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A sus padres Alain Denisot, Lynda Collaou, y su hermana Marina Denisot. Tambien a sus

abuelos Andree Angels, and Jean-Claude Vallet, que me han apoyado y han abierto sus manos

incondicionalmente haciéndome parte de su familia.
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Abstract

This thesis reports research on the fusion of data coming from laser range scanners and cameras

for scene interpretation. These devices are complementary in that one provides information

about the distance at which objects are located, whereas the second one provides information

about their appearance. We provide solutions that show how one can be used to help in the

calibration of the other one, and in such case, how the noise of the first propagates to the

estimates computed by the second. Moreover, to provide a tight integration of the two we

develop solutions not only for the accurate geometric calibration between them, but also for

their correct synchornization.

We also studied how the combination of the two sensors can be exploited to identify dy-

namic scene events. Once the two sensors are geometrically calibrated, we can reliable asso-

ciate low level features extracted in each of them. We exploit such tight correspondence for the

accurate annotation of dynamic events occurring in the scene, and are able to segment out those

moving elements (people) from an otherwise static scene combining the data from laser range

finders and cameras. In the quest for an adequate data fusion algorithm we encountered another

often overlooked sensor calibration problem, that of sensor synchronization. We provide solu-

tions to the synchronization between a camera and a low-rate high-density laser range scanner,

and also with a high-rate low-density range scanner. In the end, we provide alternatives for the

synchronization and also for the data fusion between camera images and each of the two range

sensors using Gaussian mixture models as the core fusion methodology.

The thesis was developed in the context of the national projects PAU (DPI2008-06022) and

PAU+ (DPI2011-2751), and of the EU project URUS (IST-FP6-STREP-045062).
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Resumen

Esta tesis aborda el problema de fusión de datos a partir de distintas modalidades sensoriales,

sensores láser de distancia y cámaras, para la interpretación de escenas. Ambos dispositivos

son complementarios el uno del otro. El primero proporciona información sobre la distancia

a la que se encuentran los objetos mientras que el segundo proporciona información acerca

de su apariencia. En esta tesis proveemos de soluciones que muestran como el primero puede

utilizarse para la calibración del segundo, y en dado caso, como se propaga la incerteza en las

lecturas del primero a la estimación de los parámetros del segundo. Además para poder obtener

una integración a bajo nivel de ambos, desarrollamos soluciones que permiten relacionar espa-

cialmente el uno con el otro además de conseguir su adecuada sincronización temporal.

La tesis aborda también el uso de ambos sensores para la identificación de eventos de

una escena en movimiento. Una vez que los sensores han sido calibrados geométricamente,

podemos asociar las caracterı́sticas de bajo nivel calculadas de cada uno de ellos y explotamos

esta asociación de caracterı́sticas para anotar los eventos que ocurren en la escena y segmentar

los elementos que se mueven (personas). Durante la búsqueda de una técnica adecuada para

la fusión de la información de ambos sensores, encontramos necesario abordar un problema

que habitualmente no es estudiado con rigurosidad, el de la sincronización de los mismos.

Esta tesis proporciona dos soluciones distintas para la sincronización entre una cámara y dos

tipos de sensores láser. Por un lado, una solución que permite sincronizar la cámara con un

sensor láser de frecuencia de adquisición de datos baja pero alta resolución, y un segundo

método para sincronizar un sensor láser de frecuencia elevada de adquisición de datos pero

de baja resolución espacial. Además de proponer estas alternativas de sincronización, la tesis

presenta resultados de fusión de datos usando mezclas de Gaussianas para la detección de

eventos dinámicos.

La tesis se ha desarrollado en el contexto de los proyectos del Plan Nacional de I+D PAU
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(DPI2008-06022) y PAU+ (DPI2011-2751), y del proyecto europeo URUS (IST-FP6-STREP-

045062).
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Chapter 1

Introduction

In robotics and computer vision, scene interpretation is referred to the task of analyzing sensory

data to come up with hypotheses of the events occurring in the real world. Broadly speaking,

scene interpretation generalizes many perception problems such as traffic monitoring, generic

object recognition [91], detection of moving objects in crowded urban areas [95], or mobile

robot localization [48, 69].

All these sample applications of scene interpretation require the fusion of data coming from

multiple complementary sources. For instance, global positioning systems (GPS) have the ca-

pability of measuring the location of a moving system in open space, and inertial measurement

units (IMUs) provide the rotational velocity and the linear acceleration of such moving system.

By fusing the data coming from these two propiceptive sensors, one can compute very accurate

estimates about its position and velocity. The same applies for exteroceptive sensing modal-

ities such as sonars, lasers or cameras. The first two measure the distance from the moving

system to other objects, whereas the last one can measure their appearance, and when several

images from different viewpoints are analyzed, they also provide estimates about the distances

to those other objects. The complementarity of the various sensing modalities allows for a

better interpretation of the environment.

In this thesis we concentrate on the fusion of two of these sensors, namely laser range

scanners and cameras. We study how one can be used to help in the calibration of the other

one, and in such case, how the noise of the first propagates to the estimates computed by the

second. Moreover, to provide a tight integration of the two we develop solutions not only for

the accurate geometric calibration between them, but also for their correct synchornization.
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Laser range scanners have become ubiquitous sensors in robotics applications, mainly be-

cause their steep reduction in cost in recent years. A decade ago a real-time 3D range scanner

of the ones used for the DARPA Grand Challenge would cost about 100,000 US dollars. These

systems have dropped an order of magnitude, and we can find sensors with similar capabili-

ties now for a tenth of their original price. Conventional laser range scanners of the kind used

in robotics applications provide distance measurements to surrounding objects a hundred of

meters away with an accuracy in the centimeter range, depending on the illuminated object

reflectance properties, and find applications for instance in moving object detection, recogni-

tion [44], or tracking [72].

Another advantage of laser range scanners is that their distance readings are not affected

substantially from illumination conditions, a situation that other distance measurement devices

such as time of flight (ToF) cameras do not share. In addition lasers provide less echo artifacts

than other distance measurement devices such as sonars and radars.

The main limitation of laser range scanners is that although reflectance information can be

read from the sensor signal, it is not as rich as that of cameras, and properties such as color or

texture cannot be reliable computed from them.

Cameras are also ubiquitous not only in robotics applications [10], but in a much larger

scope. As of today, a common household might have tens of cameras attached to many devices,

from mobile phones, to computers, video games, tablets, surveillance and security systems,

cars, etc. Hence computer vision applications for scene interpretation have multiplied in recent

years [22, 68, 93]. Camera prices are even lower than that of lasers, and their size has also

reduced to the point in which they can be embedded almost everywhere. Cameras provide

information about the appearance of objects but alone do not provide estimates of the distance

at which those objects are located. It is through the triangulation of multiple images from

different vantage points that one can infer the distance to an object, but perspective geometry

forces for a large baseline to exist between the different views for a distance measurement to be

reliable. However, when two images of the same object are taken from distant points, the object

appearance can change substantially and make distance computation a difficult task. Hence,

lasers and cameras are naturally complementary devices for the measurement of appearance

and distance properties of objects in a scene.

In this thesis we exploit such complementarity. First, in Chapter 3, we use a laser-made

3D map of a large area to aid in the calibration of a network of non-overlapping cameras.
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Figure 1.1: Projection of a laser-computed 3D map on images from a camera network.

Environmental conditions such as wind or drastic temperature changes often call for automatic

methods to be able to recalibrate such large camera networks. Our laser-made map helps

recover not only very accurate estimates about the position and orientation of each camera in

the network, but also helps refine their intrinsic properties. Figure 1.1 shows such application,

in which the 3D map is reprojected to each of the cameras in the network. Notice how it would

be nearly impossible to accurately relate geometrically one camera to the other in the network

should the laser map not be available. The overlapping between the cameras is significantly

non existent.

Using data from a second device, in this case the laser range finder, to calibrate a first de-

vice or set of devices, in this case the camera network, poses a relevant question: what is the

amount of noise introduced by the first sensor into the calibration estimate of the second one.

In Chapter 4 we address this question rigorously, propagating the noise model of the laser range

finder through the 3D reconstruction and the intrinsic and extrinsic parameter estimation func-

tions. This uncertainty propagation is approximated with first order models, and Monte Carlo

simulations are used to demonstrate that such first order models provide consistent estimates

of the seeked parameters for normal variable ranges. Once the simulations were finalized, we

applied the method to real experimental conditions, and showed how the uncertainty in one

sensor propagates to the calibration of the other.
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The solutions reported in these two Chapters relate to static imagery. We are also interested

in analyzing how the combination of the two sensors can be exploited to identify dynamic

scene events. Dynamic event recognition is of utmost importance in many computer vision

and robotics applications, such as surveillance, otlier removal, etc. [28, 31, 95]. Once the two

sensors are geometrically calibrated, we can reliable associate low level features extracted in

each of them, i.e., the projection of each point in the range map to its corresponding camera

image coordinates. In Chapters 5 and 6 we exploit such tight correspondence for the accurate

annotation of dynamic events occurring in a scene. We are able to segment out those moving

elements (people) from an otherwise static scene combining the data from laser range finders

and cameras. In the quest for an adequate data fusion algorithm we encountered another often

overlooked sensor calibration problem, that of sensor synchronization. We provide solutions to

the synchronization between a camera and a low-rate high-density laser range scanner, and also

with a high-rate low-density range scanner. The significantly different acquisition rates of the

two sensors called for different synchronization solutions. In the end, we provide alternatives

for the synchronization and also for the data fusion between camera images and each of the

two range sensors using Gaussian mixture models as the core fusion methodology.

Figure 1.2 shows how the two sensing modalities act complementarily for the detection

of motion events. The top frame shows in green the motion estimates computed purely from

the camera images. Notice how reflectances and sensor saturation produce false positive de-

tections. The middle frame shows in blue those estimates computed in the laser range image.

Notice how the low resolution in the laser range image leaves undetected some elements such

as person arms and bottom parts of the legs. An adaptive mixture of local experts algorithm

helps reconcile the estimates from the two sensors to come up with a better interpretation of

the dynamic elements occurring in the scene, as shown in the bottom frame.

1.0.1 Summary of contributions

Figure 1.3 presents an outline of this thesis. We divide this document in 3 principal topics: 3D

segmentation for planar structures, camera calibration and uncertainty analysis, and segmenta-

tion of dynamic objects. The thesis contributions, chapter by chapter are:

In Chapter 2, we present an efficient graph-based algorithm for the segmentation of planar

regions out of 3D range maps of urban areas. The algorithm is motivated by Felzenszwalb’s

algorithm for 2D image segmentation [18], and is extended to deal with non-uniformly sampled
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Figure 1.2: Recognition of motion events using a high-rate-low-resolution scanner

3D range data using an approximate nearest neighbor (ANN) search. Inter-point distances are

sorted in increasing order and this list of distances is traversed by growing planar regions

that satisfy both local and global variation of distance and curvature. We compare in our

experiments the proposed method vs. a method that uses expectation maximization (EM). In

contrast to EM, no prior knwoledge about the number of segments in the scene is needed, and

the algorithm runs in O(n logn), with n the number of points in the point cloud. We present our

results of the segmentation algorithm at ECMR 2009 [55].

In Chapter 3 the segmentation algorithm is used to extract planes of a range map, and

3D lines are recovered from the intersection of such planes. These 3D lines are the used for

the calibration of a large network of cameras. We developed a semi-automatic procedure for

the calibration of the camera network with non-overlapping fields of view. The method is de-
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vised as a two-step proces in which first camera calibration is achieved through the DLT-Lines

algorithm, matching image lines to 3D lines, and the results are further refined using Lambert-

Marquardt optimization over a reprojection error cost function. The method is validated for

the calibration of the Barcelona RobotLab camera network [84], and in the geottaging of im-

agery taken at UPC’s Facultat de Matemàtiques i Estadı́stica. A direct result of the proposed

calibration procedure is the ability to create direct mappings (homographies) between image

coordinates and world points on the ground plane (walking areas) that support person and robot

detection and localization algorithms. The technique was presented at IROS 2009 [54], and its

application for robot mapping at the IROS’09 Workshop on Network Robot Systems [4]. An

extended version of the method was published at the journal Sensors [56]. The method was a

direct contribution and a result of the European Union-funded project “Ubiquitous networking

robotics in urban settings” (URUS). This part of the thesis was carried in collaboration and also

during a research stay at Instituto Superior Técnico at Lisbon (IST), Portugal.
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Chapter 4 addresses the problem of estimating the amount of error introduced by one sens-

ing modality when it is used to aid in the calibration of another. In particular, to estimate how

noise in the measurement of range data propagates to the estimation of intrinsic and extrinsic

parameters of the cameras. We present a noise propagation uncertainty analysis for the spe-

cific case of the DLT-Lines algorithm [74]. Once the projection matrix is computed for each

camera, the error sources are propagated through the projection matrix towards the position of

the camera. We validated the consistency of the uncertainty analysis with Monte Carlo sim-

ulations, and applied the technique in a real camera network. This allowed us to evaluate the

accuracy of DLT-Lines algorithm in real settings. We presented the results for the uncertainty

analysis at ECMR 2013 [58] and CVIU 2015 [23]. This part of the thesis emerged also from

the collaboration with researchers at Instituto Superior Técnico at Lisbon (IST), Portugal.

In Chapter 5 we present a method to segment dynamic objects from a high-resolution

and low-rate acquisition 3D scanner. Data points are tagged as static or dynamic based on the

classification of pixel data from registered imagery. Per-pixel background classes are adapted

online as Gaussian mixtures, and their matching 3D points are classified accordingly. We

analyzed the correct calibration and synchronization of the scanner with the the accessory

camera. The presented results of the method are shown for a small indoor sequence with

several people following arbitrarily different trajectories. We published our results at ECMR

2011 [52] and in a poster session during the summer school at Ecole Normal Superior in Paris

2011 [57].

Finally, Chapter 6 presents a method to segment dynamic objects using a high-rate sensor.

We fuse Gaussians mixtures of detection hypotheses from range and visible images by using

the method of adaptive mixture of local experts, which adaptively learns weights for the con-

tribution of each sensor from incoming data. In this case, the laser range scanner used was a

Velodyne 32E, which acquires data in real time. In this chapter and also in chapter 5, we paid

special attention to sensor synchronization, providing solutions for laser range to image regis-

tration for both low rate and high rate laser sensors. The results of this chapter were developed

during a research stay at the Laboratoire d’Analyse et d’Architecture des Systémes (LAAS-

CNRS), Toulouse, France, in 2013. We published the results at the CIMAT-X Workshop on

Image processing, Guanajuato Mexico, 2014 [53].
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1.0.2 Publications derived from this thesis

The publications derived from this thesis are:

• R. Galego, A. Ortega, R. Ferreira, A. Bernardino, J. Andrade-Cetto, and J. Gaspar Un-

certainty analysis of the DLT-lines calibration algorithm for cameras with radial distor-

tion. Computer Vision and Image Understanding, 2015, In press, http://dx.doi.

org/10.1016/j.cviu.2015.05.015 [23].

• A. Ortega, M. Silva, E.H. Teniente, R. Ferreira, A. Bernardino, J. Gaspar, and J. Andrade-

Cetto. Calibration of an outdoor distributed camera network with a 3D point cloud. Sen-

sors, 14(8):13708-13729, 2014. http://dx.doi.org/10.3390/s140813708 [56].

• A. Ortega and J. Andrade-Cetto. Dynamic object detection fusing LIDAR data and

images, X Workshop on Image Processing, Centro de Investigación en Matemáticas

(CIMAT), Guanajuato, Mexico, Oct. 2014. http://www.iri.upc.edu/download/

scidoc/1563 [53].

• A. Ortega, R. Galego, R. Ferreira, A. Bernardino, J. Gaspar and J. Andrade-Cetto. Esti-

mation of camera calibration uncertainty using LIDAR data. In Proc. European Confer-

ence on Mobile Robots, Barcelona, Spain, Sept. 2013. http://dx.doi.org/10.

1109/ECMR.2013.6698868 [58].

• A. Ortega and J. Andrade-Cetto. Segmentation of dynamic objects from laser data. In

Proc. European Conference On Mobile Robots, Orebro, Sweden, Sept. 2011. http:

//www.iri.upc.edu/download/scidoc/1259 [52].

• A. Ortega, J. Andrade-Cetto, Segmentation of dynamic objects from low acquisition

rate range data (poster) ENS/INRIA Visual Recognition and Machine Learning Summer

School, Paris France, 2011. http://www.iri.upc.edu/download/scidoc/

1659 [57].

• J. Andrade-Cetto, A. Ortega, E. Teniente, E. Trulls, R. Valencia, and A. Sanfeliu. Com-

bination of distributed camera network and laser-based 3D mapping for urban service

robotics. In Workshop on Network Robots Systems IEEE/RSJ Conf. Intell. Robots

Syst., St. Louis, MO, USA, Oct. 2009. http://www.iri.upc.edu/download/

scidoc/1039 [4].
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Chapter 2

3D planar segmentation

In this chapter we present one technique to segment planar surfaces of outdoor urban areas.

This method works on point clouds with 3D sparse information and segments out planes to

be later used to produce traversability maps, to aid in the calibration of a camera network,

or to generate VR models of the scene. The method is motivated by a graph-based image

segmentation algorithm [18], that has been modified to deal with non-uniformly distributed

3D range data. Figure 2.1 shows an aerial view of a section of our application scenario, the

Barcelona Robot Lab (BRL) located at the Campus Nord of the Universitat Politècnica de

Catalunya (UPC). The BRL is a 10,000 m2 facility for research in outdoor service mobile

robotics, and is equipped with a camera network together. A 3D map of the area was produced

with the method reported in Valencia et al., [90].

The segmentation of 3D range maps into planar surfaces is usually addressed by region

growing algorithms. The system presented by Poppinga et al., [59] for instance, contains a

number of heuristics to obtain incremental plane fitting with the assumption that nearest neigh-

bors are taken directly from the indexes in the range image. Moreover, its secondary polygo-

nalization step is viewpoint dependent, relying also on the neighboring associations given by

the indexes of the range data. In contrast, in our method, nearest neighbors are obtained using

an efficient approximate nearest neighbor search over the entire 3D point map. If the number

of planes to detect is known a priori, EM can be used to assign points to planes in terms of

normal similarity, density of points and curvature [36]. The technique is shown for indoor

scenes in which planar patches are usually orthogonal to each other. For larger, sparser point

distributions, such as the ones found in our outdoor range data, the assumption of an a priori

knowledge of the number of planes is unrealistic. To this end, hierarchical EM can be used
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(a) (b)

Figure 2.1: Partial view of the Barcelona Robot Lab. The segmentation results shown corre-
spond to a search for 30 nearest neighbors per point, 0.5 m distance threshold, and 0.5 curvature
threshold. a) Unsegmented map (top view). b) Segmented planes.

[86], incrementally reducing the number of planes with a Bayesian information criterion, at the

expense of higher computational cost.

Contrary to region growing, one could search for region boundaries instead. A good ex-

emplar of this technique is presented in an architectural modeling application [12], in which

polyhedral models are generated from range data by clustering points according to their normal

directions plotted on a Gaussian sphere. This mechanism helps overcome the sparsity of the

point distribution. The assumption that the scene is made of planar regions is exploited to de-

tect plane intersections and corners to compute plausible segmentations of building structures

made of polyhedrons of low complexity. The method presented in this chapter is motivated on

a graph-based image segmentation algorithm that grows regions according to local and global

region similarity in linear time [18]. Our similarity measures rely on closeness of points and

normal curvature. Moreover, neighbor candidates for region growing are searched for with an

Approximate Nearest Neighbor (ANN) technique [6] that runs in logarithmic time.

The segmentation algorithm we present is capable of segmenting maps with over 8 million

points and with accuracies that range from 5 to 20 cm, and is very flexible with only three

parameters to tune: a nearest-neighbor bound, and thresholds for maximum distance between

points and maximum curvature for a region.

This chapter is structured as follows. First in Section 2.1 or proposed alternative is de-

scribed in detail and compared with a state of the art approach that uses Expectation Maxi-
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2.1 Graph-based 3D segmentation

mization (EM) to fit a probabilistic model of flat surfaces of the range map [36]. The com-

parison takes into account both quality of results and execution time. Finally, experiments on

simulated and real data are presented, followed by some concluding remarks in Sections 2.2

and 2.3, respectively.

2.1 Graph-based 3D segmentation

Our method builds upon Felzenszwalb’s algorithm for 2D image segmentation [18], and ex-

tends it to deal with non-uniformly sampled 3D range data. The algorithm proceeds as follows.

First, the entire data set is preprocessed to compute local normal orientations of fitted planar

patches for each point with respect to its k-Nearest Neighbors (kNNs). Then, the distances be-

tween nearest neighbors are computed. These distances are then sorted in increasing order and

the resulting list is processed to create a forest of trees by merging neighboring points according

to point distances and to the angle between their normals. These two measures, the distance

between neighboring points and the angle between their normals, account for local segment

variation. Global segment variation is also considered by computing the angle between a point

normal and the aggregated normal for the current segment, i.e., the current tree in the forest.

Local and global variation are both taken into account during tree merging hypotheses.

2.1.1 Fitting normals to local planar patches

Consider each 3D point in the dataset with coordinates p = (x,y,z)>. The error between a fitted

planar patch and the range map values for the kNNs to p is given by

ε = ∑
i∈K

(p>i n−d)2 , (2.1)

where n = (nx,ny,nz)
> is the local surface normal at p, K is the set of kNNs to p, and d the

distance from p to the plane. This error can be re-expressed in the following form

ε = n>
(

∑
i∈K

pip>i

)
︸ ︷︷ ︸

Q

n−2d

(
∑
i∈K

p>i

)
︸ ︷︷ ︸

q

n+ |K|2d2 .

Combining the above error metric with the orthonormality property for each local surface

normal into a Lagrangian of the form
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2.1 Graph-based 3D segmentation

l
(
n>,d,λ

)
= ε +λ (1−n>n) ,

the local surface normal that best fits the patch K is the one that minimizes the above expres-

sion [3]. Deriving l with respect to n and d, and setting the derivatives to zero, it turns out that

the solution is the eigenvector associated to the smallest eigenvalue of(
Q− q qT

|K|2

)
n = λn .

2.1.2 Segmentation criteria

In the segmentation algorithm, local surface normals n are computed for each point in the point

cloud, fitting local planar patches. To account for global variation, planar patches are merged,

growing a forest of trees based on curvature and mean distance. The curvature between two

candidate regions is computed from the angle between their two normals, which must be below

a user-selected threshold tc,

|arccos(nT
i n j)|< tc (2.2)

Two segments passing the curvature criteria are merged if they also pass a distance con-

straint. That is, if the sum of distances between their centers along weighted orthogonal direc-

tions is below a user-selected threshold td ,

ki | (ci− c j)
T n j |+k j | (c j− ci)

T ni |
ki + k j

< td (2.3)

with ki and k j the number of points each segment holds and ci and c j the segment centers. See

Figure 2.2.

2.1.3 Implementation details

The input parameters to the segmentation algorithm are |K| the number of local neighbors to

consider for the fitting of planar patches, a distance threshold td , and a curvature threshold

tc. Each planar patch is stored in a tree structure. The tree contains in each node a 3D point

belonging to the segment. The parent node contains also the surface normal. The entire scene is

thus represented as a forest of disjoint trees. At each iteration over the list of ordered distances,

the merging of neighboring planar patches is hypothesized. If the local and global variation

criteria are satisfied, both in terms of neighboring distance and curvature, the segments are
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2.1 Graph-based 3D segmentation

ni

nj

c i

c j

(c -c ) nT
i j j

(c -c ) nT
iij

Figure 2.2: Projection of the region centers ci and c j onto neighboring planar patches.

(a) before union by rank (b) after union by rank (c) path compression

Figure 2.3: Operations used to maintain the height of trees minimal during the merge of planar
patches.

joined using union by rank and path compression. Union by rank means choosing as tree root

the one with larger cardinality when merging two trees, thus minimizing the depth of the tree.

Path compression makes all nodes on a tree point to its parent, thus effectively reducing the

tree depth to 1 [13]. See Figure 2.3.

2.1.4 Computational complexity analysis

The ANN library we use to search for approximate nearest neighbors has expected compu-

tational complexity O(logn) [6], and worst case complexity O(n). Moreover, the complex-

ity of union by rank and path compression is worst case O(α(n)), where α(n) is the very

slowly growing inverse of Ackermann’s function [13], which for any conceivable application
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2.2 Comparison with EM

is α(n)< 4. Therefore, our region growing algorithm takes linear time in the number of points

in the dataset, and the bottleneck of the algorithm is the nearest neighbor search. The over-

all expected computational complexity of our range data segmentation algorithm is O(n logn),

with worst case computational complexity O(n2) for ill posed distributions of the 3D points.

This complexity is in contrast to the much more expensive iterative algorithms that relay on

EM.

2.2 Comparison with EM

The proposed algorithm was tested using synthetic and real data. In the first experiment we

built a synthetic model of an open 3D box consisting of five equally sized faces with varying

noise parameters and also with various levels of outliers to account for lack of structure in

the scene. For each plane, N 2D points are drawn from a uniform distribution in 3D. Then,

each point is corrupted with zero mean Gaussian noise with independent variance σ2 on each

axis. Finally, a small percentage of these points is further normally corrupted with three times

variance σ2 to simulate the presence of outliers. We used the following values in the simulation:

σ2 = {0.0001,0.001,0.01,0.1,0.2,0.3,0.4,0.5}, percentage of outliers equal to 5%,10%, and

N = 1000 points per plane, i.e., 5000 points per open cube.

The proposed algorithm was compared with Liu’s EM algorithm [36]. In our implementa-

tion of Liu’s method, the following parameters were used: J = 5 planes; points are considered

outliers when xmax > 2; and the density of each plane is smaller than 70% of the simulated

points. The terminating condition in the standard EM algorithm is reached when J = 5 planes

are found and the E and M steps have iterated over 25 cycles. Figure 2.4 shows comparison of

Liu’s method to ours for cubes generated with 5% and 10% of outliers and noise parameters

σ2 = 0.0001 and σ2 = 0.001.

Figure 2.5 shows the mean square reprojection error for each plane ε/N, computed from

Equation 2.1, and averaged for all planes in the open cube. For the selected operating param-

eters, both methods have comparable segmentation results.

The clear advantage of the proposed algorithm is its computational cost. To compare al-

gorithm speed, the open cube is sampled with N = {100,500,1000,5000}, a fixed 1% amount

of outliers, variance σ2 = 0.01, and maximum iteration to 25 cycles for the EM algorithm.

Figure 2.6 reports execution times for both the EM-based and our graph-based segmentation
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2.2 Comparison with EM

(a) Synthetic data with σ2 = 0.0001
and 5% of outliers.

(b) EM-based segmentation results. (c) Graph-based segmentation re-
sults.

(d) Synthetic data with σ2 = 0.001
and 10% of outliers.

(e) EM-based segmentation results. (f) Graph-based segmentation re-
sults.

Figure 2.4: Synthetically generated data for an open cube with five faces. Expectation-
maximization-based segmentation is computed with our implementation of the method re-
ported in [36]. The last column shows segmentation results over the same data with the pro-
posed graph-based segmentation algorithm.

approaches. In spite that the expected computational complexity of our algorithm is O(n logn),

its constant factor is significantly smaller than that of the EM-method. At 5000 data points, our

method takes only about 3 seconds, whereas the EM-based approach is over 150 times slower,

taking more than 7 minutes to compute the segmentation, in our implementation. All reported

times are for experiments performed in a Pentium 4 PC with 2GB RAM running Matlab under

Linux.

The method is applied to our real data set of the Barcelona Robot Lab, acquired during an

outdoor 3D laser-based SLAM session [90]. The set contains over 8 million points and maps

the environment with accuracies that vary from 5 cm to 20 cm approximately (see Figure 2.7).

The input parameters for our segmentation algorithm applied to this set are K = 30 nearest

neighbors, td = 0.5 for distance threshold, and tc = 0.5 for curvature threshold. Segmentation

results are shown in Figure 2.8. The proposed algorithm takes approximately 20 minutes to

complete the plane segmentation. To show the applicability of the algorithm to robotics tasks,
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Figure 2.5: Mean square reprojection error with varying noise parameters and percentage of
outliers for the two segmentation algorithms. a) Reprojection error with 5% of outliers. b)
Reprojection error with 10% of outliers.

segments are labeled according to their normal orientation to indicate traversable regions versus

walls and obstacles.

2.3 Remarks

The presented technique for range data segmentation has several advantages when compared to

region merging EM-based algorithms. On the one hand, the computational cost of the presented

approach is very appealing to handle large point clouds. Moreover, no a priori knowledge on

the number of planes in the scene is needed.

One possible refinement to this segmentation method is to further build polygons from the

set of points in each segmented plane with the aim of producing realistic virtual reality models.

This however is not needed for our laser-to-image calibration purposes and is left out of the

scope of the thesis.

In the following chapter we will show how this segmentation mechanism can aid the cali-

bration of a non-overlapping large outdoor camera network.
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Figure 2.6: Time comparison between EM-based segmentation and the proposed graph-based
approach. a) Execution time for both algorithms. b) Execution time for the proposed approach.

Figure 2.7: Aerial view of the Barcelona Robot Lab, and its 3D point map.
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2.3 Remarks

(a) (b)

Figure 2.8: Barcelona Robot Lab. a) Planes extracted from the map of the Barcelona Robot
Lab with the proposed graph-based segmentation approach. b) A possible application of the
algorithm is to label segments according to traversability conditions. The segmentation results
help differentiate horizontal planes for traversability (in red) from walls and obstacles (in blue).
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Chapter 3

Camera network calibration using 3D
information

The development of powerful laser sensors combined with simultaneous location and mapping

(SLAM) methodologies [85] allows the possibility to have available high precision 3D maps

registered over large areas [43]. These maps come in the form of large point clouds and are typ-

ically used to support robot navigation systems [90], and are usually acquired with laser range

finders. In this chapter we present a methodology to calibrate an outdoor, non-overlapped,

distributed camera network using such range data. See Figure 3.1. To that end, we acquired

a 3D map covering the complete area of the network and, in particular, containing those areas

corresponding to the fields of view of the cameras.

Traditional techniques for camera calibration require the use of non-planar [87] or pla-

nar [99] patterns, usually made of points, lines or checkerboards [14, 67], conics [11] or, even,

augmented reality tags (ARTag) [19]. Unfortunately, for large outdoor camera networks, cali-

bration patterns of reasonable sizes often project on images with very small resolution, mainly

because cameras are usually located at a considerable height with respect to the floor, conse-

quently making pattern segmentation difficult. In addition, a pattern-based independent calibra-

tion of each camera would require a secondary process to relate all camera coordinate systems

to a global reference frame. But, establishing this relation with small to null overlapping fields

of view is nearly impossible. For planar scenarios, a direct linear transformation (DLT) [30]

suffices to estimate image to plane homographies [50]. Unfortunately, the planar scenario as-

sumption is too restrictive, especially in situations with nonparallel, locally planar surfaces,

such as ramps and plazas, which often occur in real urban environments, as in our case.
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(a) (b)

Figure 3.1: Results of the proposed calibration system. (a) Plane selection in a graphical user
interface and registration of the laser range data with a view from one of the cameras in the
network; (b) recovered orthographic view of the ground plane. The chess pattern shown is not
used for calibration; it serves just to visually evaluate the quality of the ground-plane rectifying
homography.

An interesting technique to calibrate the camera network without the need of a pattern

is with the aid of a bright moving spot [82]. The technique assumes overlapping fields of

view to estimate the epipolar geometry to extract homographies, estimate depth and, finally,

compute the overall calibration of the camera network. In our case, the cameras’ fields of view

seldom overlap, and the visibility of the bright spot does not always hold in sunlight. Another

alternative is to place an LED light on a moving robot and to track it with a secondary robot

equipped with a laser sensor, relating their position estimates to the camera network [97]. Yet

another system that relies on tracking a moving object to estimate the extrinsic parameters

is [64], which assumes a constant velocity model for the target. Tracking a moving target

each time the system needs recalibration might be prohibitive. The estimation of the camera

location purely by analyzing cast shadows is also mathematically possible, but with very low

position accuracy in practice [32], and if one is interested only in the topology of the network

configuration and not in a metric calibration, multi-target tracking of people could also be an

alternative [88]. In contrast to these approaches, we opt for a system that does not rely explicitly

on a moving pattern or shadow to calibrate the network and that produces an accurate metric

calibration.

For camera network systems that incorporate camera orientation control (pan and tilt) and
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motorized zoom, it is possible to use such motion capabilities to first estimate the intrinsic

parameters rotating and zooming, fitting parametric models to the optical flow, and then to esti-

mate extrinsic parameters aligning landmarks to image features [8]. Unfortunately, in our case,

the cameras are not active. Another option is to use stereo pairs instead of monocular cameras

at each node in the network. In this way, local 3D reconstruction can be obtained directly within

each node and registered globally using graph optimization techniques [42]. Overlapping fields

of view are still necessary in that case. A third option to calibrate the camera network, albeit

relative translation, is to use a vertical vanishing point and the knowledge of a line in a plane or-

thogonal to the vertical direction on each camera image [33]. A different, but related, problem

is the relative positioning of one or more cameras with respect to a range sensor. To that end,

calibration can be achieved using a checkerboard pattern, as in [25]. A related methodology to

calibrate extrinsically an omnidirectional camera using point correspondences between a laser

scan an the camera image is proposed in [70]. In contrast to our approach, the method assumes

known intrinsic camera parameters. For a method to calibrate the laser intrinsic parameters

instead, the reader is referred to [45].

We benefit from the availability of a dense point cloud acquired during a 3D laser-based

SLAM session with our mapping mobile robot [90]. The set contains over eight million points

and maps the environment with accuracies that vary from 5 cm to 20 cm, approximately. These

data replace the need for a checkerboard pattern, a tracked beam, a robot or active capabilities

of the cameras and are used as external information to calibrate the network.

Our work is largely related in spirit to the method described in [35], in which a set of

images are registered into a urban point cloud. One major difference of the approach is on the

assumptions made with respect to the characteristics of the scene during 3D feature extraction.

In particular, the above-mentioned technique exploits the fact that buildings have strong parallel

edges and that these cluster with similar orientation. On the contrary, we exploit the fact that

in urban scenes, large planar regions also meet at long straight edges. In contrast with [75],

in which edge parallelism is used to calibrate only the attitude and focal length of cameras for

traffic monitoring, we use edge information to calibrate also the camera location.

The rest of the chapter is organized as follows. We explain first how nominal calibration is

executed and then how this calibration is refined, first by extracting 3D features from the point

clouds and optimizing over the reprojection error of their matching to those found in images.
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3.1 Nominal calibration

When needed, a final refinement step is computed by means of the DLT-lines algorithm. Ex-

periments on a pair of scenarios are presented to show the feasibility of the proposed solution.

The chapter is concluded with some remarks and possible enhancements of the method.

3.1 Nominal calibration

The proposed calibration procedure is illustrated in Figure 3.2. It consists of two main steps.

In the first step, the internal camera parameters are initialized to the manufacturer specifica-

tions (image pixel width and depth and focal length), and a nominal calibration of the camera

external parameters is obtained by manually registering the point cloud to an aerial image of

the experimental site with the aid of a graphical user interface, prompting the user to coarsely

specify the camera location, orientation, height and field of view. These initial parameters al-

low the cropping of the full point cloud into smaller regions of interest compatible with the

field of view of each camera. The user can then adjust the registration by manually modify-

ing each of the parameters (see the video associated with [54], available in the IEEE Xplore

digital library).

In the second step, an automatic refinement of the camera calibration parameters is obtained

by matching 2D image lines to their corresponding 3D edges in the point cloud. To this end, the

point cloud is segmented into a set of best fitting planes with large support using local variation

as discussed in the previous chapter, and also in [55], and straight edges are computed from the

intersection of perpendicular planes in the set. The extracted 3D lines are associated with 2D

image lines, and this information is fed to a non-linear optimization procedure that improves

both the intrinsic and the extrinsic parameters. Finally, the homographies of the walking areas

are computed for the planar regions in the range data. The final output of the whole calibration

procedure consists in: (1) the extrinsic camera parameters, i.e., the position and orientation

of each camera in the world frame; (2) the intrinsic camera parameters (focal distance, image

center aspect ratio and distortion terms); and (3) the homographies of each walking area.

The first step of the calibration procedure needs to be performed only once, during the cam-

era network installation or when the network topology changes, i.e., cameras are added/moved,

and takes only a couple of minutes. The second step, which does not require user intervention,

can be executed as frequently as needed to keep the system calibrated, despite small modifi-

cations in camera orientation due to weather conditions and maintenance operations. In the
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Figure 3.2: Two-step calibration methodology. In the first step, a graphical user interface is
used to assist in an initial manual registration of the point cloud. The second step refines this
registration, matching 2D image lines with 3D edges in the point cloud.

following paragraphs, we detail the nominal calibration.

For the nominal calibration, the user interacts with a graphical user interface to coarsely

locate each camera with respect to the reference frame of the point cloud and the viewing

direction in the ground plane. For an easier interaction, the point cloud appears registered with

an aerial view of the environment. The registration of the point cloud with the aerial view is

computed manually using the DLT [30]. The camera parameters are initialized with default

intrinsic parameters.

We then compute initial values for the camera pose: the center of projection t is simply

the user selected point p1, located at a user defined height (i.e., 6 m in our application). See

Figure 3.3. The two selected points p1 and p2 set the azimuth direction ψ . The elevation φ
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3.1 Nominal calibration

(a) (b)

Figure 3.3: Graphical user interface. (a) The point cloud is shown to the user overlaid on top of
an aerial view of the environment. The user is prompted to select (1) a coarse camera location
p1; and (2) the viewing direction p2 indicated by the magenta line; (b) During the initialization
process, the user can manually adjust intrinsic and extrinsic parameters on a projected view of
the point cloud.

gives a user-defined inclination to the ground (17◦ in the shown example), and the roll ρ is set

to π to account for the proper axes changes. These parameters suffice to compute the initial

rotation matrix R = RρRψRφ with:

Rψ =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 , Rφ =

 cos(φ) 0 −sin(φ)
0 1 0

sin(φ) 0 cos(φ)

 , and Rρ =

 0 −1 0
0 0 −1
1 0 0


Assuming that the principal point (u0,v0) is located at the image center, we can compute

an initial estimate for the camera intrinsic parameters using as input the focal length f and the

CCD pixel size in millimeters ku and kv, i.e., αv = f kv, αu = f ku, and:

K =

 αu 0 u0
0 αv v0
0 0 1

 (3.1)

The initial estimate of the perspective projection matrix for each camera is:

P = K[R|t] (3.2)

Once this initial estimate is obtained for a particular camera, the user can further adjust

each parameter manually, whilst a projection of a cropped section of the point cloud that falls

25



3.2 Calibration refinement

within the viewing frustum is visualized in the image. Note, however, that this initial estimate

does not take into account radial distortion parameters. These are refined along with the rest of

parameters in the second step of the method.

3.2 Calibration refinement

To improve camera calibration from the nominal parameters, we propose an automatic method,

where relevant 3D edges are extracted from the point cloud and matched to corresponding

image lines. In practice, the method works well with about a half-dozen lines selected from

each camera image.

The procedure uses the nominal calibration as an initial rough approximation and can be

executed anytime to recover from small perturbations in camera orientation or any other pa-

rameter, due to weather (wind, rain, etc.) or maintenance operations (repair, cleaning).

3.2.1 3D edge computation

The computation of straight lines from the point cloud relies on identifying and intersecting

planes. The method to segment planar regions was described in the previous chapter.

Once a set of segments is obtained, their intersecting edges are computed, and the ones

with sufficient support from their generating planes and with good orthogonality conditions are

selected for projection onto the images. The two steps, plane segmentation and edge extraction

are summarized in Algorithm 1.
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3.2 Calibration refinement

Algorithm 1 The algorithm to find edge lines at orthogonal plane intersections within the point
cloud.
EDGEEXTRACTION(M)

INPUT:
M: Point cloud.

OUTPUT:
E: 3D lines.

1: D← /0
2: for each pi ∈M do
3: Ni← FINDNEIGHBORS(pi,M)
4: ni← COMPUTENORMAL(pi,Ni)
5: LABEL(pi)← i
6: D← D ∪ FINDDISTANCES(pi,Ni)
7: end for
8: D← SORTDISTANCES(D)
9: for each dk ∈ D do

10: ci← START(dk)
11: c j← END(dk)
12: if LABEL(ci) 6= LABEL(c j) then
13: if |cos−1(nT

i n j)|< tc then
14: if ki|(ci−c j)

T n j |+k j |(c j−ci)
T ni|

ki+k j
< td then

15: MERGETREES(ci,c j )
16: end if
17: end if
18: end if
19: end for
20: E← /0
21: L← LABELS(M)
22: for each pair of segments (si,s j) ∈ L with respective (ni,n j) do
23: if ORTHOGONAL(ni,n j) then
24: E← E ∪ PLANEINTERSECTION(ni,n j)
25: end if
26: end for

3.2.2 Optimization

Straight image lines are extracted from the camera images using the method proposed in [94].

The line set is pruned to those lines larger than a predefined threshold.

3D model lines are projected onto the image plane using the projection matrix computed

during the nominal calibration step. 2D-3D line association is attained by matching such pro-

jections to the closest 2D image line.

Once the 3D-2D association is established, nonlinear optimization is performed to improve
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Figure 3.4: Optimization. (a) computation of plane intersections in the range data; (b) projec-
tion of lines onto the image plane using the nominal calibration parameters; (c) line matching
optimized in the image plane; (d) segmented point cloud reprojected onto the calibrated image.

the nominal calibration by minimizing the squared sum of the line endpoint projection errors:

minimize
ϑ

∑
i
‖ui−uid(ϑ)‖2 (3.3)

where uid(ϑ) is the distorted projection of the 3D endpoint pi, ϑ = (K,R, t,a1,a2) are the set

of parameters being optimized and ui is the image point. The optimization is solved using

Levenberg-Marquardt nonlinear optimization. See Figure 3.4.

In this step of the method, image distortion is modeled based on even powers of the radial

distance in the image plane:

uid = uin +(1+
2

∑
j=1

a jr2 j)(uin−u0) (3.4)
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3.2 Calibration refinement

where a j are the distortion parameters, r2 = ‖uin−u0‖2 is the radial distortion factorization, u0

is the computed principal point, uin is the normalized (pinhole) image projection of point pi:[
uin

1

]
∼K[R|t]

[
pi

1

]
(3.5)

and ∼ denotes equality up to a scale factor.

3.2.2.1 Initialization

The nominal calibration introduced in Section 3.1 is, in general, sufficient to initialize the cal-

ibration optimization formalized in Equation 4.3. However, one finds that while it is usually

simple and very effective to observe precisely some parameters as the camera horizontal posi-

tion in the coordinates of a laser range finder map; other parameters, such as camera height, 3D

rotation, focal length or principal point, are more challenging. The possibility of automating

the initialization of the optimization procedure is a convenient feature for calibrating cameras

in a network.

The initialization of the calibration optimization process may be setup to find from none

to all of the calibration parameters. ’None’ means using all of the nominal calibration results

to reinitialize the optimization. Whereas ’all’ means refining all parameters from image and

laser range finder data. In between there are several cases of interest, many of which have

solutions published. For example, if a camera has its intrinsic parameters calibrated before

being mounted in place, then one just has to estimate the extrinsic parameters by solving the

well-known Perspective-n-Point (PnP) problem [20]. In the following, we detail two cases.

In the first case, we show how to estimate all of the parameters from 3D lines imaged by the

camera to calibrate. In the second case, we consider that the camera position is precisely known

and detail how to estimate the intrinsic parameters and the camera orientation only.

As proposed in [74], the use of image lines instead of isolated points in the camera cali-

bration process brings an advantage. Image processing can be used to fine tune the location of

the lines in the image and therefore automatically improve the calibration data input. In this

section, DLT-Lines is presented as a method to initialize the optimization step, allowing one to

estimate simultaneously the camera projection matrix and radial distortion, from the 3D point

cloud and 2D lines.

Considering the shorthand notation for image points mi = [u>i 1]> and 3D points Mi =

[p>i 1]> the perspective camera model, Equation 3.5, becomes mi ∼ PMi.

29



3.2 Calibration refinement

The projection of a 3D line Li to the camera image plane can be represented by the cross

product of two image points in projective coordinates:

li = m1i×m2i (3.6)

Any point mki lying in the image line li implies that l>i mki = 0. Hence, applying the multi-

plication of l>i to both sides of the perspective camera model, i.e., l>i mki = l>i P Mki, leads to:

l>i P Mki = 0 (3.7)

where Mki is a 3D point in projective coordinates lying in Li. The properties of the Kronecker

product [39] allow one to obtain a form factorizing the vectorized projection matrix:

(M>ki⊗ l>i ) P= 0 , (3.8)

where the notation P= vec(P) is used to indicate that the elements of the matrix P are stacked

columnwise in vector form.

Considering N ≥ 12 pairs (Mki, li), one forms a matrix B, N× 12, by stacking the N ma-

trices M>ki⊗ l>i . An example of N = 12 arises when one observes six 2D lines imaging six 3D

lines, Li (i= 1, ..., 6), each one represented by two end points, Li↔ (Mi1,Mi2). Alternatively,

given a 3D line Li and its projection represented by the image line li, any 3D point lying on the

3D line Li can be paired with the 2D line li. On the other hand, any image line li can be paired

with any 3D point lying on Li, i.e., more than one image line can be paired with a 3D point.

The least squares solution, more precisely the minimizer of ‖B P‖2 subjected to ‖P‖= 1,

is the right singular vector corresponding to the least singular value of B.

Note that the perspective camera model, as presented in Equation 3.5, does not contain

yet the radial distortion. To include radial distortion, we use Fitzgibbon’s division model [21].

An undistorted image point, u = [u v]>, is computed from a radially distorted image point

ud = [ud vd ]
> as u = ud/(1+λ ‖ud‖2), where λ represents the radial distortion parameter.

The division model allows one to define a line l12 as the cross product of two points:

l12 =

 u1d
v1d

1+λ s2
1

×
 u2d

v2d
1+λ s2

2

= l̂12 +λe12 (3.9)
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3.2 Calibration refinement

where si is the norm of distorted image point i, s2
i = u2

id + v2
id , the distorted image line is

denoted as l̂12 = [u1d v1d 1]>× [u2d v2d 1]> and the distortion correction term e12 = [v1ds2
2−

v2ds2
1, u2ds2

1−u1ds2
2, 0]>.

Applying Equation 3.9 on Equation 3.8 leads to the following equation:(
M>k12⊗ (l̂12 +λe12)

>
)
P= 0 (3.10)

which can be rewritten as:

(Bki1 +λBki2) P= 0 (3.11)

where Bki1 = M>k12⊗ l̂>12, Bki2 = M>k12⊗e>12 and Mk12 denotes the k− th 3D point projecting to

the distorted line l̂12.

To solve Equation 3.11 instead of Equation 3.8, we still need to consider N ≥ 12 pairs

(Mki, l̂i), where N = kmaximax, and form now two N× 12 matrices, B1 and B2, instead of just

N, by stacking matrices Bki1 and Bki2. Left-multiplying the stacked matrices by B>1 results in a

polynomial eigenvalue problem (PEP), which can be solved, for example, in MATLAB using

the polyeig function. It gives, simultaneously, the projection matrix, in the form of P, and

the radial distortion parameter λ .

Having estimated the projection matrix, P, the camera intrinsic and extrinsic parameters can

be obtained by QR-decomposition [30]. More precisely, given the sub-matrix P3×3 containing

the first three columns of P and S an anti-diagonal matrix:

S =

 0 0 1
0 1 0
1 0 0

 (3.12)

the QR-decomposition allows factorizing

P3×3
>S = QU , (3.13)

where Q is an orthogonal matrix and U is an upper triangular matrix. Then, the intrinsic param-

eters and the rotation matrices are computed as K =−SU>S and R = Q>S. Finally, the camera

position is obtained with t = KP4, where P4 is a 3×1 vector containing the fourth column of P.

If the diagonal of K contains negative values, then it is corrected by post-multiplying by a diag-

onal matrix. In MATLAB/Octave

D= diag(sign(diag(K))); K= K*D; R= D*R; t= D*t;. In addition, since ±P are
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3.2 Calibration refinement

both solutions of Equation 3.8, the factorization of P may imply det(R) =−1. If det(R) =−1,

then the factorization of P is repeated using −P.

To convert the obtained distortion parameter λ to the distortion parameters in Equation 3.4,

we sample the region of interest and find a least squares solution for the best parameter fit in

this region. Starting from a set of camera points evenly sampled at pixel granularity covering

the image dimensions {uid}, we apply the Fitzgibbon distortion model to obtain an uneven set

of undistorted pixel coordinates {ui}. We next solve the optimization problem:

minimize
a j

∑
i

∥∥∥∥∥u0 +

(
1+

2

∑
j=1

a jr2 j

)
(ui−u0)−uid

∥∥∥∥∥
2

(3.14)

which is a linear least squares problem in the variables a j, where a closed form solution is

available. For small distortions, we empirically find that a1 = λ and a2 = 0 provide a good fit

to initialize the main optimization algorithm.

3.2.2.2 Known camera location

In the case one knows accurately the camera location, e.g., the camera has been imaged by the

3D data acquisition system, then the number of degrees of freedom of the calibration problem

is decreased. The DLT methodology presented in the previous section can be further simplified.

Subtracting the camera center to all points of the point cloud results in a coordinate system

where the camera is at the origin, and thus, the projection matrix, P = K[R| t] is equivalent to

a simple homography, P̂ = KR. Considering image lines li and 3D points, pki = [xki yki zki]
>,

imaged as points of the lines, recalling Equation 3.7, one has:

l>i KR(pki − W tC) = 0 (3.15)

where W tC denotes the camera projection center in world coordinates. As such, one obtains

linear constraints similar to the ones already derived for DLT-Lines:(
(pki − W tC)

>⊗ l>i
)
KR= 0 , (3.16)

with KR= vec(KR)

The length of KR is just nine, i.e., the knowledge of the camera location saves three vari-

ables to estimate, and thus, the estimation process is intrinsically simplified. Finally, the pro-

jection matrix, P, can be obtained decomposing P̂ = KR and adding the camera location as

P = [P̂ | P̂ W tC].
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3.3 Experiments

The calibration problem has been reduced to the estimation of a homography, represented

by KR and, therefore, not including radial distortion. A similar form based on Equation 3.16

can be obtained for the radial distortion case represented in Equation 3.10:(
p̃>k12⊗ (l̂12 +λe12)

>
)
KR= 0 (3.17)

where p̃k12 = (pk12− W tC). Equation 3.17 can be re-written in the form of Equation 3.11,

which can be used to estimate the camera projection matrix P and radial distortion parameter

λ , as shown before.

3.3 Experiments

To demonstrate the performance of the proposed calibration method, we show calibration re-

sults of two different outdoor scenarios. In both cases, the range data was gathered using a

custom-built 3D laser with a Hokuyo UTM-30LX scanner mounted in a slip-ring. Each scan

has 194,580 points with a resolution of 0.5◦ azimuth and 0.25◦ elevation. The first dataset was

acquired in the Barcelona Robot Lab (BRL). We only use 12 of the 21 cameras. They are

shown in Figure 3.5. For this dataset, our 3D laser scanner was mounted on Helena, a Pioneer

3AT mobile robot, acquiring a total of 400 scans; however, only 30 of them were necessary to

cover the area of the selected cameras. The complete dataset is available online [84].

The second dataset was gathered in the inner courtyard of the Facultat de Matemàtiques i

Estadı́stica (FME), located at the Campus Sud of the UPC. For this dataset, the range sensor

was mounted atop our robot Teo, a rough outdoor terrain Segway RPM400 mobile robot. In

this case, only 39 scans were collected. Figure 3.6 shows the point cloud registered onto an

aerial view of the scene and the segmented planes. A mobile phone camera was used to acquire

geo-tagged images from different position in this scenario.

In both cases, the point clouds generated from the aggregation of multiple scans are pre-

processed to remove outliers, to smooth out the planar regions and to provide a uniform point

distribution through subsampling. The details of the filtering scheme used follow [90]. The

parameters used to segment the range data in both scenarios were n = 25 neighbors to fit planar

patches, a distance threshold of td = 0.5 and a curvature threshold tc = 0.8. Furthermore, we

only consider lines intersecting orthogonal planes with a deviation of ±3◦ from orthogonality.

For those cases when there were less than six independent lines detected for the calibration of
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A5-1

A6-5

B5-3

A6-6

A6-9

B6-3

B6-2

B6-1

B6-6

B6-5

A6-1

B6-4

(a) (b)

Figure 3.5: The Barcelona Robot Lab. (a) aerial view of the camera distribution; and (b) the
point cloud.

(a) (b)

Figure 3.6: The Facultat de Matemàtiques i Estadı́stica (FME) scenario. (a) The point cloud
registered onto an aerial view of the scene; and (b) the segmented point cloud.

a camera, each detected line was broken into three segments, and all of these were used for

the optimization step. This allowed us to have a sufficiently large number of lines to find a

least squares solution to Equations 3.16 and 3.17. In most of those cases, however, the DLT-

lines algorithm did not contribute to the improvement of the solution, and the first optimization

sufficed to find acceptable results.

For the BRL dataset, the initial elevation angle was set to 17◦. We initialized on this value,

because most of the cameras are located about 6 m above the ground, and objects in the images

for which lines can be detected reliably are closer than 20 m. The horizontal field of view is

initialized to 40◦, which corresponds to an 8-mm lens in a 0.25-in CCD.

The final calibration of the internal camera parameters for the BRL set are given in Ta-
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Camera Focal length (pixels) Principal point (pixels) Mean reprojection error (pixels) SD (pixels)

A5-1 926.0, 926.0 499.2, 348.6 1.4 4.5
A6-1 857.8, 857.8 255.4, 338.6 1.6 5.3
A6-5 920.5, 920.5 314.0, 240.9 1.3 4.7
A6-6 842.3, 842.3 296.6, 145.4 0.7 4.2
A6-9 747.3, 747.3 366.6, 226.6 8.8 12.4
B5-3 801.2, 801.2 364.1, 202.1 5.3 6.1
B6-1 597.9, 597.9 388.8, 219.8 0.9 1.6
B6-2 817.9, 817.9 295.1, 262.1 2.6 4.4
B6-3 804.2, 804.2 374.1, 246.1 4.7 7.5
B6-4 824.1, 824.1 336.6, 237.2 3.6 6.5
B6-5 840.0, 840.0 317.9, 229.6 2.2 4.3
B6-6 862.5, 862.5 320.1, 247.1 4.6 8.5

Table 3.1: Estimated internal camera parameters of the BRL scenario.

Camera Position (m) Orientation (radians) Ground truth position (m) Elapsed time (s)

A5-1 −37.93, −25.37, 3.88 −0.63, 1.85, 2.03 −37.91, −28.2, 3.75 95.2
A6-1 42.84, −25.47, 4.06 1.57, −0.73, −1.37 42.66, −24.95, 3.99 86.5
A6-5 12.76, −28.10, 2.58 1.61, −0.90, −1.18 12.39, −28.95, 3.10 45.2
A6-6 9.83, −22.91, 3.07 0.70, −2.21, −2.10 9.44, −23.5, 2.95 79.6
A6-9 19.32, −4.02, 3.49 0.10, 1.85, 1.94 19.03, −6.65, 3.11 56.8
B5-3 −39.93, −1.16, 2.23 1.20, 1.25, 0.88 −38.94, −2.63, 1.95 69.5
B6-1 52.22, 19.14, 3.53 1.43, 0.60, −0.09 51.98, 18.55, 3.11 66.0
B6-2 51.66, 7.50, 3.66 1.52, 0.45, −0.09 51.55, 7.20, 3.45 107.3
B6-3 50.48, 2.53, 3.10 1.50, −0.60, −1.33 50.18, 4.36, 2.90 98.6
B6-4 34.45, 1.21, 3.13 1.15, 1.17, 0.42 32.85, 1.63, 2.90 76.8
B6-5 31.80, 6.34, 2.93 1.50, −0.94, −1.31 31.88, 7.48, 5.10 123.9
B6-6 31.81, 14.74, 5.82 1.50, −0.82, −1.32 31.64, 15.59, 5.10 103.2

Table 3.2: Estimated external camera parameters of the BRL scenario.

ble 3.1, along with the mean reprojection error and standard deviation. Note that a comparison

of these estimates to those obtained with a checkerboard is unrealistic due to the actual posi-

tioning of the cameras. An unfeasibly large checkerboard would be needed and moved along

the whole camera workspace to achieve significant results. Table 3.2 gives the obtained camera

locations for this experiment, together with the camera ground truth locations manually ex-

tracted from the 3D point cloud. These values should only be used as a reference, since small

variations of focal length might have incidence in the final positioning of the camera along the

principal axis, without detriment to the camera reprojection for a limited range of depth values.

The elapsed computation time for the calibration of each camera is also reported in the table.

Figure 3.7 shows the reprojection of each matched line onto the corresponding camera images

after the optimization is computed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.7: Results of the final calibration of the camera network for the BRL scenario. Op-
timization approximates the projected laser lines (blue) to the image lines (red). (a) A5-1; (b)
A6-1; (c) A6-5; (d) A6-6; (e) A6-9; (f) B5-3; (g) B6-1; (h) B6-2; (i) B6-3; (j) B6-4; (k) B6-5;
(l) B6-6.

The estimated camera poses are plotted in Figure 3.8. Camera viewpoints are represented

with triangular pyramids that suggest the viewing direction. To empirically judge the quality

of the calibration results, we can also project all points from the map that fall in each camera

viewing frustum onto the image plane. This is shown in Figure 3.9 for the BRL.
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Figure 3.8: Calibrated camera locations for the Barcelona Robot Lab (BRL) dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.9: Visualization of range data on each of the camera views of the BRL scenario.
(a) A5-1; (b) A6-1; (c) A6-5; (d) A6-6; (e) A6-9; (f) B5-3; (g) B6-1; (h) B6-2; (i) B6-3;
(j) B6-4; (k) B6-5; (l) B6-6.
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Camera Focal length (pixels) Principal point (pixels) Mean reprojection error (pixels) SD (pixels)

Cam-mean 2989.6, 2998.9 499.2, 348.6 9.8 15.3
Cam-1 2985.2, 2986.7 493.2, 343.2 15.3 26.8
Cam-2 2985.5, 2980.2 490.2, 346.1 1.2 3.6
Cam-3 2985.7, 2983.2 560.2, 350.8 2.4 6.0
Cam-4 2984.3, 2987.4 510.2, 340.3 3.6 9.0
Cam-5 2989.4, 2987.2 493.2, 341.6 6.5 8.6

Table 3.3: Estimated internal camera parameters for the FME scenario.

Camera Position (m) Orientation (radians) Ground truth position (m) Elapsed time (s)

Cam-1 −21.29, 3.39 −1.21, −0.90, −1.76 −21.73, 4.04 80.9
Cam-2 0.04, −13.42 0.45, −2.23, 0.37 −0.02, −12.75 106.1
Cam-3 43.83, 15.27 2.27, 0.18, 2.13 42.70, 15.80 182.1
Cam-4 −8.61, −4.81 1.40, −1.27, 1.25 −9.38, −5.73 95.6
Cam-5 −13.97, −0.44 −0.81, −0.80, −1.77 −14.14, −0.56 112.7

Table 3.4: Estimated external camera parameters for the FME scenario.

In the case of the FME scenario, all images were taken with a mobile phone. GPS readings

on the phone were used as initial position estimates. The local world model was considered

planar, so that a homography can be used to translate from GPS coordinates to the metric

representation used in the point cloud.

Table 3.3 shows the results of the calibration of internal camera parameters. Since all

images were computed using the same camera, the mean values obtained for the internal pa-

rameters can be used as a reference. These mean values are shown in the first line in the table.

Table 3.4 reports the different camera positions estimated with our algorithm and contrasted

to the GPS readings on the phone. GPS coordinates are transformed to metric coordinates with

the WGS84 standard and affine transformed with the DLT algorithm to align them with the

FME building. Height values are not reported, as their readings from the phone GPS unit are

unreliable.

This comparison is shown schematically in Figure 3.10. Figure 3.10a shows the estimated

camera viewpoints, whereas Figure 3.10b shows a comparison between GPS readings (blue

squares) and the camera poses computed with our method (red dots).

Figure 3.11 shows results of the optimization results for the FME dataset. In blue projected

3D lines and in red selected image lines. The heavy presence of unstructured data made it
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(a)

(b)

Figure 3.10: Camera localization for the FME scenario. (a) Camera viewpoint estimates; and
(b) a comparison between GPS measures (blue squares) and our method (red points).

difficult to find a large number of support lines for calibration in this scenario, suggesting the

need for calibration also with point/appearance features, together with lines. We leave this

hybrid scheme as an open alternative for further development of the method.

Computing Homographies

To measure events occurring on the scene, such as path lengths or areas of crowdedness, it

would be necessary to obtain direct mappings from images to planar regions in the floor. The

idea is to have a practical way to transfer 2D images to the world coordinates of the targets

detected. To this end, we compute the homographies of user-selected planes with the end of a

graphical user interface. The user selects polygonal regions in the images, and the 3D points
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(a) (b) (c)

(d) (e)

Figure 3.11: The results of the final calibration camera network. Optimization approximates
the projected laser lines (blue) to the image lines (red) using the FME dataset. (a) Cam-1;
(b) Cam-2; (c) Cam-3; (d) Cam-4; (e) Cam-5.

that project inside these polygons are used to approximate the 3D planes. The algorithm to

compute the homographies is the standard direct linear transform [30]. Figure 3.12 shows the

result of this computation for the two scenarios. Camera images, each one of a different color

mask, are projected onto their corresponding planar regions in the map.

3.4 Remarks

In this chapter, we have proposed a methodology to calibrate outdoor distributed camera net-

works having small or inexistent overlapping fields of view between the cameras. The method-

ology is based on the matching of line image features with 3D lines computed from dense 3D

point clouds of the scene.

In the first stage, the user obtains the nominal calibration by using default intrinsic param-

eters for the cameras and indicating their positions and orientations on an aerial view aligned

with the range map. Next, the calibration of each camera is improved by an automatic opti-

mization procedure detecting lines in the 3D map and matching them with image lines. The

lines are detected in the point cloud by automatically segmenting out planar regions and find-

ing such plane intersections. The optimization procedure then minimizes the distance between

points in the lines found in the map and their corresponding points in the image lines. The
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method has been used to calibrate the Barcelona Robot Lab, a 10,000 m2 area for mobile robot

experimentation, and for camera localization at the FME patio, both located at the UPC campus

in Barcelona.

Future work will include an analysis of uncertainty for the external calibration using the

DLT-lines algorithm and the combination of feature points together with lines for scenes with

a limited structure.
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(a)

(b)

Figure 3.12: Computed homographies for the two scenarios. (a) BRL scenario; (b) FME sce-
nario.
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Chapter 4

Error propagation analysis of camera
calibration

One way to evaluate the quality of our camera calibration system is to analyize the level of

reconstruction in metric scale that can be attained with it. This chapter presents an uncertainty

analysis of the camera calibration procedure presented in the previous chapter. The analysis

propagates errors in pixel coordinates to the actual error in metric reconstruction.

To that end, we compute a first order linearization of the calibration method around the

provided solution and perform first order error propagation [29] of this model. We validate the

obtained uncertainty models with synthetic data using Monte Carlo simulations, and with real

data from our experiments with the BRL camera network.

This analysis of the camera calibration is needed since the error inflicted by the bad estima-

tion of intrinsic parameters affects the extrinsic parameter estimation [34]. We propose hence

a first order error estimation analysis of the full extrinsic calibration, including the effects of

the DLT-Lines algorithm [74] in the propagation of uncertainty.

Some precedents related to our uncertainty analysis are presented in [81], where the cali-

bration is preformed using essential matrices, and in which first order error propagation is also

proposed between the calibration and the motion parameters; or in [73], where the analysis is

made measuring parameter correlation.

In our case, we take into account the uncertainty of feature extraction occuring in the two

sensor modalities. Namely, we propagate image feature detection noise in pixels, and also,

uncertainty in the 3D parameters of the line features extracted from the range map. For our
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4.1 Error propagation

simulation studies, the range map is generated with a syntethic model of an RGBD camera.

In this model, there exists a one to one matching between the pixels in the image and their

corresponding 3D values. For the real experiments however, we resort back to our original

setting, the camera network and the 3D range map computed using a laser range finder and a

prior a SLAM session.

Our results compare the estimated uncertainty bounds with those values obtained using

Monte Carlo simulations. We then use this result to identify bounds for the metric reconstruc-

tion level of our real world camera network.

This chapter of the thesis emerged from the collaboration at Instituto Superior Técnico

at Lisbon (IST), Portugal, and we present more elaborated experiments published in CVIU

2015 [23].

4.1 Error propagation

In this section we derive first order error propagation formulas for the DLT-Lines calibration

process. In a first step we derive the expression propagating error variance in the calibration

data to error variance in the projection matrix entries. In a second step we derive error propa-

gation from the matrix entries to the camera projection center.

Uncertainty in the 3D data is due to a wide variety of reasons. Assuming that 3D data is

acquired by a sensor such as a LIDAR or an RGBD camera, we can experiment uncertainty

in 3D point reconstruction from different sources. 3D point estimation error can be caused

by error in the estimated camera pose, error in the estimated intrinsic parameter values of the

calibration, or even due to discretization at the pixel level.

For example, an offset in the real location of a sensor implies also an offset in the position of

the calibrated camera; or error in the intrinsic parameters of the 3D sensor may induce artificial

zooming in the calibrated camera.

Having identified these common sources of uncertainty, we detail now how this uncertainty

propagates through the DLT-Lines calibration methodology.

In a first step, 1©, we derive an expression to propagate uncertainty in the image points m

to uncertainty in the estimated 2D line parameters l. In a second step, 2©, we propagate such

line parameter uncertainty estimates, together with that of the 3D endpoints M, to uncertainty
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4.1 Error propagation

estimates of the elements in the camera projection matrix P. In a third step, 3©, we propagate

the uncertainty in the elements of the projection matrix to specific estimates for the uncertainty

in the camera pose with respect to a calibration pattern, and the uncertainty of the intrinsic

parameters, R, t, and K, respectively. The whole process is summarized in the next diagram:

m 1© l,M 2© P 3© R, t,K
Σm → Σl,ΣM → ΣP → ΣR,Σt,ΣK

Chapter 3 provides expressions for the transformations 1©, 2© and 3©. In this chapter, we

develop the first order approximation needed to propagate variances through the same trans-

formations. The general rule used is that given a differentiable function y = f(x), a first order

covariance propagation Σy is given by

Σy = JΣxJ> , (4.1)

where J is the Jacobian of f.

Transformation 1© is explicit, but the same cannot be said of 2© and 3©, where no closed

form is given, and such transformations come as a result of some optimization process. In

these cases, the transformation is not said to be explicit, but rather implicit. The seeked Jaco-

bian is computed using the implicit function theorem (Appendix A.2), which in general words

states that the Jacobian J of the unknown function y = f(x) satisfying the system of Equations

g(x,y) = 0 can be expressed in terms of the partial derivatives of g with respect to x and y in

the form

J =−
(

∂g
∂y

)−1
∂g
∂x

. (4.2)

The result is used in the following way. Assume that a solution for y is given by the

optimization of the cost function C(x,y). We can define the system of Equations g(x,y) as the

vector

g(x,y) =
(

∂C(x,y)
∂y

)>
(4.3)

that when evaluated at the minimizer y∗ is equal to 0>.

Plugging Equation 4.3 in 4.2, the Jacbian that linearly transforms x to y becomes

J =−
(

∂ 2C
∂y2

)−1(
∂ 2C

∂y∂x

)>
. (4.4)

45



4.1 Error propagation

Notice that the above cost functional C correspons to an unconstrained optimization prob-

lem. If on the contrary, our optimization is subject to a set of h constraints on the optimized

parameters, say for instance h(y) = 0, we can use a Lagrange multiplier [17] to define a new

criterion

L(x,y,λ ) =C(x,y)+λ
>h(y) . (4.5)

Minimizing L by setting its derivative with respect to y equal to zero yields(
∂C(x,y)

∂y

)>
+

(
∂h(y)

∂y

)>
λ = E+Kλ = 0 . (4.6)

Assuming, without loss of generality that the first h rows of K are linearly independent, let

K1 be the h×h top matrix of K, and E1 a vector with the top h elements of E. We can then use

this subsystem to solve for the Lagrange multipliers with

λ =−K−1
1 E1 . (4.7)

We can then replace λ in the remaining equations

K2λ +E2 = 0 , (4.8)

and define the function g(x,y) as follows. Its first components are equal to

−K2(y)K−1
1 (y)E1(x,y)+E2(x,y) , (4.9)

and its last h components are gven by h(y). This satisfies the condition g(x,y) = 0, and the

seeked derivative of f is hence equal to

J =−
(

∂g
∂y

)−1
∂g
∂x

. (4.10)

4.1.1 From image points to homogeneous line coordinates

A closed form expression for the Jacobian Jl that maps image points to homogeneous lin coor-

dinates can easily be obtained differentiating Equation 3.6 with respect to the image coordinates

of the two points m1 and m2 in the image line

Jl =

 0 1 0 −1
−1 0 1 0
−v2 −u2 −v1 u1

 , (4.11)
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Hence, the linear propagation of the independent point variances Σm1 and Σm2 can be com-

puted with

Σl = Jl

[
Σm1 0

0 Σm2

]
J>l . (4.12)

4.1.2 From 3D point coordinates and homogeneous line coordinates to camera
calibration entries

To analyze how the image line and 3D point variances Σl and ΣM propagate to the calibration

parameter variances in ΣP, we need to set as implicit function the minimizer of the set of

Equations 3.8 for all the points in the image lines, in the least squares sense.

The optimal calibration matrix elements, expressed in vector form, as in Equation 3.8,

correspond to the minimizer of the problem

P∗ = argmin
P

P>B>BP

s.t. P>P= 1 (4.13)

Our Karush-Khun-Tucker condition (Equation 4.6) for this problem becomes

g1 = 2BP+2λP= 0 (4.14)

and the constraint is

g2 = h(P) = P>P−1 = 0 . (4.15)

Solving for λ in the first line of Equation 4.14, and substituting in the rest, and augmenting

the system with the constraint g2, we form g((l,M),P) whose derivatives give a closed form

expression for the seeked Jacobian

JP =−
(

∂g((l,M),P)

∂P

)−1(
∂g((l,M),P)

∂ (l,M)

)
, (4.16)

and

ΣP = JP
[

Σl 0
0 ΣM

]
J>P . (4.17)
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4.1.3 From camera calibration matrix entries to camera pose

Propagating uncertainty from the estimated P into its decomposition K[R|t], or the separate

intrinsic parameters (scaling, shear or principal point), involves computing the Jacobian of the

transformation starting from the QR decomposition from Equation 3.13, and ending with the

calibration parameters extracted from P.

Despite straightforward, this process involves lengthy expressions for each parameter, which

can be used as indicators of the precision of the calibration. The uncertainty of the camera pro-

jection center is one such indicator that can be computed using concise expressions.

Denoting the projection center, referred to the world coordinate system, as c = [cx cy cz]
>,

one has that c projects to a point at infinity, mc = [0 0 0]> = 0, i.e.,

P [c>1]> = 0. (4.18)

Representing the projection matrix as a collection of columns, P = [P1 P2 P3 P4], the

projection center can be computed as the solution of the linear system of three equation in

three unknowns, [P1 P2 P3]c =−P4.

Considering that one wants to apply operations (derivatives) on the transformation from P

to c, it is convenient to derive a closed form expression for c. Using the Cramer’s rule to solve

the system, one has

tx = det([−P4, P2, P3])/w (4.19)

ty = det([P1, −P4, P3])/w (4.20)

tz = det([P1, P2, −P4])/w (4.21)

where w = det([P1 P2 P3]).

It is interesting to note that the choice of the world coordinate system is key to obtain

concise expressions. Instead of t = K−1P4, one has c = P−1
3×3P4 which differs from t just by

a rotation. Noting that P3×3 = KR and P4 = Kt, one has c = (KR)−1Kt = R−1t, and hence

avoiding decomposing P = K[R t].

Hence, computing the derivatives of Equations 4.19- 4.21, with respect to the terms in P,

one propagates explicitly the error variance of the projection matrix, ΣP, to the error variance

of the projection center, Σc

Σc = JcΣPJ>c , (4.22)
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4.1 Error propagation

where

Jc =
1

w2

[
ad −mw2−ae nw2 +a f −dw −ag pw2 +ah −qw2−ai gw a j −sw2−ak tw2 +al − jw

mw2−bd be −ow2−b f ew bg− pw2 −bh rw2 +bi −hw sw2−b j bk −uw2−bl kw
cd−nw2 ow2− ce c f − f w qw2− cg ch− rw2 −ci iw c j− tw2 uw2− ck cl −lw

]
and

a =−det([−P4, P2, P3])

b = det([P1, −P4, P3])

c =−det([P1, P2, −P4])

d = P22P33−P23P32

e = P21P33−P23P31

f = P21P32−P22P31

g = P12P33−P13P32

h = P11P33−P13P31

i = P11P32−P12P31

j = P12P23−P13P22

k = P11P23−P13P21

l = P11P22−P12P21

m =
P23P34−P24P33

w

n =
P22P34−P24P32

w

o =
P21P34−P24P31

w

p =
P13P34−P14P33

w

q =
P12P34−P14P32

w

r =
P11P34−P14P31

w

s =
P13P24−P14P23

w

t =
P12P24−P14P22

w

u =
P11P24−P14P21

w

and w as defined above. Similar expressions can be computed for the rest of the pose parame-

ters.
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4.2 Experiments

4.2 Experiments

In order to validate the proposed uncertainty analysis formulas we conduct some experiments

in a synthetic environment for which one has available precise and accurate ground truth. In

addition, we apply the proposed uncertainty analysis to a real setup based on an outdoor scene,

the Barcelona RobotLab, which has been reconstructed in 3D using lidar data, thus providing

directly the required 3D information for the DLT-Lines method.

4.2.1 Synthetic experiments

In this section the variance of the entries of the projection matrix, ΣP, predicted using the

proposed uncertainty analysis (Equation 4.17) is compared against a synthetic a Monte Carlo

simulation. The simulation allows us to vary the internal camera parameter accuracies as well

as the precision of the camera pose, and to set a fixed number of image points and their 3D ref-

erences as calibration pattern without the need to resort to the actual image processing routines

for feature extraction and matching at the various noise levels We consider various levels of

white Gaussian noise in the localization of the image points, the localization of the 3D points,

or both.

Two simulation setups were generated, the first synthetic setup is formed by two cameras,

namely a mobile color-depth (RGBD) camera which collects 3D data and a fixed RGB camera.

See Figure 4.1. Frame (b) in that figure shows a synthetic image simulated for the RGB camera,

while frame (d) and frame (e) show synthetic intensity and range images simulated for the

RGBD camera.

In this setup, we analyze what happens when just the RGB image has noise. In other words,

the noise in 3D points is set to null (σM = 0). To improve readability, variance is written

using upper case, Σ, and standard deviation is written using lower case, σ . The uncertainty

analysis was performed using both the proposed propagation methodology and Monte Carlo

simulations. The Monte Carlo simulation was configured for 300 runs at each level of noise.

The standard deviation of the noise in the 2D points varies from 0 to 6 pixels, and the standard

deviation of the 3D location of feature points varies from 0 to 2 cm. For all these runs, the

variance of every entry in P, i.e. ΣPi j was computed.
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Figure 4.1: Analysis of camera calibration uncertainty. (a) VRML setup. (b) RGB image.
(c) RGBD intensity image. (d) RGBD range image. Each line defined in the RGBD image
corresponds to a line in the RGB image, and leads to a 3D line in the world/RGBD coordinate
system. (e) 3D lines form the required input data for DLT-Lines calibration. (f) Relation
between the error in the RGB image coordinates and the projection matrix parameters. (g)
Monte Carlo simulations of the same relation between image error standard deviation and the
standard deviation of the projection matrix elements.
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4.2 Experiments

(a) Setup (b) Noise in uv and xyz

(c) Noise in uv (d) Noise in xyz

Figure 4.2: Single camera setup. (a) 3D information is known for the image lines shown. (b)
Analytic computation of the propagation of the combined noise in pixels for the uv coordinates
of calibration points abd the xyz coordinates of the calibration pattern, to the element P24 in the
calibration matrix. (c) Propagation of noise in pixels for uv coordinates of calibration points to
noise in the entry P24 of P. In red the analytic result, and in blue the Monte Carlo simulations.
(d) Propagation of noise in meters for the xyz coordinates of the calibration pattern to noise in
the entry P24 of P. In red the analytic result, and in blue the Monte Carlo simulations.
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4.2 Experiments

The linear propagation of the standard deviation of each of the entries of P, computed

with the proposed methodology, is shown in frame (f) in the same figure. As expected, some

entries of P are more robust to noise than others. Frame (g) shows the Monte Carlo simulation

results for varying levels of pixel noise, again for all the entries in P. Plots (f) and (g) indicate

that the analytical values obtained using the linear propagation analysis match those of Monte

Carlo results for values of σm lower than approximately 3 pixels. Hence, validating out linear

approximation for the propagation of uncertainties in the camera calibration process.

Nonlinearities have more incidence for larger levels of image noise, making our first or-

der approximation unreliable. Nonetheless, pixel value noises in ranges below 3 pixels are

acceptable for most imaging sensors.

The second setup is based on a single RGBD camera. The setup can be seen in Fig-

ure 4.2(a), which corresponds to a typical ’L’ shaped corridor. Camera calibration ground

truth is known and is used to assess the validity of the noise propagation estimation method.

Frame (b) shows the theoretical value for σP24 in the presence of noise, simultaneously in both

the image and the range values. The plot shows the correlated effects between the image and

range noise values.

Monte Carlo simulations were also run for this setup. Plots (c) and (d) show both the

analytic and estimated value of σ for P24 as a function of variations in image and depth noise.

Plot (c) shows once more that the first order approximation is only valid up to around

σm = 3 pixels. The theoretical prediction is nevertheless accurate for lower levels of noise

showing that the proposed uncertainty analysis takes correctly into account the scene structure.

Nonlinear effects have less influence for variations of range as shown in plot (d).

4.2.2 Experiments in real scenarios

For our real scenario experiments we use a mobile Pioneer 3AT robot equipped a 3D range

sensing device consisting of a Hokuyo UTM-30LX laser mounted on a slip-ring. The laser

resolution is set to 0.5 degrees in azimuth with 360 degree omnidirectional field of view, and

0.5 degrees resolution in elevation for a range of 270 degrees. Each point cloud contains

194,580 range measurements of up to 30 meters with noise varying from 30mm for distances

closer to 10m, and up to 50mm for objects as far as 30m. Our robot includes also two Flea2

cameras [52]. The dataset used for the experiments is the Barcelona RobotLab dataset [84].
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4.2 Experiments

We analyze pose error in different indoor and outdoor scenarios. The first experiment

involves an indoor scenario. In this scenario, a camera calibration pattern is used to compare

classical image based calibration with our 3D-2D line-based calibration scheme. We show the

result in Figure 4.3. In this setup we used 12 lines, the noise in 3D points is (σM = 0) meters,

and image points (σm = 2) pixels. The Ellipsoid representing the position uncertainty can be

seen in the zoomed part (blue ellipse).

The next experiment consists in the estimation of pose uncertainty for the calibration of

the camera network explained in [56]. Calibration results for a subset of cameras are shown in

Figure 4.4. The top frames contain the camera images, the reprojected 3D point cloud, and the

3D lines used for calibration. The bottom frame shows again the 3D lines used for calibration

and the estimated 3D poses and their associated position covariances. These covariances are

magnified 10 times to ease visualization.

4.2.3 Experiments discussion

Using only vertical and horizontal lines at the roof level, z = 0, results in a rank deficient

problem, more precisely, rank(B) = 10 for matrix B in Equation 4.13.

Rewriting B as B = UΣVT . And, letting V = [v1 . . . v12] be the 12 singular vectors of B. In

the case of rank(B) = 10, the solution is a linear combination of the last two singular vectors,

v11 and v12 corresponding to the smallest singular values of B

P∗ = w11v11 +w12v12 (4.23)

This solution has an ambiguity between the camera height and the vertical focal length.

The null space is a set of camera configurations where the camera has fixed x and y coordinates

while z varies. As z gets higher, the camera is rotated downwards and the vertical focal length

is augmented so that the imaging does not change.

In order to constrain the solution, we use the square pixels constraint to reformulate the

calibration problem as a 1D nonlinear optimization problem

P∗ = w∗v11 +
√

1− (w∗)2v12

w∗ = arg w min‖K11−K12‖ (4.24)
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4.2 Experiments

Figure 4.3: Propagation of pose uncertainty for an indoor experiment. The top frame shows
the lines used, and the inset in the bottom frame shows the computed pose covariance.
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4.2 Experiments

(a) Camera B52 (b) Camera B62 (c) Camera B65

(d) Camera B52 (e) Camera B62 (f) Camera B65

Figure 4.4: Barcelona RobotLab. Top frames: Reprojected 3D point clouds and 2D image lines
used for calibration for the cameras with labels B52, B62 and B65. Bottom frames: 3D lines
and estimated robot locations and robot location covariances. Covariance hyper-ellipsoids have
been magnified 10 times to ease visualization.
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Figure 4.5: (a) Barcelona RobotLab camera network used in our calibration experiments; (b)
platform used to collect the 3D map; (c) propagation of the image error onto the camera pose.
The results have been enlarged by a factor 10 to ease visualization.
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4.3 Remarks

where w∗ ∈ [0, 1] and the intrinsic parameters matrix, K, is computed through QR decomposi-

tion of the vector P∗ reshaped to a 3×4 matrix. Note that by construction ‖P∗‖= 1, since v11

and v12 are orthogonal and have unit norm. The interval w∗ ∈ [−1, 0] is not considered since

−P∗ and P∗ lead to the same solution.

The solution obtained is displayed graphically in Figure 4.5(c), and allows retrieving the

camera pose (localization and rotation) and its intrinsic parameters.

In the above mentioned analysis we are using a simplified perspective projection model

that does not consider radial distortion of the image. However, since the results depend on the

line extraction method, and thus on the quality of line estimates on the images, the results on

pose estimation will nonlinearly degrade to a point in which the estimate will be inconsistent

with our linear propagation of variances shown in Figure 4.1. As reported in [74], the error of

the computed horizontal focal lenght was 4.9× 10−5, the reprojection error 0.4707[pix2], the

rotation error 0.01 radians, and the pose error 0.0092 meters, still within proper uncertainty

bounds.

4.3 Remarks

In this chapter we presented a methodology to analyze how uncertainty is propagated form

image pixels and 3D point coordinates to the calibration parameter estimates of a particular

line-based camera calibration methodology. The experiments shown include combination of

image data (2D line extraction) and 3D data in the form of ranges acquired from a ToF sensor,

a lidar, or an RGBD camera.

Our methodology starts by estimating the camera projection matrix using the coordinates

of 3D lines and their image correspondances using the DLT-Lines algorithm. In other words,

the projection matrix is estimated by minimizing a quadratic cost-function of the reprojection

error (MLS). The fact that calibration corresponds to the minimization of a cost function allows

propagating the covariance of the calibration data to estimate the covariance of the projection

matrix parameters using the implicit function theorem. Given the estimate of the covariance

of the projection matrix parameters we can finally propagate the uncertainty to the camera

location. In this case, explicit expressions are derived in closed form. We have demonstrated

that our uncertainty analysis is consistent by testing it with Monte Carlo simulations. And we

also show and application of this propagation of uncertainty to a real outdoors scenario.
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Figure 4.5 shows the result of that error propagation in the form of uncertainty hyperellip-

soid bounds (magnified 10 times) for the metric reconstruction of the camera locations in the

Barcelona Robot Lab.
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Chapter 5

Segmentation of dynamic objects using
a low-rate data acquisition 3D sensor

In the previous chapters we presented a method to calibrate a camera network fusing range

data and images, as well as means to evaluate to what extent noise in the extraction of image

features or 3D features influences the calibration parameters, and eventually the camera pose

estimate. All the methods seen thus far work on the premise that the scene is static, and that all

imaged elements are solidary to a common reference frame. In reality, this is seldom the case,

and robotics applications must be able to handle scenes with moving elements, also possibly

during calibration.

For this reason it is desirable to develop subsystems that can detect what is static and what

is dynamic on the scene, and in our case again, we can benefit from the possibility of fusing

3D range data with that of the cameras.

In the following two chapters we present two techniques to segment out dynamic objects

from a scene, so that the static data can eventually be used for calibration, or the dynamic

data be analyzed with other purposes. This chapter presents a method to segment out dynamic

objects using a low rate scanning device, and Chapter 6 develops a similar methodology but

for the case of a fast real-time 3D scanning device.

2D and 3D lidar scanning are popular sensors often used in mobile robotics. They are

used for robot navigation [41], trajectory planning [80], scene reconstruction [77], and even

object recognition [5]. Aside from pricey devices such as the Velodyne HDL− 64E, high

resolution 3D lidar scanning is only possible at low-frame rates. As an example, we have built
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Figure 5.1: Several laser scans of a dynamic object reprojected on their corresponding image
frame.

an omnidirectional lidar sensing device for outdoor mobile robotics applications that scans

with resolutions and acquisition times that range from 0.5 degrees at 9 seconds per revolution

to finer point clouds sampled at 0.1 degrees resolution at a more demanding processing time

of 45 seconds per revolution. This sensor has been devised for low-cost, dense 3d mapping.

The removal of dynamic and spurious data from the laser scan is a prerequisite to dense 3d

mapping.

We address the problem of dynamic object segmentation by synchronizing such laser range

sensor with a color camera, and using the high frame-rate image data to segment out dynamic

objects from the low-rate acquired points clouds. Per-pixel class properties of image data are

adapted online using Gaussian mixture models (GMM). The result is a synchronized labeling

of foreground/background corresponding laser points and image data as shown in Figure 5.1.

As we have seen in previous chapters, methods that study the segmentation of 3D laser

data usually focus on the extraction of valuable geometric primitives such as planes or cylin-

ders [55] with applications that vary from map building, to object classification [15], road clas-
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sification [47], or camera network calibration [54]. All these methods however are designed

to work on static data and do not consider temporal information. For outdoor map building

applications, the removal of dynamic objects from the laser data is desirable. Furthermore, for

low-rate scanning devices such as ours, moving items in the scene would appear as spurious

3D data; hence the need to segment them out.

Background segmentation is a mature topic in computer vision, and is applied specially to

track objects in scenarios that change illumination over time but keep the camera fixed to a

given reference frame. The most popular methods adapt the probability of each image pixel to

be of background class using the variation of intensity values over time. Such adaptation can be

tracked with the aid of a Kalman filter [65] taking into account illumination changes and cast

shadows. These methods can be extended to use multimodal density functions [78, 79] in the

form of Gaussian mixture models, whose parameters are updated depending on the membership

degree to the background class.

Range data only may not be sufficient for a proper classification, and appearance informa-

tion might be also useful. The classification of objects fusing 3D range data and appearance

information has been addressed in the past, again for the analysis of static scenes only. Posner

et al. [60–62] proposed an unsupervised method that combines 3D laser data and monocular

images to classify image patches to belong to a set of 8 different object classes. The technique

oversegments images based on texture and appearance properties, and assigns geometric at-

tributes to these patches using the reprojected 3D point correspondences. Each patch is then

described by a bag of words and classified using a Markov random field to model the expected

relationship between patch labels.

These methods (and ours) have as a prerequisite the accurate calibration of both sensors,

the laser and the camera. The computation of the rigid body transformation between 2D and

3D laser scanners and a camera are common procedures in mobile robotics and are usually

solved with the aid of a calibration pattern. The techniques vary depending on the type of

sensor to calibrate, and on the geometric motion constraints between the two sensor reference

frames [49, 54, 89, 98]. Sensor synchronization on the other hand has received less attention.

Sensor synchronization and occlusions are studied in [71] for the case of the Velodyne HDL-

64 sensor. A more general method to synchronize sensors with varying latency is proposed

in [51].
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5.1 Sensor synchronization and calibration

Figure 5.2: Our custom built 3D range sensing device and a rigidly attached color camera.

The chapter is organized as follows. Section 5.1 gives our custom built sensor specifi-

cations, and details the methods developed for sensor synchronization and sensor calibration.

Section 5.2 details the background segmentation algorithm. Results of the method are shown

in Section 5.3 on a real indoor scenario with several people moving with random patterns.

Conclusions and future work are detailed in Section in 5.4.

5.1 Sensor synchronization and calibration

5.1.1 Sensor specifications and data acquisition

Our 3D range sensing device consists of a Hokuyo UTM-30LX laser mounted on a slip-ring,

with computer-controlled angular position via a DC brushless motor and a controller. For the

experiments reported in this chapter, laser resolution has been set to 0.5 degrees in azimuth with

360 degree omnidirectional field of view, and 0.5 degrees resolution in elevation for a range

of 270 degrees. Each point cloud contains 194,580 range measurements of up to 30 meters

with noises varying from 30mm for distances closer to 10m, and up to 50mm for objects as far

as 30m. The color camera used is a Pointgray Flea camera with M1214-MP optics and 40.4

degree field of view. Figure 5.2 shows a picture of the entire unit.
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5.1 Sensor synchronization and calibration

Figure 5.3: Laser-camera pose refinement using line primitives. The green dotted lines show
the image features. Red lines show reprojection prior to pose refinement, and blue lines corre-
spond to refined reprojected estimates.

5.1.2 Sensor calibration

We are interested in the accurate registration of laser range data with intensity images. Regis-

tration can be possible by first calibrating the intrinsic camera parameters and then, finding the

relative transformation between the camera and laser reference frames. Intrinsic camera cal-

ibration is computed using the method described in Chapter 3, although other methods could

also be used [30, 87, 99]. Extrinsic calibration between the laser and camera is initialized by

selecting correspondences of the calibration plane corners on both sensing modalities with the

aid of a graphical user interface, and using Hagger’s method for pose estimation [37], as shown

in Figure 5.3.

The method is subject to the resolution of the laser scanner for the selection of the four

3D to 2D corner matches in the pattern. Pose estimation is further refined by minimizing the

reprojection error of line primitives. Lines in the 3D point cloud are obtained growing and

intersecting planar patches as in [55]. Their corresponding matches in the images are manually
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5.2 Background substraction

selected using the graphical user interface.

Line reprojection error is computed as the weighted sum of angular and midpoint location

reprojection errors,

ε = ∑(θi−θp)
2 +w(mi−mp)

T (mi−mp) (5.1)

where θ indicates the line orientation in the image in radians, and m are the line center image

coordinates. The subscript i corresponds to measured image features, and the subscript p in-

dicates projected model features. The weight w is a free tuning parameter to account for the

difference between angular and Cartesian coordinates. Figure 5.3 shows in green the measured

image lines, and in red the initial estimates of the reprojected lines. Once Eq. 5.1 is optimized

for, the resulting reprojected lines are those shown in blue.

5.1.3 Synchronization

At 0.5 degree resolution, our 3D scanner takes about 9 seconds to complete a scan, which is

made of a 180 degree turn of the sensor. The camera frame rate is set to 17 fps, thus we have

roughly 153 images per full 3D image.

The timestamps between consecutive laser slices tslicei , and grabbed images tframe j are

compared and set to lie within a reasonable threshold Ts in milliseconds.

|tslicei− tframe j | ≤ Ts (5.2)

With Ts = 1/17, each laser scan is uniquely assigned to its corresponding image frame,

roughly two to three per image. Increasing this threshold, allows to increase the number of

laser slices that can be assigned to one image as shown in Figure 5.4.

5.2 Background substraction

Once we have time correspondences between 3D laser slices and image frames, we can use

background segmentation results on the image sequence to classify the corresponding 3D

points in each time slice as belonging to a dynamic or static object. The method we imple-

mented, inspired in [79], is explained next. It models the two classes, object and background,

as Gaussian mixtures.
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5.2 Background substraction

Figure 5.4: Camera and laser synchronization.

5.2.1 Mixture model

For each pixel in the image, the probability of its RGB coordinates x to be of the background

class is modeled as a mixture of K Gaussian distributions.

p(x) =
K

∑
k=0

ωkN(x|µk,Σk) (5.3)

with ωk the weight of the k-th Gaussian, and K a user selected number of distributions.

This classification scheme assumes that the RGB values for neighboring pixels are inde-

pendent. During the training session, when a pixel RGB value x falls within 2.5 standard

deviations of any of the distributions in the sum (in the Mahalanobis sense), evidence in the

matching distributions is stored by recursively updating their sample weight, mean, and vari-

ance with

ωk(t +1) = (1−α)ωk(t)+α (5.4)

µk(t +1) = (1−ρ)µk(t)+ρx (5.5)

Σk(t +1) = (1−ρ)Σk(t)+ρ(x−µ(t))T (x−µ(t)) (5.6)

and

ρ = αN(x|µk,Σk) (5.7)
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5.3 Experiments

Note once ω is updated in Equation 5.4, the weights need to be renormalized. And, just

as in [79] we also consider during the training session, that when a pixel value x falls below a

2.5 standard deviation of the distribution, the least probable distribution of the Gaussian sum

is replaced by the current RGB pixel value as the current mean, with an initially high variance,

and a low prior weight.

5.2.2 Background class

The mixture model on each pixel encodes the distribution of colors for the full image sequence

set per full 3D scan (about 153 images). The static portion of the data, i.e., the background,

is expected to have large frequency and low variance. By ordering the Gaussians on each sum

by the value ω

detΣ
, the distributions with larger probability to be of the background class will be

aggregated in the top of the list. Static items might however be multimodal in their color. For

instance, a flickering screen or a blinking light. As a result we choose as background class the

first B < K ordered distributions which add up to a factored weight ωB, where

B = argminb(
b

∑
i=1

ωi ≥ ωB) . (5.8)

5.2.3 Point classification

Each point on each scan slice is reprojected to its matching image frames. 3D points are

reprojected to the image and classifying according to Equation 5.8. Ideally, for tight bounds

on Ts, only one image will be assigned to each scan slice. Robustness to noise is possible

however, if this bound is relaxed and we allow for larger values of Ts, so that more than one

image can be matched to the same scan slice. We call this set of images I.

Thus for each point in a slice, the corresponding pixel values x from the whole set I is

visited, and checked for inclusion in the set B of distributions. Class assignment is made if x

belongs to B for all the images in the set I.

5.3 Experiments

Results are shown for a series of indoor sequences with moderate dynamic content. For back-

ground segmentation, the multimodal distribution is set to contain 4 Guassians, the learning
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(a) Ts = 1/fps. (b) Ts = 0.5sec (c) Foreground segmentation

(d) Segmented dynamic object

Figure 5.5: Segmentation results for a sequence with one moving person and varying values of
the synchronization threshold.

rate is set at α = 0.3, and the background class is set to one third of the frequency in the distri-

butions, i.e., ωB = 0.3. The synchronization threshold Ts is varied from the minimal 1/17 to a

more conservative value of 0.5 seconds.

The first analyzed sequence corresponds to a single person moving in front of the laser and

camera. Frames (a) and (b) in Figure 5.5 show final results of point classification for different

values of Ts; frame (c) shows the image pixel classification results; and frame (d) shows the 3D

reconstruction of both, the segmented dynamic object, and the entire 3D scene.

The second sequence contains a more challenging scenario with three people with slow ran-

dom walking trajectories. Given the slow motion rate of the people, laser range readings hitting

on them are difficult to categorize as being dynamic. The background segmentation algorithm

proposed in this chapter helps to alleviate this issue. Figure 5.6 shows results of background

segmentation in this new sequence for varying values of the synchronization parameter. Setting

this parameter slightly above the camera acquisition rate accounts for synchronization errors

and produces better segmentation results. Frames (a-c) in the image show the segmentation

results for Ts = 1/fps, whereas frames (d-f) show segmentation results for Ts = 0.5sec.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Segmentation results for a sequence with three people moving randomly and vary-
ing values of the synchronization threshold. Frames (a-c) show three sequence instances seg-
mented at Ts = 1/fps. Frames (d-f) show the same sequence instances segmented at Ts = 0.5sec.

Figure 5.7 shows 3D reconstruction results of the segmented data and of the full 3D scene.

The results shown are for a synchronization threshold of 0.5 sec.

We appreciate the suggestion during the peer review phase of the conference version of

this work to compare our method with other approaches. Unfortunately, as far as we know, the

system presented is unique, and there are no other methods in the literature that take low-rate

3D scans and remove dynamic content from them using high-rate imagery. To validate the

approach, we can report however an empirical comparison with ground truth image difference.

Assuming a clean background scan is available (without people), image difference to a full

dynamic cloud was computed with the Point Cloud Library [66] using a distance threshold

of 3mm. Figure 5.8 shows results of such image difference computation. The results of our

method are visually comparable to such ground truth experiment. We apply the difference

between the computed points cloud with our method (Figure 5.5) and the PCL (Figure 5.8).

points cloud the percent of classification is 93.4%.
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5.4 Remarks

Figure 5.7: Segmentation results for a sequence with three slowly moving people with random
walking trajectories.

Figure 5.8: Result of applying point cloud difference using PCL.

5.4 Remarks

In this chapter we presented a method to segment low-rate 3D range data as static or dynamic

using multimodal classification. The technique classifies fast-rate image data from an acces-

sory camera as background/foreground adapting at frame rate a per-pixel Gaussian mixture

distribution. The results of image classification are used to tag reprojected laser data.

Special attention is paid to the synchronization and metric calibration of the two sensing

devices. Sensor synchronization is of paramount importance as it allows to match high frame

rate imagery with their corresponding low rate laser scans. The method is tested for indoor

sequences with moderate dynamics.

The proposed method was designed to remove spurious data or dynamic objects from low

acquisition rate lidar sensors. The result is a cleaner 3D picture of static data points. These
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5.4 Remarks

point clouds could then be aggregated into larger datasets with the guarantee that dynamic data

and noise will not jeopardize point cloud registration. One possible application of the technique

is robotic 3D mapping.
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Chapter 6

Segmentation of dynamic objects using
a high-rate 3D sensor

This chapter presents an extension to the method presented in the previous chapter for the case

of high-rate acquisition lasers. The difference between both methods is that in the previous

chapter, low acquisition-rate was compensated with the fact that we had a very large number

of points per scan, in the order of millions. In this chapter instead, we are dealing with real

time range scanning of much lower density levels The segmentation method from the previous

chapter has the disadvantage of not being able to recover the true object motion due to the

large difference between sensor timestamps. The high-rate of the sensor used in the method

described in this chapter allows a significantly better estimate of the object motion.

Dynamic object detection, such as that of humans, is of major importance in many robotics,

computer vision, and intelligent vehicle applications [2, 83, 92]. Techniques such as SLAM,

require the identification of sensor signatures coming from moving objects. These readings

should be pruned out before mapping, otherwise the maps would turn out corrupted with spu-

rious data [28]. Moreover, dynamic object detection allows to have safe navigation avoiding

collision [7, 96]. Also, the detection and segmentation of human motion is important for higher

level applications such as human-robot interaction [26].

We propose again, the detection of dynamic objects using Gaussian mixtures models (GMM)

on intensity and range images, that in this case are generated from a Velodyne 32E−HLD laser,

a sensor which produces more than one million points per second.

The learned classes are fused to label pixels/voxels as dynamic or static. Once more, we
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Figure 6.1: Proposed method for dynamic object detection fusing range data and intensity
images

pay important attention in sensor synchronization to ensure accurate 3D point cloud-image

correspondence. Figure 6.1 shows a block diagram of the proposed method including the

modules that are explained in the coming sections.

Other methods that recognize moving people in range date include those implemented for

the case of RGB-D sensors [38] that combine the data coming from the time of flight camera

together with the image intensity data to create a 3D point cloud annotated with RGB values. In

these images, people tracking or gesture recognition can be achieved by analyzing the motion

flow vectors resulting from the analysis of a temporal sequence of such point clouds [16, 27],

known as scene flow. Scene flow is computed in the abovecited reference using a particle filter

that supports multiple hypothesis and that contrary to proir methods, does not oversmooth the

motion field during regularization. In [24] fusing the range data coming from a Velodyne

sensor with camera imagery via fuzzy rules. The attributes that are related through the fuzzy

rules are obstacle size, object class, spatial context, temporal context, and height. The result

is an estimate of the class candidate for each dynamic object in the scene. And in [46] object

detection estimates are computed from the combination of Velodyne’s range data and images

by segmenting the images using the GraphCuts method using this segmentation to drive an

object classifier on vector quantized binary features of the range data.
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Figure 6.2: Tagged dynamic object on a 3D point cloud.

In our case, Gaussian mixture models are used to encode the moving object classes. The

system has two sensors: a Velodyne 32E −HLD and a camera. Given that it is necessary to

have a very accurate camera-laser synchronization to accurately assign intensity values to the

laser 3D points, first, we compute the extrinsic parameters that relate the coordinate frames of

the Velodyne and the camera. Then, we create range images from the 3D point clouds to be

segmented using GMMs. after that, we apply a similar procedure to segment out objects on the

intensity images, also using GMM. To fuse these two estimates for the moving objects, those

coming from the range date, and those from the images, we resort to an adaptive mixture of

local experts (MLE) architecture [76]. The result is that each fused pixel/voxel is labeled as

dynamic or static.

The following sections explain the method in detail. First Section 6.1 provides the sensor

specifications used for our experiments, and the methods used to compute the extrinsic laser-

camera calibration parameters, and sensor synchronization. Section 6.2 presents the dynamic

segmentation scheme for each sensor modality using GMM, and the fusion using MLE. Then,

we present our results over an indoor scenario with people moving in random directions in

Section 6.3. Finally, in the last Section, we discuss conclusions and future work.
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6.1 Sensor specifications and calibration

Figure 6.3: (top) Threedimensional view of the scan of a Velodyne laser scanner with approxi-
mately 33260 3D points. (Bottom) Range image generated with 0.3 radians of resolution

6.1 Sensor specifications and calibration

The Velodyne HDL− 32E laser scanner is composed by a rotating array of 32 range lasers.

The lasers are aligned from +10 to -30 degrees allowing a 360 degrees horizontal Field of View

(FOV), and with 41.3 degrees of vertical FOV view. The sensor bursts 700,000 points per

second with a range of 70 meters and typical accuracy of +/- 2cm at a 10Hz rate. Figure 6.3

shows a range image created with this sensor with image resolution of 0.3 radians. To gather

intensity data, we use a Flea-camera with a frame rate of 30 f ps.

We need to calibrate our sensor as was seen in the previous chapter. For the case of the

Velodyne, we implemented our calibration routines in ROS and used OpenCV and PCL [1,

9]. The calibration routines are fully automated in this case, linking image coordinates to

3D points in the point cloud. As with Zhang’s calibration method [99], the algorithm finds a

chess pattern on the 3D point cloud , set in our case to be the closest perpendicular plane in

the floor. Then we search for the 3D corners of the selected planar region by estimating the

convex hull of the point-annotated plane [17]. We perform a similar procedure at the image

to find the chess board corners. This allows us to automatically associate image points in
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6.1 Sensor specifications and calibration

Figure 6.4: Extrinsic laser-camera calibration. (Top) Automatic chess pattern detection, (Bot-
tom) 3D point cloud registration on the image plane.

the chess pattern to their 3D correspondences. Once this is solved, we use Lu’s method for

pose estimation [37] that assumes an internally calibrated camera and known 3D-2D point

correspondences. Extrinsic laser-camera calibration results are shown in Figure 6.4. The image

shows 3D points reprojected to the image plane.

We apply a synchronization method named approximate time policy, which is readily avail-

able in ROS. This allows to associate data information from different sensors with unsynchro-

nized timestamps. The method simply clusters messages from the various sensors using the

last timestamp in the cluster as pivot. Its only user-specified parameter is the largest sensor

frame-rate Ts, in this case, that of the laser.
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6.2 Data fusion

6.2 Data fusion

Once we have computed time correspondences between 3D point clouds and image frames

we use background segmentation on the image intensity sequence as explained in the previous

chapter, and inspired in [79] to find hypothetical classes of moving objects.

To find hypotheses for the moving objects in the range data, first the whole range image

from the laser is cropped to match the camera field of view. Then, the same background

substraction algorithm is applied on the cropped range image.

The result is a couple of distributions for the existence of a moving object at each pixel in

the whole intensity and range images, pI(y|x) and pR(y|x).

To fuse the outputs from the intensity and range object detection modules we develop a

method inspired in the adaptive mixture of local experts (MLE) architecture [76] as follows.

The fused estimate is a weighted sum of the two beliefs

p(y|x,α) =
i

∑
i=0

g j(x)p(y|x,αi) (6.1)

where y indicates the object class, x are corresponding pixel coordinates in both the intensity

and range images, g are user selected weighting functions, and α is the learning rate for each

of the two sensing modalities.

Figure 6.5 depicts the methods graphically. Note that the pixel indexes may not correspond

exactly in both the range and intensity images, but instead relate to each other through the

extrinsic calibration of the sensors.

6.3 Experiments

We present the results for two indoor data sequences with dynamic content. We implement our

algorithms using ROS [63] for the dynamic segmentation and the Point Cloud Library (PCL)

[66] for the laser-camera extrinsic calibration. Multi-modal distribution is set to 4 Gaussians,

the learning rate is set at α = 0.3, and the background class is set to contain initially one third

of the frequency in the distributions, i.e., ωB = 0.3. We apply similar settings for the range

images. The synchronization threshold Ts is varied to the minimal 1/10 Velodyne frame rate.

Finally, range images are generated with horizontal and vertical resolutions of 0.3 radians.
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6.3 Experiments

Figure 6.5: Data fusion of range and intensity data using adaptive mixture of local experts.

We analyzed first a sequence that corresponds to a single person moving in front of the laser

and camera. The results are shown in Figure 6.6. The dynamic regions detected independently

in each of the two sensor modalities are reprojected to each image and shown as green dots on

the intensity images, and as blue dots on the range images. The adaptive MLE fused results,

each with their own contribution, are shown as both green and blue dots in the 3D scene in

the last row. Note that 3D false positive classification of points falling on the floor plane due

to cast shadows and object reflections can be easily removed thanks to the accurate extrinsic

calibration of the sensors.

The second sequence contains people moving with random walking trajectories. We can

see that some spurious points are included in the segmentation process, but if needed, these

could be easily eliminated by region clustering or with 3D morphological operations.
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6.4 Remarks

Point cloud projected to the GMM region

GM over range images

Results of the image and range fusion

Figure 6.6: Result with one object moving in the scene.

6.4 Remarks

In this chapter we present a method to segment dynamic object on 3D points clouds using a

Velodyne scanner and an intensity camera. We segment individually the data from each sensing

modality using a Gaussian mixture classifier, and fuse the data of the different classifiers using

an adaptive mixture of local experts scheme.

The method pays attention to the importance of extrinsic laser-camera calibration in or-

der to have accurate 3D point registratio. To that end we propose an automatic laser-camera

calibration mechanism that finds and matches the corners of a planar convex hull in both the

image and the range data. Sensor synchronization also plays an important role in the method

to guarantee that the annotation of moving range data matches that of the intensity images.

This method to segment out dynamic objects in a scene may be used to further enhance

SLAM or 3D reconstruction methods, by easily eliminating possible outliers.
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Point cloud projected to the GMM region

GM over range images

Results of the image and range fusion

Figure 6.7: Result with two objects moving in the scene.
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Chapter 7

Conclusions

Multimodal sensing in computer vision and robotics is commonplace. It can be found in many

systems such as mobile manipulators, unmanned aerial vehicles, or autonomous cars. When

the sensors are chosen appropriately, their complementary properties provide significant added

value to what can be achieved with each of the sensors individually. Often however, the fu-

sion of the different sensor modalities occurs at high levels of abstraction, once their outputs

have been processed and hypotheses for the detected events or objects need to be reconciled.

Throughout the development of this thesis we have realized that in order to fuse multimodal

sensor data early on in the detection/recognition pipeline, proper calibration between the vari-

ous sensors needs to be accomplished.

This calibration of utmost importance for the fusion algorithms to work well, even at the

lowest pixel level. Apart from the intrinsic parameters of each sensor, which are often cali-

brated and provided in the specifications sheets by the sensor manufacturer, there are two more

important aspects that need to be considered when calibrating multiple sensors in a holistic

system, spatial calibration, and sensor synchronization.

By spatial calibration we mean the geometric relation between two sensors that relates

readings from the two into a common reference frame. By synchronization we mean that the

one can guarantee that the dynamic events observed by one sensor correspond to the very same

events observed by the other.

In Chapter 3 of this thesis we make use of the data coming from one sensor type to aid

in the geometric calibration of another one. Specifically, we calibrate the location of a set of

cameras in a camera network having small or non existent overlapping fields of view using as a
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common reference a 3D map previously built with a range scanning device. In a first stage the

user indicates a nominal calibration of the camera network providing intrinsic parameter values

from specification sheets, and roughly locating the cameras on an aerial view aligned with the

3D map. Then, the system partially automated matches low level features (lines) in both the

images and the 3D map. To aid in the detection of the lines in the 3D map, the segmentation

method developed in Chapter 2 is used. Once lines are matched in the two sensor modalities,

a cost function is computed measuring the reprojection error of the 3D lines with respect to

those on the images. An optimization of this cost function is computed, revising not only the

location and orientation of the cameras, but also their intrinsic parameters. The final result is a

3D reconstruction of the camera locations with an accuracy of a few centimeters for an area of

about 10000 sqm. This level of accuracy is sufficient for the type of scene analysis applications

to which such camera networks are designed for.

To better understand the implications of using the output of one sensor modality for the

calibration of another one we must take into account how the sensor noise from the first one

propagates to the calibration estimates of the other. This is what we analyzed in Chapter 4,

in which we computed such noise propagation using first order models of uncertainty. The

analysis was made for the case with null radial distortion. This assumption can be made for low

distortion lenses or when images are first rectified, a common procedure to eliminate nonlinear

effects of the camera lens. The consistency of the analysis was studied using Monte Carlo

simulations, and it showed, for our particular case, that the first order noise propagation model

adequately addressed the characteristics of the nonlinear effects introduced by the 2D to 3D

reconstruction, the least squares optimization for the calibration parameters and the SVD used

to recover the 3D camera pose; all within normal sensor noise ranges.

Chapters 5 and 6 make use of our calibration results for the interpretation of fused data

from laser scanners and cameras in the task of dynamic event identification in a scene. The

metric calibration between the two sensors developed in the previous chapters proved to be not

sufficient for the task at hand, and temporal synchronization between the two sensors played

a very important role. In Chapter 5, the laser used was a low-rate high-resolution device, and

the temporal synchronization between it and the camera allowed to have each laser stripe to

be univocally associated with its corresponding image. Reducing the sensor speed we were

able to annotate each image with more than once laser stripe when needed, and increasing

the sensor speed we were also able to detect those images in the camera buffer that did not
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have an associated laser scan. All in all, the simple synchronization method developed in this

chapter was accurate enough for the adequate annotation of events occurring in the scene. In

Chapter 6 however, we utilized a high-frequency low-resolution scanner. The higher frame rate

of the Velodyne scanner called for a different synchronization solution. In that case, temporal

calibration was achieved using an approximate time policy algorithm, a technique that clusters

messages using pivoting timestamps. Thanks to these two temporal calibration methods, we

were now able to adequately classify the dynamic events occurring in the scene in both cases.

In the former case, dynamic event recognition was achieved through background subtraction

using a Gaussian mixture model. In the latter case, this did not suffice and we had to approach

the data fusion using a mixture of local experts architecture.

In the end, the spatial and temporal calibration methods proposed in this thesis to fuse data

from range scanners and cameras allow the adequate treatment of the sensor fusion problem at

the lowest level of data processing, that is, at the pixel and point levels, something that is often

not possible or overlooked in poorly calibrated systems. The methods developed in this thesis

proved useful to solve two difficult tasks in computer vision, the adequate calibration of a large

network of cameras with non-overlapping fields of view, and the recognition of dynamic events

using either low-rate-high-resolution and high-rate-low-resolution laser scanners.
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Appendix A

This Appendix presents two techniques to propagate noise through a possibly nonlinear func-

tion. The first one is Monte Carlo simulation in which samples are drawn from the input

distribution estimate and are passed through the nonlinear function to compute the parameters

of the output distribution. The second one is linear propagation of uncertainties [17], in which

instead of sampling the input distribution, one operates directly with its parameters, which in

the case of Gaussian distributions are its mean and covariance, to come up with a representation

of the output distribution.

A.1 Monte Carlo simulation

Given a function

y = f (x) (A.1)

that relates an input random vector x to the output random vector y, and given the parameters

of the input distribution µx and Σx, we want to find the parameters of the output distribution

µy and Σy.

To do so, we generate N samples xi from the input distribution, which for the specific case

of Gaussian distributions is N(µx,Σx). Each sample is passed through the nonlinear function

to compute an output data set, yi = f (xi).

The mean of the output distribution is simply computed with

µy = ∑
i

yi, (A.2)

and its second moment or covariance is given by

Σy =
1
n ∑

i
(yi−µy)(yi−µy)

T (A.3)
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A.2 First order error propagation

Monte Carlo methods are a reliable technique for the estimation of the first and second

order moments of the distribution, however they have the disadvantage of being slow and costly

to compute because we have to generate a set of samples from the input distribution, and

depending on the size of x, the number N of samples needed to richly represent the whole

distribution might be too large to handle.

A.2 First order error propagation

An alternative to Monte Carlo noise propagation is to compute a first order estimation of the

output distribution parameters through linearization.

By computing a first order Taylor expansion of Equation A.1, and disregarding the higher

order terms, the mean and covariance of the output distribution become

µy = f (µy), (A.4)

Σy = JΣyJT (A.5)

where J is the Jacobian of f with respect to x.

There are cases however in which the relation between the input and output variables is

unknown, i.e., there is not an explicit form as in Equation A.1 that relates the two random

vectors. But often there is an implicit relation between them, of the form Φ(x, f (x)) = 0.

In that case, we can take advantage of the Implicit function theorem:

Theorem 1 “Let S ⊂ Rn×Rm be an open set and let Φ : S→ Rm be a differentiable function.

Suppose that (x0,y0) ∈ S, that Φ(x0,y0) = 0, and that
∣∣∣ ∂Φ

∂y

∣∣∣
(x0,y0)

6= 0, then there is an open

neighborhood X ⊂ Rn of x0, a neighborhood Y⊂ Rm of y0, and a unique differentiable function

f : X → Y such that Φ(x, f (x)) = 0 for all x ∈ X”.

The proof of this theorem can be found in [40]. Taking the derivative by parts of Φ(x, f (x))=

0 we have that
∂Φ

∂ x
+

∂Φ

∂ f (x)
d f (x)

dx
= 0 . (A.6)

Solving for the seeked Jacobian d f (x)/dx and substituting y for f (x) we get

J =−
(

∂Φ

∂ y

)−1
∂Φ

∂ x
. (A.7)
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