Experimental Results

Although the inverse kinematic methods have been described using a 4R planar robot for illus-
tration purposes position control, a more complex experimentation with more practical robots
must be done to assess their effectiveness. To that purpose, we have taken all the methods
exposed, and used them to calculate the solution of a set of initial joint positions (the same
set for all the methods) and final goals. We have compared the number of solutions found, the
number of solutions found respecting the joint limits, and the average computational time for
each one, for those whose solution is found, and also for those solutions respecting joint limits.

We have generally used a step of α = 1 and random initial joint states, but also a singular
initial joint state. The comparison is done on two robots: the 4R robot used before and the
Barrett’s WAM arm presented in section 4.4.3.

6.1 4R planar robot

To begin, we will analise the results for the 4R planar robot we have been using. To do so,
first we have used 1000 different goal positions (all of them reachable) and checked whether the
solution was found or not, with most of the presented algorithms, the robot always starting
in the same joint position (all joints zero). We have set a maximum of 1000 iterations, and
the results can be seen in Table 1, divided into two parts: the methods considering joint limits
(bottom) and the methods which don’t (top).

Method % sol. % sol.
resp.
limits

avg. time
(ms)

avg. time
sol. (ms)

resp.
limits
(ms)

J. Pseudoinverse 100.0 54.8 11 11 10
J. Transpose 100.0 97.7 27 27 27
J. Damping 100.0 55.0 11 11 10
J. Filtering 100.0 61.0 17 17 17
Selective Damping (SD.) 100.0 99.1 18 18 18
Gradient Projection 100.0 33.1 48 48 23
J. Smooth Filtering (SF) 100.0 36.9 12 12 13

TP. Clamping 93.7 89.1 340 233 212
J. Weighting 99.7 53.2 24 24 26
J. Clamping 95.0 69.5 107 20 14
Cont. TP Clamp. 98.7 92.9 98 84 76
Cont. TP Clamp & SF. 98,7 93.3 149 113 99
Cont. TP. Clamp, SF. & SD 99.8 99.1 52 52 51

Table 1: 4R robot results with all joints set at 0 at start position. TP stands for Task

Priority. All methods using a step of α = 1, except for those based on selective damping,
using a different step on each eigenvector and the Jacobian transpose, which uses step in
equation (17). In bold are the proposed methods

In this table we can observe the following:

• All the methods not considering joint limits converge.
We must point out that, the proposed method to smoothly filter the Jacobian eigenvalues
is faster than the Jacobian transpose and the Jacobian filtering algorithms, and almost
as fast as the pseudoinverse and the Jacobian damping algorithm. This means that the
proposed filtering not only converges, but also does not imply a loss of speed.
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The methods respecting joint limits do not always converge due to the algorithmic singu-
larities we have commented before. That is, in some points, the term pushing away from
joint limits equals the term pushing to the goal.

• The Jacobian Transpose and the selective damping methods respect joint limits.
This is due to the initial configuration, which is in the middle of the joint limit intervals.
These methods do not guarantee the limits to be respected, but the way the step is
calculated means the goal position is hardly ever surpassed.

• The Jacobian Weighting and the Jacobian Clamping methods are not effective in avoiding
joint limits, as they don’t reach 70% of the solutions respecting them.

• The methods supposedly respecting joint limits do not always achieve such a task.
In these cases, what has happened is that in the step achieving the goal, one joint limit
has been surpassed. On the following step, this joint limit would be inmediately corrected,
but the algorithm has stopped as the ending criterion is only the position error under a
tolerable norm. Nevertheless, as the step is more controlled with our proposed algorithm,
the proportion of cases with solution not respecting joint limits is smaller.

• The proposed Continuous Clamping combined with the Selective Damping achieves almost
all solutions, with a quite acceptable speed.

Now we have done the same calculations, but using a random joint configuration to start
the algorithm, as can be seen in Table 2:

Method % sol. % sol.
resp.
limits

avg. time
(ms)

avg. time
sol. (ms)

avg. time
resp.
limits
(ms)

J. Pseudoinverse 100.0 49.5 9 9 8
J. Transpose 100.0 66.3 53 53 60
J. Damping 100.0 49.7 9 9 8
J. Filtering 100.0 56.3 12 12 12
Selective Damping (SD.) 100.0 65.2 12 12 11
Gradient Projection 99.9 22.7 53 53 60
J. Smooth Filtering (SF) 100.0 50.2 9 9 8

TP Clamping 94.7 90.8 342 266 250
J. Weighting 98.8 48.0 42 28 39
J. Clamping 94.5 63.6 106 17 13
Cont. TP Clamp. 98.4 93.1 107 72 66
Cont. TP Clamp & SF. 98.6 93.0 127 81 77
Cont. TP Clamp, SF. & SD 93.3 90.0 30 51 47

Table 2: 4R planar manipulator. The initial position is set in a random (valid) joint
configuration.

Now from this calculations we can extract some more details:

• The Jacobian Transpose and Selective Damping methods no longer respect joint limits,
confirming our hypothesis that they achieved them because of the centered starting posi-
tion.
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• The performance of the proposed method of Continuous Clamping combined with the
Selective Damping drops.
Apparently, this result might be surprising. Nevertheless, if we take an example of these
situations, we easily see what happens:

In this case, we have an initial joint configuration of θ0 =









1.1211
1.0413
−0.4748
1.4810









rad, which sets

an initial position of x0 =

(

−0.1167
0.8052

)

m, and a goal position at xG =

(

0.2430
−0.8709

)

m.

As we can see in Figure 45, both positions are almost opposite with respect to the origin.
This means that the algorithm can approach the goal in a clockwise or counterclockwise
direction. If it started clockwise, the goal would have been easily achieved. But its not the
case, and the robot moves counterclockwise until it is stopped by the joint limit repulsive
effect. As the algorithm’s step is very smooth, it cannot jump to another configuration
close to the goal. The solution is indeed found by the Continuous Task Clamping with
Smooth Filtering, as with a step of α = 1, as seen in Figure 46. There we can clearly see
that this algorithm has found the solutions thanks to its big, almost random-like steps.
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Figure 45: Proposed method getting stuck due to its continuity.
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6.2 Barret’s WAM arm

For this robot studied in Section 4.4.3, the methods exposed for the 4R planar robot can be
used, using the whole Jacobian matrix and error calculation as in Section 3.1. We will also
compare to the analytical method exposed in section 4.4.3.

Performing the same analysis of the WAM arm manipulator, we have:

Method % sol. % sol.
resp.
limits

avg. time
(ms)

avg. time
sol. (ms)

avg. time
resp. limits

(ms)

J. Pseudoinverse 100.0 8.1 48 48 22
J. Transpose 60.6 34.9 582 439 432
J. Damping 100.0 9.3 44 44 22
J. Filtering 4.7 0 548 43 -
Selective Damping (SD.) 99.2 61.0 150 143 137
Gradient Projection 100.0 6.1 58 58 22
J. Smooth Filtering (SF) 100.0 0.2 42 42 17

TP. Clamping 0.3 0.3 611 24 24
J. Weighting 100.0 7.4 54 54 22
J. Clamping 43.4 14.5 537 113 86
Cont. TP Clamp. 29.5 29.4 4732 2714 2717
Cont. TP Clamp & SF. 29.9 29.7 4791 2832 2843
Cont. TP. Clamp, SF. & SD 62.1 62.0 3492 1742 1743

Analytical θ3 100.0 100.0 324 324 324
Analytical optimized 100.0 100.0 316 316 316

Table 3: WAM arm results with joints set at 0 at start position. TP stands for Task

Priority. All methods are using a step of α = 1, except for those based on selective
damping and the Jacobian transposed, which uses step in equation (17). Now two analytical
methods have been added, Analytical θ3 corresponds to the one that can be found in [11]
and Analytical Optimized is the analytical method with the optimization explained in
Section 4.4.3

We can observe the following:

• The Jacobian Transpose method’s performance drops, being unable to find a solution,
without concern on joint limits, in almost 40% of cases. This is due to what we commented
in Figure 17, there is a chattering that slows the algorithm and, the more complicated the
robot is, the more iterations will be needed to achieve the goal. We can also see the
Jacobian Filtering method finds almost none solutions.

• The Smooth Filtering algorithm not only finds all solutions, but is also the fastest one of
the joint limit unconcerned algorithms, confirming what we saw with the 4R robot.

• The Jacobian Weighting and Joint Clamping algorithms show no better performance than
for the 4R robot, so these are not recommended. We also have to point out that the task-
priority joint clamping, without the continuous w.r.t. activation matrix pseudoinverse, is
unable to find solutions in this complex robot, so it is also discarted.

• The Selectively Damped method respects, as in the 4R robot, the joint limits, despite not
taking them into account. As we have commented, this is due to the initial position and
the step of the method, which has no overshots in its performance.

• The Continuous activation methods are slow. This is because of their computational
complexity. Nevertheless, we see that adding a smooth filtering to the algorithm in equa-
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tion (34) slightly improves its performance, and adding a selective damping almost doubles
the number of solutions found.

• The analytical method as exposed in Section 4.4.3 is the fastest, and the most efficient.
This could be expected, as we had an an almost completely analytical solution for it.

Now if we use random starting positions, the results are:

Method % sol. % sol.
resp.
limits

avg. time
(ms)

avg. time
sol. (ms)

avg. time
resp.
limits
(ms)

J. Pseudoinverse 100.0 6.3 45 45 20
J. Transpose 54.8 15.4 645 469 471
J. Damping 100.0 6.3 44 44 19
J. Filtering 100.0 7.5 39 39 20
Selective Damping (SD.) 98.6 30.2 158 148 125
Gradient Projection 100.0 14 57 57 19
J. Smooth Filtering (SF) 100.0 7.3 38 38 18

TP Clamping 0.7 0.7 810 23 23
J. Weighting 100.0 5.1 53 53 20
J. Clamping 56.4 21.5 460 119 88
Cont. TP Clamp. 35.8 35.8 4381 2395 2395
Cont. TP Clamp & SF. 36.3 36.2 4365 2322 2322
Cont. TP Clamp, SF. & SD 46.9 46.9 4516 1884 1884

Analytical θ3 100.0 100.0 326 326 326
Analytical optimized 100.0 100.0 307 307 307

Table 4: WAM arm manipulator. Now the initial position is set in a random (valid) joint
configuration.

Where we can extract the same conclusions. Now our proposed method’s performance does
not reach 50% of solutions, but it is still the best of the used control-based algorithms.

The low convergence rate of this last experiment is due to a large initial error in the first
steps. In some cases, when having such a large initial error, these algorithms perform random
steps until they reach a position in which the error is small enough to converge. Nevertheless,
these algorithms can be helped by performing some path planning, in the sense of calculating
a trajectory to reach a goal position, using intermediate points so the error in each part of the
algorithm will be smaller, these methods will more easily converge, acting now as local solution
finding algorithms.

To show how these methods behave in this sense, we have designed a trajectory with the
WAM arm, by the equations
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x0 = f





















0
0
0
2.2
0
0
0





















xf = x0 +





−0.05t
0.2tcos(4πt)
0.1sin(4πt)



 ,

where f is the forward kinematics mapping.
With t going from 0 to 1 divided in 50 equidistant steps. The result for some of the methods

commented are shown in Figures 48 to 54, showing separately the evolution of each joint,
and the error in Figure 47. In these plots, we can see blue vertical stripes, which represent the
possible values of each joint at each position of the trajectory. This is calculated by solving, for
all possible fixed angles, the equations in Section 4.4.3.

In this case, the methods not respecting joint limits have all converged to zero error, except
the Jacobian Transpose. To show cleaner results, we will plot only the joint limit respecting
methods: Jacobian Clamping, Jacobian Weighting, Continuous Task Priority Clamping, the
Continuous Task Priority Clamping with the Smooth Filtering of the Jacobian, and the proposed
method in Section 5.4.2. We do not plot the Task Priority Clamping because it does not
converge.

With these pictures, we can extract the following:

• The Jacobian Weighting method, although converging, is unable to respect joint limits
and performs large jumps.

• The Jacobian Clamping method converges, but making big leaps in its performance and,
for instance, keeping joint 7 blocked most of the time. These leaps are due to changes in
the assembly modes of the solutions. As we said in Section 4.4.3, the robot has different
assembly modes (inner elbow, outer elbow, shoulder orientation, wrist orientation, etc.).
When a trajectory is being done in one assembly mode, and it reaches a point in which
this assembly mode can no longer follow the trajectory, there is a bigger change in the
joints position, corresponding to a change of the assembly mode being tracked. This leads
to fast and dangerous movements of the robot, which must be avoided.

• The Continuous Task priority algorithm is unable to converge without our proposed fil-
tering of the Jacobian matrix. This highlights how useful can be to filter the Jacobian, so
as to avoid unstabilities due to its loss of rank.

• Our proposed method converges, respecting joint limits all the time, and makes the smallest
leaps among the described methods, thus being the smoothest algorithm. Nevertheless,
we can also see some holes in the blue solution stripes. These holes correspond to intervals
for the articulation in which no assembly mode can find any solution. In some cases, when
these holes’ boundaries have values close to a joint limit, the solution found stays at this
boundary, due to the repulsion effect of the joint-centering task.
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Figure 48: Joint 1 evolution along the trajectory. As we can see, our proposed methods
performs the smallests leaps.
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Figure 49: Joint 2 evolution along the trajectory.

Figure 50: Joint 3 evolution along the trajectory.
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Figure 51: Joint 4 evolution along the trajectory.

Figure 52: Joint 5 evolution along the trajectory.
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Figure 53: Joint 6 evolution along the trajectory.

Figure 54: Joint 7 evolution along the trajectory.
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7 Conclusions and Future Work

Along this work, we have exposed the most popular of the inverse kinematic control-based
algorithms in a survey-like way, clearly pointing their pros and contras. We have also proposed
two ways of improving these methods:

• Analytical methods are usually faster. With the example of the WAM arm, we have clearly
seen that analytical methods are always a good solution when available. In this case, for
the WAM arm, we could find such a solution, but for the case of the 4R manipulator, were
it is harder to determine it, or for the laparoscopic robot commented, alternative methods
such as control-based ones are a good option.

• Efficiently filtering the Jacobian matrix of a manipulator.
As exposed in Section 5.4.1, we proved theoretically and in practice that our proposal
improves the existing methods to numerically filter or damp the Jacobian pseudoinverse
of a matrix. We have also seen that this does not mean an additional computational
cost to the algorithm. With this filtering, the Jacobian matrix can be assumed to always
be full ranked, without generating much additional error on the algorithms, thus the
pseudoinverse operator does not have discontinuities due to a rank change in the Jacobian
matrix. This can be used in all control-based methods so as to improve their performance.

• A smooth inverse kinematic method.
Smooth not only in its dependency on the rank of the Jacobian matrix, but also in its
activation matrices to avoid joint limits, thanks to the work done at [14]. Also, its step,
different for each eigenvector of the task, using what was proposed in [2], avoids large
gains on each iteration. This method combines the advantages of other existing procedures
to approach the target position smoothly, eliminating any random-like behaviour, with
the drawback that being smooth means it cannot find the solution by chance, as those
with a large step can do when the initial error is too large. This proposed algorithm might
perform even better in relation to the other algorithms seen when using it as a position
online control algorithm, or a local optimizing algorithm as it is robust with respect to the
error, respects joint limits, and calculates its step at each iteration. More secondary tasks
can also be added with a task priority structure, to improve the obtained position.

As stated in [7], the convergence of control-based methods strongly depends on their step α
and their initial error e0. If α is set as a constant and the initial error is large, then these methods
perform oriented jumps until they reach a position in which the error is small enough to make the
method converge with the given α. In fact, this behaviour could be linked with pseudo-random
planning algorithms such as the Rapidly-exploring Random Tree algorithm. When used as local
planners for complex robots, although their convergence improves, it cannot be assured without
considering the iteration step α, and these methods easily jump from one assembly mode to
another, causing dangerous moves of the manipulator if controlled online. Our proposed method
reduces these drawbacks.

From here, our future work on it could be oriented in the following directions:

• Add other optimization tasks on the proposed algorithm, such a manipulability optimiza-
tion.

• Reduce computational cost, possibly by tuning parameters and improving the algorithms.

• Avoid the algorithm to take bad decisions as in Figure 45. This issue might lead to the
path planning field.
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